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Recent literature has reported a higher occurrence of cognitive impairment among
individuals with Age-related Macular Degeneration (AMD) compared to older adults
with normal vision. This pilot study explored potential links between single nucleotide
polymorphisms (SNPs) in AMD and cognitive status. Individuals with AMD (N = 21) and
controls (N = 18) were genotyped for the SNPs CFHY402H, ARMS2A69S and FADS1
rs174547. Cognitive status was evaluated using the Montreal Cognitive Assessment.
The two groups differed significantly on which subscales were most difficult. The
control group had difficulty with delayed recall while those with AMD had difficulty
on delayed recall in addition to abstraction and orientation. Homozygous carriers of
the FADS1 rs174547 SNP had significantly lower scores than heterozygotes or non-
carriers on the MoCA. The results suggest that the FADS1 SNP may play a role in visual
impairment/cognitive impairment comorbidity as reflected in the poorer cognitive scores
among homozygotes with AMD compared to those carrying only one, or no copies of
the SNP.

Keywords: age-related macular degeneration, mild cognitive impairment, low vision, genetics, complement factor
H, age-related maculopathy susceptibility gene 2, fatty acid desaturase 1

INTRODUCTION

With the aging of the population, the number of individuals affected by Age-related Macular
Degeneration (AMD) is on the rise. AMD is presently the leading cause of legal blindness in
industrialized nations, with a prevalence that increases with age (Klein et al., 2007). To date, AMD is
understood to be a retinal degenerative condition that impairs, among others, the ability to read, to
recognize faces, and to drive, all of which can lead to a decreased quality of life and loss of autonomy.

In addition to a higher prevalence of AMD, older adults (60 + years old) have a higher
prevalence of cognitive impairment. Cognitive impairment refers to a decrease in a person’s ability
to remember and think, to an extent that it interferes with the ability to perform daily activities.
At present, the World Health Organization estimates that ∼ 5–7% of the population aged 60 and
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over have some type of cognitive impairment, with the
most common type being Alzheimer’s disease (AD) (World
Health Organization, 2012; Wortmann, 2012). There is a
growing body of scientific literature linking both AMD and
cognitive impairment. At the turn of the millennium, large-scale
population-based studies began reporting a higher prevalence
of cognitive impairment among individuals with AMD (Klaver
et al., 1999; Wong et al., 2002). In the first decade of the
2000s, researchers determined the shared risk factors and
histopathological characteristics (Terai et al., 2001; Johnson et al.,
2002; Anderson et al., 2004; Katta et al., 2009). Most notably,
beta-amyloid (βA), best known as a component of the senile
plaques found in the brains of individuals with AD was also
identified as a component of drusen, the hallmark deposits of
AMD (Johnson et al., 2002). Further, beta-amyloid was found
to form similar vesicular structures in senile plaques and drusen
(Anderson et al., 2004).

With further advances in science and technology, and
based upon the data released from genome-wide association
studies (GWAS), researchers have refined their abilities to study
complex diseases, i.e., diseases caused by a combination of
genetic, environmental and lifestyle factors. Characterizing the
contribution of a single factor to a complex disease is difficult due
to it being obscured or confounded by other contributing factors
(Craig, 2008). A reasonable place to start is the examination of the
relationship between genetic factors and associated phenotype.
Such associations can lead to better knowledge of disease
mechanisms and to treatment options. AMD and AD are prime
examples of complex diseases. Both have benefited from the
information gained from GWAS but have, so far, been studied
separately in terms of genetic factors and associated phenotypes.

The current pilot study investigated AMD-cognitive
impairment comorbidities with respect to possible common
genetic factors. Similar disease risk factors in AMD and AD
and common histopathology lead to the hypothesis that gene
mutations may result in common pathogenesis in AMD and AD.
The first mutation to be associated with AMD was the Y402H
single nucleotide polymorphism (SNP) in Complement Factor
H (CFH). CFH is the gatekeeper for the complement cascade,
and a mutation impairing its function results in increased
inflammation. This association was reported by four studies in
2005 (Edwards et al., 2005; Hageman et al., 2005; Haines et al.,
2005; Klein et al., 2005). Inflammation was first associated with
AD in 1907 by Aloysius Alzheimer himself (Alzheimer et al.,
1995). In addition, βA, a feature of both AMD and AD has been
shown to trigger the complement cascade (Johnson et al., 2002).
Considering that complement-driven inflammation and βA are
implicated in both AMD and AD, the same polymorphisms that
infer risk for AMD may also modulate AD risk.

