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Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont
Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key
pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting
plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations,
PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival
pathways that cooperate to reseal the damaged plasma membrane and restore cell
homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae
colonization and survival, it is also a powerful trigger of the innate and adaptive host
immune response against bacterial infection. The dichotomy of PLY as both a key
bacterial virulence factor and a trigger for host immune modulation allows the toxin to
display both “Yin” and “Yang” properties during infection, promoting disease by
membrane perforation and activating inflammatory pathways, while also mitigating
damage by triggering host cell repair and initiating anti-inflammatory responses. Due to
its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every
stage of S. pneumoniae pathogenesis and may tip the balance towards either the
pathogen or the host depending on the context of infection.

Keywords: Streptococcus pneumoniae, pore-forming toxin, cholesterol-dependent cytolysin, plasmamembrane,
pneumonia, pro- and anti-inflammatory immune responses, pneumolysin
1 INTRODUCTION

Streptococcus pneumoniae (Sp or pneumococcus) is an extracellular Gram-positive bacterium that
asymptomatically colonizes the upper respiratory tract of 5–10% healthy adults and 20–40% of
children (1). Sp was considered the major cause of lower respiratory infections (LRI) with a global
incidence of 2.7% worldwide, resulting in more than a million deaths per year and thus ranking
among the deadliest bacteria (2). In the United States alone, pneumococcal pneumonia leads to over
150,000 annual hospitalizations. Other forms of Sp infectious complications such as otitis media,
bacteremia, and meningitis are also significant healthcare burdens, leading to an average of 5 000
000, 4 000, and 2 000 cases/year respectively (source CDC: https://www.cdc.gov/pneumococcal/
clinicians/clinical-features.html). Elderly and children under 5 are particularly susceptible to severe
disease, with an invasive pulmonary disease (IPD) incidence of 7%. A major health concern and
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economic burden, Sp infection results in over $17 billion in direct
medical costs annually in the US (3, 4).

Sp is naturally transformable and displays high genome
plasticity, contributing to the rapid emergence of antibiotic
resistance and evasion of vaccine-mediated immunity (1, 5).
Effective Sp prevention and treatment is complicated by the
appearance multidrug-resistant infections, non-vaccine
serotypes and aging of the world’s population (4, 6).
Approximately 30% of Sp cases involved isolates resistant to
one or more antibiotics (https://www.cdc.gov/drugresistance/
pdf/threats-report/strep-pneumoniae-508.pdf). Worldwide,
pneumococci resistant to penicillin, erythromycin, and
trimethoprim-sulfamethoxazole are on the rise (7). To a lower
extent, resistance to tetracycline, chloramphenicol and
fluoroquinolone have also been identified (8). While in the
United States, multi-drug resistant pneumococci prevalence has
been reduced since introduction of pneumococcal vaccines, the
risk remains high in susceptible populations, especially
individuals aged 65 and over (9). Vaccination has been the
cornerstone of pneumococcal disease prevention. However,
currently, the two classes of pneumococcal vaccines, the 23-
valent pneumococcal polysaccharide vaccine (PPSV23) and the
pneumococcal vaccines based on protein-conjugated
polysaccharides (PCV13/PCV23), only protect against a subset
of over 90 different pneumococcal capsular variants (capsular
serotypes) (10). Through both the expansion of pre-existing non-
vaccine pneumococcal serotypes and serotype ‘switching’, an
exchange of capsular polysaccharide genes through
transformation, infectious strains not covered by standard
vaccination are on the rise (11). As the efficacy of traditional
antibiotics and vaccines become compromised, understanding the
mechanisms of action of pneumococcal virulence determinants is
of critical importance for the development of new therapeutics.