A second SNP having a significant impact on AMD risk is
Age-related Maculopathy Susceptibility gene 2 (AMRS2) A69S.
Compared to CFH, ARMS2 is not as well characterized. Research
to date has found that it is expressed in both the brain and
in the retina (Gatta et al., 2008). A recent study finding that
ARMS2 may be involved in complement-mediated clearance of
cellular debris (Micklisch et al., 2017). The A69S SNP appears to
cause mRNA instability, resulting in a deficiency of the protein.

Without the ARMS2 protein present, the complement cascade is
not activated to clean up necrotic cells and unwanted debris. This
can lead to the formation of drusen and senile plaques that are
the characteristics observed in AMD and AD respectively.

The Fatty Acid Desaturase 1 (FADS1) SNP, rs174547, has also
been identified as a contributing factor toward AMD through
GWAS (Neale et al., 2010), but its role is even less well
characterized. The FADS1 gene encodes an enzyme involved in
lipid metabolism, one of the pathogenic systems contributing
to AMD and AD. More specifically, FADS1 encodes delta-
5 fatty acid desaturase, the rate-limiting enzyme required for
polyunsaturated fatty acid (PUFA) biosynthesis. It is involved
in the omega-3 and omega-6 pathways (Martinelli et al., 2008;
Dumont et al., 2011). The rs174547 SNP causes an increase
in enzyme activity, which is thought to contribute to AMD in
two ways. First, omega-3 and omega-6 pathways compete for
use of the delta-5 enzyme, with the omega-6 pathway coming
out ahead. This means there is always a lower level of omega-
3 PUFAs compared to omega-6. Due to this, there is less
docosahexaenoic acid (DHA), a long-chain omega-3 fatty acid
that accounts for 50% of the lipid content of photoreceptor
rod outer segments (Cakiner-Egilmez, 2008; Augood et al.,
2008; Tuo et al., 2009). Retinal function depends on DHA
and deficiencies of omega-3 PUFAs have been shown to
alter photoreceptor function (Cakiner-Egilmez, 2008). Secondly,
omega-6 PUFAs compete with omega-3s for incorporation into
cell membranes. The presence of omega-3s in cell membranes
serves to dampen inflammatory response but, without them, the
inflammation brought about by high levels of pro-inflammatory
omega-6 PUFAs can go unchecked (Cakiner-Egilmez, 2008;
Serini et al., 2011).

In terms of AD, the condition of the FADS1 gene product is
important for the structural integrity of the brain. Approximately
half of the brain’s dry mass is composed of omega-3 PUFAs,
the lipids that depend on FADS1 for their biosynthesis, and
∼90% of this is DHA (Weiser et al., 2016). DHA is used in
the phospholipid membranes of brain cells and also serves as
a precursor for bioactive molecules required for brain function
(Freemantle et al., 2012). It is enriched at synaptic terminals and
changes in its concentration can affect cellular characteristics and
physiological processes such as neurotransmitter release, signal
transduction, neuroinflammation and neuronal differentiation
and growth (Uauy and Dangour, 2006; Orr and Bazinet, 2008).

The current pilot study examined the frequency of the SNPs
CFHY402H, ARMS2A69S, and FADS1 rs174547, and cognitive
status in individuals with AMD and controls. The SNPs were
expected to occur more frequently in the AMD group compared
to controls and in individuals scoring positive for mild cognitive
impairment. Cognitive status was measured using the Montreal
Cognitive Assessment (MoCA), which has been shown to be
sensitive to mild cases of cognitive impairment (Dag et al., 2014).

MATERIALS AND METHODS

Participants were recruited from the Montreal Retina Institute
and the School of Optometry Clinic at the Université de
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Montréal. The study protocol was approved by Le Comité
d’éthique de la recherche en santé at the Université de Montréal,
and followed the tenets of the Declaration of Helsinki. All
study participants gave signed informed consent prior to their
participation in the study.

Individuals aged 70 years or older and diagnosed with AMD
by an ophthalmologist or optometrist were recruited for this
study. The control group consisted of participants aged 70 years
or older recruited through word of mouth. They were required to
have normal vision as determined by Early Treatment of Diabetic
Retinopathy visual acuity and healthy retinas as determined by
optical coherence tomography. Those with comorbid glaucoma,
neurological disorders, or a diagnosis of dementia were excluded.

For the 107 participants from the Montreal Retina Institute,
genotyping was conducted as part of a previous study
(Smailhodzic et al., 2012a) by Radboud University Medical
Center in Nijmegen, Netherlands. The remaining patients
and all control participants were genotyped through Sanger
sequencing-based targeted mutation analysis by Asper Biogene
Ltd. In Estonia. DNA was extracted from participate saliva
samples. Presence of the Y402H SNP in CFH (rs1061170), the
A69S SNP in ARMS2 (rs104909245), and rs174547 SNP in
FADS1 was reported.

COGNITIVE ASSESSMENT

The MoCA is designed to detect mild cognitive impairment. It
screens several cognitive domains for a total score of 30 points.
Individuals scoring less than 26 points are considered to have
screened positive for mild cognitive impairment (Nasreddine
et al., 2005). A blind version has been validated for use in
visually impaired individuals (Wittich et al., 2010; Jefferis et al.,
2012). The MoCA Blind omits questions requiring vision (e.g.,
copying a shape) and recalculates the total. It is scored out
of 22, and considers a score below 18 points as screening
positive for mild cognitive impairment. However, the removal
of the visual components of these questionnaires reduces the
overall sensitivity of the MoCA (Busse et al., 2002), leading to
underestimation of scores. It is recommended to use the full
version when possible, and interpret the score for all questions
(full MoCA) and only the non-visual questions (MoCA Blind)
separately (Busse et al., 2002).

ANALYSIS

Since the data were not normally distributed with a skewness
of −0.810 (SE = 0.378) and kurtosis of 0.310 (SE = 0.741),
the non-parametric Mann-Whitney U-test was used to compare
ranks of the cognitive measures between and within the AMD
group and the control group. The same test was also used to
compare data between carriers and non-carriers of each SNP
of interest. A Kruskal-Wallis non-parametric one-way ANOVA
was used to compare the results of cognitive tests across
zygosity for each SNP. To provide more information about
the distribution of these data (which can be more informative

than differences between mean/median; Rousselet et al., 2017),
data were divided into deciles with 95% confidence intervals.
The differences between deciles in the AMD vs. Control groups
were calculated to identify any meaningful difference between
groups. All calculations were conducted using SPSS software,
version 20.0. and JASP version 0.8.1.2 (IBM Corporation, 2011;
JASP Team T, 2017).

RESULTS

A total of 107 individuals were genotyped from a previous
study (Smailhodzic et al., 2012b). From this sample, mortality
or development of AD since genotyping excluded 15 potential
participants, six were unreachable, two were excluded because
they were under 70 years of age, and 74 declined further
participation. This left a sample of 10 individuals (3M, 7F) who
completed the test battery. An additional 11 participants were
added to the AMD group for a total of 21 individuals (4M, 17F)
with an average age of 78.9 years (range: 71–92) and average
binocular visual acuity of 0.27 logMAR (range: −0.10–1.00
logMAR). The control group consisted of 18 individuals (6M,
12F) with an average age of 74.1 years (range: 70–85) and average
visual acuity of−0.02 logMAR (range:−0.26 – 0.16 logMAR).

Genetic testing determined that there were 21 carriers of
CFHY402H, with 50% of AMD and 9% of control participants
being homozygous. There were also 21 carriers of ARMS2A69S,
with 41.6% of AMD and 11% of control participants being
homozygous. There were 33 carriers of the FADS1 SNP with 53%
of AMD and 37.5% of control participants being homozygous.
The results of genetic testing are summarized in Table 1.

COGNITIVE QUESTIONNAIRES

The MoCA scores were not significantly different between groups
(AMD median = 27; Control median = 28.5), U = 150.00,
p = 0.27 (Figure 1). Seven AMD participants (33.3%) and five
control participants (27.8%) screened positive for mild cognitive
impairment (MCI) according to the MoCA. When scores for the
blind version of the MoCA were calculated, only one of the AMD
subjects who screened positive for MCI in the original scoring
achieved a score inside the normal range (≥18 out of 22).

Although the average MoCA scores did not differ between
the AMD group and controls, the subscales they had difficulty
with did. Those from the control group scoring positive for

TABLE 1 | Genetic results.