Sp transmits predominantly via aerosol as the bacteria is
harbored in the nasopharynx. Asymptomatic Sp carriage can
lead to localized infection of tissues contiguous with the
nasopharynx, causing sinusitis, otitis media, and pneumonia
(1). The bacterium is also capable of subsequent systemic
spread to the heart and brain upon access to the bloodstream,
causing serious diseases such as cardiac dysfunction and
meningitis (1) (Figure 1). The versatility of Sp is reflected by
the diversity of interactions with its host depending on the site of
infection and degree of disease. To colonize the host nasopharynx,
Sp forms biofilms on the mucosa of the upper respiratory tract
(12). This causes mucosal inflammation which promotes bacterial
shedding in secretions leading to transmission (13). Long-term
asymptomatic nasopharyngeal carriage supports inflammation-
induced transmission and predisposes the host to develop disease
(Figure 1A). Sp can then spread from the nasopharynx to
neighboring tissues, such as the sinusoidal cavities to cause
sinusitis, the middle ear to cause otitis media, or the eye to
cause keratitis (Figures 1B, C), all of which can be recurrent
infections especially in immunocompromised patients (14). Sp
aspiration into the lower respiratory tract causes pneumonia,
where infection damages alveolar epithelial and endothelial cells
promoting tissue permeability and induces thrombotic events
Frontiers in Immunology | www.frontiersin.org 2
(Figure 1D). If the immune response mounted in the lungs is not
sufficient to eliminate the bacteria, Sp may gain access to the
bloodstream and disseminate to cause IPD (Figures 1E–G).
During IPD, Sp may invade the spleen (15), the heart (16–18),
and/or may cross the blood-brain barrier (19). In the heart, Sp
forms biofilms and damages both cardiomyocytes and immune
cells, leading to myocardial dysfunction and long-term
pneumonia-associated adverse cardiac events (PACE;
Figure 1F). Sp-induced remodeling of brain tissue during
meningitis likely accounts for permanent neurological damage
reported in about 50% of the survivors (Figure 1G).

Integral to all stages of Sp pathogenesis is the host-pathogen
interaction mediated by pneumolysin (PLY), a key virulence factor
produced by almost all clinical isolates and currently known Sp
serotypes (20). PLY can promote asymptomatic carriage,
colonization, transmission, immune evasion and dissemination,
highlighting the multifaceted functions of this bacterial toxin. As a
member of the cholesterol-dependent cytolysin (CDC) family, PLY
is a pore-forming toxin (PFT) that at lytic concentrations disrupts
host cell plasma membrane (PM) and promotes the uncontrolled
influx and efflux of ions, small molecules, and proteins (21). PLY-
induced pore formation interferes with a plethora of cellular signal
transduction pathways. Depending on PLY concentration, which
dictates the extent of PM damage and intracellular Ca2+ overload,
host cells respond by activation of either cell death or cell survival
and damage repair pathways. At lytic levels, PLY-induced pores
can overwhelm cellular homeostatic mechanisms, triggering both
cellular proinflammatory signaling pathways and irreversible
cellular injury that results in the release of molecules heightening
inflammation. The ensuing tissue damage is integral to
pneumococcal disease (22). For example, in the lung,
exacerbated inflammation promotes tissue invasion and systemic
spread (21, 23). In contrast, at the sub-lytic concentrations likely
present during the early stages of infection, PLY stimulates cell-
autonomous repair mechanisms that overcome PM damage,
restore cell integrity, and promote cell survival (24, 25),
curtailing inflammation. In addition, depending on infection
dose, site, disease stage, target cell, and the immune state of the
host, PLY may display either “Yin” or “Yang” components, each
with potentially opposing effects on Sp pathogenesis. The Yin of
PLY promotes disease by promoting cell damage either directly or
by excessive inflammation. The Yang of PLY mitigates the damage
by triggering host repair mechanisms and modulating
inflammation, allowing the carriage of Sp without symptoms.
The remarkable ability of PLY to trigger both “Yin” and “Yang”
responses depending on infection context is showcased in several
in vitro and in vivo infection models (26, 27). Interestingly,
heterogeneous expression of PLY within individual bacteria of an
isogenic Sp population favors the appearance of subpopulations
expressing different levels of PLY. Recent studies showed that
genetically modified PLY expressing Sp strains producing different
levels of PLY triggered different outcomes during infection.
Specifically, high-PLY producing bacteria induced extensive
autophagosome damage allowing efficient clearance of Sp from
the host cells, yet, low-PLY producing bacteria facilitated evasion of
host defense mechanism and promoted the cross of the blood-
April 2022 | Volume 13 | Article 878244
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brain barrier (28, 29). Furthermore, rapid and high levels of PLY
release drives hypervirulence in infection by serotype 1
pneumococci (30, 31), showcasing that the plasticity of PLY
expression during Sp pathogenesis is fundamental and can
influence the outcome of the infection.

Here we provide a comprehensive review of PLY functions
and interactions with host cells by describing the mechanism of
pore formation, its multiple targets and effects on host cells, and
its antipodal interactions with the host immune system. We
summarize the available data and recent discoveries that
highlight the “Yin” and “Yang” perspectives of PLY activity
contributing to Sp disease progression, unveiling the myriad
Frontiers in Immunology | www.frontiersin.org 3
and sometimes conflicting properties of this fascinating
bacterial toxin.
2 STRUCTURAL AND FUNCTIONAL
INSIGHTS OF PNEUMOLYSIN

2.1 PLY Export
Secreted PLY is key for infection; however, the localization and
export mechanism of PLY is still debated (32). PLY can be
detected in the bacterial cytosol (32, 33), non-covalently attached
A B

D

E

F G

C

FIGURE 1 | Role of PLY in human pneumococcal pathogenesis and in the targeting of multiple organs. In the multiple steps of pathogenesis during human
infection by S. pneumoniae, the target organs and the cell types involved are indicated and the reported functions of PLY are listed below each step. (A) S.
pneumoniae colonizes the human upper respiratory tract. Prolonged colonization of the nasopharynx may favor bacterial spread to neighboring tissues such as (B)
the middle ear, causing otitis media and massive damage of cochlear hair cells, and (C) the eyes, leading to the development of keratitis and endophthalmitis. Upon
aspiration, S. pneumoniae can reach (D) the lower respiratory tract and cause pneumonia. In the lungs, PLY causes the dysfunction of epithelial barrier, facilitating
bacterial access to (E) the bloodstream, where PLY diminishes phagocytosis and disrupts endothelial/epithelial cells to promote tissue invasion. The bacteria are then
able to infect (F) the heart, causing pneumonia-associated adverse cardiac events (PACE) by targeting the cardiomyocytes and resident macrophages, and (G) the
brain, causing damage of both neurons and microglia.
April 2022 | Volume 13 | Article 878244
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to the cell wall (32), in culture supernatants (32), and in
circulation during Sp infection (34). Given the lack of a
canonical N-terminal signal peptide that promotes protein
secretion, PLY was thought to be released solely by autolysis,
an idea supported by experimental data showing reduced PLY
release in the presence of non-bacteriolytic antibiotics (35).
Nevertheless, autolysis may not be the only mechanism for
PLY secretion (32, 36). In fact, although attenuated for
virulence, Sp strains lacking autolysin release wild-type levels
of PLY when cultured in vitro (37, 38). In addition, a functional
SecA2 system is required for the non-covalent association of PLY
to cell wall peptidoglycan (39), a structure that can hinder PLY
delivery to the bacterial surface (40). Indeed, enzymatic digestion
of Sp peptidoglycan promotes PLY release and is detrimental for
virulence (40). Thus, PLY secretion is likely determined by
several mechanisms that may cooperate to foster disease (31).

2.2 Mechanism of PLY-Mediated
Membrane Permeabilization
PLY shares structural and functional properties with other
bacterial PFTs belonging to the CDC family, such as
Frontiers in Immunology | www.frontiersin.org 4
listeriolysin (LLO), perfringolysin (PFO), and streptolysin
(SLO) (41). It binds to cholesterol residues at the PM of host
cells, oligomerizes, and undergoes conformational changes to
form stable pores with well-defined sizes (Figure 2).