SNP AMD Control Total

CFHY402H (rs1061170) 10 11 21

Homozygotes 5 2 6

ARMS2A69S (rs10490924) 12 9 21

Homozygotes 5 1 6

FADS1 (rs174547) 17 16 33

Homozygotes 9 6 15
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FIGURE 1 | MoCA Scores in the AMD group v. Controls. (A) Jittered
scatterplots of the MoCA scores for the Control group (blue) and the AMD
group (orange). The vertical lines denote deciles for each group. The thickest
vertical line in each group represents the median. (B) The shift function or
differences in corresponding deciles between control and AMD groups with
95% bootstrapping confidence intervals. The deciles for the control group are
plotted on the x-axis and the differences between control and AMD deciles
are plotted on the y-axis. The difference is greatest for the first decile, since
AMD participants had lower scores, but the confidence intervals cross zero,
indicating this difference is not significant.

MCI had significantly lower scores on the delayed recall
subscale compared to those from the same group who passed,
U = 2.5, p = 0.002. Comparatively, those from the AMD
group with MCI scored significantly poorer on delayed recall,
U = 14.5, p = 0.005, in addition to the orientation, U = 37.5,
p = 0.034, and abstraction, U = 24.5, p = 0.007, subscales
of the MoCA compared to the rest of the AMD group.
See Supplementary Material for details of the results of the
cognitive questionnaires.

GENETIC TESTING

The CFHY402H SNP was carried by seven of the 12 who
scored below normal on the MoCA. Two of them were
homozygotes, neither of which had AMD. Scores obtained by
carriers and non-carriers of CFHY402H were not significantly
different. There was no relationship between CFH zygosity and
cognitive scores.

The ARMS2 SNP was carried by five of the individuals who
scored below the normal range on the MoCA. They were all
heterozygous for the SNP, with four of them being from the
AMD group and one from the control group. MoCA scores
did not differ significantly between carriers and non-carriers

of ARMS2A69S. There was no relationship between ARMS2
zygosity and cognitive scores.

All 12 of those scoring positive for cognitive impairment on
the MoCA were carriers of the FADS1 SNP. Six of the seven from
the AMD group with MCI were homozygotes, while three of the
five from the control group were homozygotes. The proportion
of homozygotes did not differ significantly between groups,
χ2(2) = 1.26, p = 0.53. Kruskal-Wallis showed that homozygous
carriers of the FADS1 SNP had lower cognitive scores compared
to heterozygous carriers and non-carriers, H = 8.52, p = 0.014,
ε2 = 0.224 (Figure 2). FADS1 SNP homozygotes with AMD had
particular difficulty on the language and abstraction subscales.

DISCUSSION

A number of studies have reported an association between AMD
and cognitive impairment (Klaver et al., 1999; Wong et al.,
2002; Areds Research Group, 2006; Pham et al., 2006; Baker
et al., 2009; Guo et al., 2010; Whitson et al., 2010; Ohno-
Matsui, 2011; Kaarniranta et al., 2011; Whitson et al., 2011;
Woo et al., 2012; Proitsi et al., 2012; Jonna et al., 2013; Keenan
et al., 2014; Rozzini et al., 2014; Chung et al., 2015; Demirci
et al., 2015; Harrabi et al., 2015; Tsai et al., 2015; Zhou et al.,
2016). However, these studies have been limited regarding the
evaluation of cognitive impairment. While some studies have
used subscales of neuropsychological tests, such as the Wechsler
Adults Intelligence Scale to assess cognitive function (Areds
Research Group, 2006), these subscales cannot be used to reach

FIGURE 2 | FADS1 rs174547 Carrier Status v. Average MoCA Score. FADS1
zygosity is plotted along the x-axis: 0 (non-carrier), 1 (heterozygous), 2
(homozygous). Average MoCA score is plotted on the y-axis. Regardless of
AMD status, individuals homozygous for FADS1 SNP rs174547 had
significantly lower MoCA scores compared to non-carriers.
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a clinical diagnosis of cognitive impairment. Other studies have
used the MMSE and found an association between cognitive
impairment and late AMD, but not early AMD (Baker et al.,
2009). There is evidence that the MMSE is not as sensitive to MCI
(Hoops et al., 2009; Dag et al., 2014). As a result, it is possible that
earlier stages of AMD could be associated with milder cognitive
impairment that is too subtle to be detected by the MMSE, but
which could be detected by the MoCA.

The percentage of AMD participants in this study who
screened positive for MCI according to the MoCA (33%) is in
agreement with previous studies (Duponsel et al., 2010; Wittich
et al., 2014). The percentage of controls screening positive
for MCI on the MoCA (27.8%) was high compared to MCI
prevalence reported elsewhere in older adults (Lopez et al., 2003;
Gauthier et al., 2006). Four of these five control subjects scored
just under the standard cut off value of 26 (on the full MoCA).

Overall full (out of 30) and blind (out of 22) MoCA scores
were not significantly different between the AMD group and the
control group. However, the groups did differ on which subscales
of the MoCA were difficult for participants. Those in the control
group who screened positive for MCI on the MoCA had difficulty
with delayed recall, which is typical of an MCI diagnosis (Rozzini
et al., 2007; Summers and Saunders, 2012). Not all cases of MCI
progress to AD. Prospective research has shown that cases of
MCI presenting with deficits in memory in addition to deficits
in other cognitive domains are more likely to convert to AD
(Rozzini et al., 2007; Summers and Saunders, 2012). Those with
AMD who screened positive for MCI on the MoCA had difficulty
on the delayed recall subscale, but in addition also had difficulty
with the orientation and abstraction subscores. This leads to the
hypothesis that those with AMD screening positive for MCI on
the MoCA may be at a higher risk of developing AD compared
to controls. Prospective studies would have to be conducted
to confirm this.

A greater number of women are affected by cognitive
impairment and AMD compared to men. Our results agree with
this. Originally this was thought to be due to differences in life
span between men and women, but recent research has shown
the relationship to be more complex than that. The biological
role of sex in cognitive impairment, particularly AD, and AMD is
largely understudied. Recent literature has reported exaggerated
aging, a faster decline from MCI to AD, and a greater effect of
amyloid pathology in females compared to males (Zhao et al.,
2016; Sohn et al., 2018). If amyloid pathology has a greater effect
on women compared to men, then both AD and AMD would be
exacerbated in women.

The number of homozygous carriers of CFH and ARMS2
SNPs was more than double in the AMD group compared to
the control group. This is expected as presence of the CFH and
ARMS2 SNPS are said to account for over 50% of AMD cases
(Haines et al., 2005; Haines et al., 2006). Although not statistically
significant, homozygosity of the FADS1 SNP was more frequent
in the AMD group compared to controls. This agrees with
numerous studies reporting the contributions of these SNPs to
AMD (Edwards et al., 2005; Hageman et al., 2005; Jakobsdottir
et al., 2005; Klein et al., 2005; Haines et al., 2006; Fritsche et al.,
2008; Neale et al., 2010). However, FADS1 rs174547 was present

in the majority of the sample. To rule out sampling error, the
carrier status of FADS1 rs174547 in the original 107 was analyzed.

In the original sample, 91 individuals (85%) were found
to be carriers and of them, 53.9% were homozygous. The
alleles present at rs174547 are C, the ancestral allele, or T.
The T allele is considered the risk allele for AMD. The major
allele at this location differs depending on the population. The
population of the current study, consisting mostly of individuals
of French-Canadian heritage, could be considered most similar
to a European or an American population. According to the
dbSNP, a database of genetic and epidemiological information on
SNPs from the National Institute of Health, the frequency for the
T allele of rs174547 in an American population (0.41) is lower
than that of a European population, at 0.65 (NIH, 2017). The
frequency of the T allele in the current study is 0.85, greater than
either the European or American frequencies. One explanation
of this could be the Quebec Founder population effect (Roy-
Gagnon et al., 2011). A Founder population is a new population
that is established from few individuals (or founders) and, as a
result, exhibits reduced genetic variation. Due to this, rare disease
alleles are enriched, leading to higher numbers of homozygotes
displaying the disease phenotype (Kristiansson et al., 2008).
Such populations have been instrumental in medical genetics
for research on genetic diseases. The Quebec population has
been valuable in the study of genotype-phenotype interactions
in Usher syndrome (Ebermann et al., 2009), and retinitis
pigmentosa (Koenekoop et al., 2003; Coussa et al., 2015). The
Founder Effect could potentially explain the increased frequency
of the T allele at rs174547 in this study population.

In addition to occurring with greater frequency, the FADS1
SNP was carried by all participants scoring positive for MCI
on the MoCA. Homozygotes had the lowest cognitive scores,
suggesting the FADS1 SNP has a greater contribution to
cognition than vision. The CFHY402H and ARMS2A69S SNPs
appeared not to have an association with the results of cognitive
questionnaires, as MoCA scores were not significantly different
between carriers and non-carriers. This finding supports the
biochemical research on FADS1 discussed in the introduction.
The presence of the rs174547 SNP increases delta-5 desaturase
activity which, in turn, reduces DHA (Cakiner-Egilmez, 2008;
Fauser et al., 2011; Merino et al., 2011; Hellstrand et al., 2012),
a vital component for brain structure and cognition.