To generate pores, soluble PLY interacts with the PM,
multimerizes into two successive “prepore” complexes, and
then inserts into the PM to generate a large pore (Figure 2A).
Soluble PLY, in its monomeric state, has been shown by
crystallographic methods to be an asymmetric molecule
composed of 4 major domains (D1 to D4), including a-helices
and b-sheets (Figure 2B). The N-terminal D1 domain, although
not essential for cell binding, stabilizes overall protein structure
and enables hemolytic activity (42, 43). The non-contiguous D1
and D3 are adjacent in the 3D crystal structure and linked to the
C-terminal of D4 via D2 (44) (Figure 2B). Blocking monoclonal
antibodies and the analysis of binding-defective point mutants
indicate that D4 promotes membrane binding (21, 45–49). In
particular, two residues (T459 and L460) in a conserved D4
undecapeptide that comprises a Trp-rich loop are essential for
cholesterol recognition (21, 41, 50, 51) (Figure 2B, arrow). In
addition, the recombinant PLY toxoid B “PdB” harboring a
A

B DC

FIGURE 2 | Mechanisms of PLY-mediated host plasma membrane permeabilization and conformational changes associated to pore formation. (A) PLY pore-formation
is a multi-step process. PLY is released by S. pneumoniae as a water-soluble monomer (1) which specifically bind to cholesterol residues on the host cell plasma
membrane (2). PLY monomers oligomerize by interacting with each other to form the early pre pore complex (3), which protrudes into the membrane surface establishing
the late pre-pore (4). Finally, PLY inserts hairpins HP1 and HP2 across the membrane forming an open transmembrane channel, which allows the uncontrolled influx and
efflux of ions and small molecules (5). (B) Soluble PLY. The 3D crystal structure of PLY monomer as it is released from S. pneumoniae is shown. The 4 major domains,
from D1 to D4, as well as Helix Bundles (HB) 1 and 2 and cholesterol binding loop are indicated. The arrow indicates residues T459 and L460 in the D4 Trp-rich loop
which are essential for cholesterol recognition. (C) PLY in pre-pore complex. Structure of PLY upon cholesterol binding via the conserved D4 Trp-rich loop. Interaction
with cholesterol induces a 90° rotation of D2 (in yellow, indicated by the curved arrow) bringing D1and D3 towards the host plasma membrane. HB1 and HB2 are
positioned just above the host membrane. This structural organization is maintained in the pre-pore stage. (D) PLY in the transmembrane pore. The 3D structure of PLY
when inserted in the host cell plasma membrane is depicted. HB1 and HB2 refold into 85 Å b -hairpins HP1and HP2 (shown by the curved arrow), which insert (red
circle) and cross the hydrophobic membrane to form an open transmembrane pore. Adapted from (42).
April 2022 | Volume 13 | Article 878244
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mutation in Trp 433 in D4 is unable to undergo the
conformational changes required for membrane insertion and
strains expressing this mutant show reduced virulence, further
reinforcing the role of D4 in membrane binding and pore
formation (13, 34).

PLY monomers multimerize, forming transient pre-pore
asymmetric structures with variable diameters and composed
of 40 to 44 monomers (Figure 2A) (44, 46, 52–56). D2 undergoes
a 90° rotation, bringing D1 and D3 towards the PM, compacting
the overall structure and establishing the late pre-pore
(Figures 2A, C) (21, 53). PM insertion occurs when the D3
helix bundles (HB1 and 2) are refolded into 85A° b-hairpins
(HP1 and HP2) that perforate the hydrophobic membrane and
assemble into an approximately 260A° diameter transmembrane
channel (Figure 2D) (52, 53). Mutations in D3 residues Y150
and T172 are found in a naturally occurring non-hemolytic
variant of PLY (45, 57), pointing to their critical role in the
conformational alterations required for transmembrane hairpin
formation, PM insertion and subsequent pore-formation (45).
Although it is unclear what advantage Sp derives from loss of
PLY hemolytic activity, serotypes harboring naturally occurring
non-hemolytic PLY are commonly associated with non-lethal
respiratory tract infections (57) pointing to roles played by non-
pore formation dependent mechanisms of PLY during
Sp pathogenesis.