The Salisbury Eye Evaluation Study (Zheng et al., 2018)
established a correlation between deterioration of vision and
cognitive decline over an 8-year period. They also determined
that the vision problems preceded cognitive decline, however,
a causal relationship was not defined. The correlational
relationship led to the sensory deprivation hypothesis, which
states that a prolonged decline in sensory input will lead to
cognitive decline due to neuronal atrophy (Valentijn et al., 2005;
Clay et al., 2009). However, there is evidence to show to that
vision impairment does lead to reorganization in the brain (Chen
et al., 2019), but this is with respect to the processing of visual
information, not memory and/or cognition. The few studies that
have explored this hypothesis have not found results to support
it (Hall et al., 2005; Anstey et al., 2006). Individuals with vision
impairment often suffer from social isolation and depression
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(Renaud and Bédard, 2013; Zheng et al., 2018), both of which
are also associated with cognitive decline (Potter and Steffens,
2007; Morimoto et al., 2015; Mick et al., 2017). It is important to
consider that the relationship between vision and cognitive health
could be mediated by these factors. Presently, there has been
more evidence to support the common cause hypothesis, which
considers aging to affect the physiology of the brain, causing
decline in sensory and cognitive functions (Lindenberger and
Baltes, 1994). The present study lends further support to this
hypothesis by highlighting the potential role of the FADS1 SNP
in age-related vision and cognitive decline.

This study is not without limitation, the most obvious being
sample size. Since there has been little study on these SNPs in
relation to cognitive impairment, there is no established minor
allele frequency for cognitive impairment cases, which is required
to determine appropriate sample size. Further, the current dataset
is non-normally distributed – which means that a sensitivity
analysis using g∗power is also not possible. It is hoped the
results presented here will be the impetus to support larger scale
studies in the future.

CONCLUSION

Although the prevalence of MCI among participants with
AMD was not much higher than controls in this sample, the
prevalence is higher than that reported in other normally-
sighted populations (Gauthier et al., 2006). Additionally, those
with AMD scoring positive for MCI according to the MoCA
had difficulty with different cognitive domains compared to
controls scoring positive for MCI. This distribution of cognitive
impairment indicates that those with AMD and MCI may be
more likely to progress to AD than controls with MCI.

No significant associations between the most prominent AMD
SNPs, CFHY402H and ARMS2A69S, and MCI were identified.
This gives support to previous claims that although AMD and
AD have many similarities, the underlying genetic mechanisms
may be different (Proitsi et al., 2012). However, the findings
were different for the FADS1 SNP. Carriers, both with and
without AMD, were more likely to have lower cognitive scores
compared to non-carriers. Further, all those scoring positive for
MCI according to the MoCA were homozygous for the FADS1
SNP. These findings highlight the importance of testing for not
only the prominent AMD SNPs but also the FADS1 mutation
in future studies.

Genetic studies of complex disease have recently become
possible, but they have required vast study cohorts for an
individual trait and international collaborations on enormous
scales (Consortium, 2007). Large global populations may not
always be necessary to study the genetics of complex diseases,
like AMD and cognitive impairment. Susceptibility to complex
disease involves contributions from common variants and rare
variants. Several common variants are likely to explain a
substantial fraction of the genetic contribution to a complex
disease, while more rare variants have a greater impact on the
phenotype of the disease. The statistical power required to detect
susceptibility alleles is positively correlated with the frequency of

the allele and the penetrance, or degree of phenotypic expression
of the allele in the test population. Founder populations
may be required to better define a risk allele, like FADS1
rs174547 that, although significant, gets lost in GWAS as a
result of population-specific effects. A number of researchers
have discussed the advantages of using Founder populations
in medical genetics. Some of the benefits include genetic,
environmental and phenotypic homogeneity, good genealogical
records, higher degree of linkage disequilibrium, and reduced
allelic heterogeneity (Lohmueller et al., 2003; Cohen et al., 2004;
Zeggini et al., 2005; Kristiansson et al., 2008). The results of
this study suggest FADS1 rs174547 may be a new focus for
better understanding any common genetic mechanism in the
AMD-MCI co-morbidity.
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