Additionally, it has been reported that PLY monomers may
be trapped in arcs or slit-shaped oligomers (21) that have the
ability to generate pores (58, 59), possibly with variable sizes,
different permeabilities and distinct functional roles (55, 60). At
low PLY concentrations, likely occurring at early stages of
infection, complete prepore ring structures are expected to
form less efficiently than arcs, and so pore formation may rely
on the efficiency of the conversion of arc oligomers to pores. At
high PLY concentrations, potentially reached later in infection,
binding of soluble PLY to PM is efficiently followed by assembly
of full rings, so cell lysis mainly depends on the PLY affinity for
cholesterol (60). PM disruption following arc or full ring
assembly possibly dictates different host responses according to
the phase of infection and could influence the balance of Yin and
Yang outcomes.

2.3 PLY as a Ligand for Host Molecules
In addition to binding cholesterol, PLY interacts with several
other host molecules. Such interactions contribute to its
functions as a both pro- and anti-inflammatory agent, further
discussed in Section 4 below. First, through its D4 domain, PLY
binds the mannose receptor C type 1 (MRC-1), expressed at the
cell surface of multiple immune cell types in the airways (61).
MRC-1 acts as an internalization receptor, allowing Sp to invade
MRC-1-expressing dendritic cells (DCs) and alveolar
macrophages. At low infectious doses when immune
stimulation by bacterial PAMPs is limited, MRC-1-PLY
interaction and the consequent Sp phagocytosis modulate
inflammation (discussed in section 4.2.2) and promote
intracellular bacterial survival in the lungs in a murine
pneumococcal pneumonia model (61). Second, PLY also has
the capacity to modulate the interaction of Sp with complement
Frontiers in Immunology | www.frontiersin.org 5
by functioning as a molecular decoy, binding the Fc portion of
human IgG and triggering C1q recruitment and complement
cascade activation (62, 63) (reviewed in section 4.2.4). This
interaction is dependent on specific residues within short non-
contiguous PLY sequences that are homologous to the human C-
reactive protein (CRP), which also activates the complement
(63). In vivo, diversion of complement proteins by PLY promotes
both pulmonary and systemic infection, as PLY-deficient Sp
become more virulent in complement-deficient mice (64).
Lastly, PLY was suggested to bind host cell glycans such as
sialylated fucosylated glycan divalent-LewisX (sLeX) (65), and
computational docking studies suggested the D4 and the
interface between D3 and D4 as putative binding sites for LeX
and sLeX, respectively (46). Nevertheless, interactions detected in
vitro utilized high sLeX : PLY ratios and thus appear to be
of low affinity, and PLY:sLeX co-crystals have never been
observed (46), indicating the need for further studies are
needed to explore potentially biologically interactions
interaction PLY and sLeX.

2.4 PLY-Mediated Pathogenesis and
Targeted Cells
Due to its ability to bind to cholesterol commonly found in
mammalian PMs, PLY is able to target and modulate the
function of virtually all cell types and thus plays key roles in
many modes of infection, such as asymptomatic carriage, local
disease, or life-threatening systemic disease (66) (Figure 1).

Early in infection, PLY has vital roles in colonization of the
nasopharynx and in host-to-host transmission (13, 67, 68)
(Figure 1A). In vitro, PLY-deficient mutants are impaired in
adherence (69) and show lower bacterial burden in the
nasopharynx of intranasally infected mice (67, 68). Sp grown in
vitro as a biofilm show increased ply transcription and produced
high levels of PLY (70, 71), suggesting that Sp biofilms developed
in the respiratory mucosa might also produce high levels of PLY.
The PLY-induced mucosal inflammation promotes increased
bacterial shedding in secretions and promotes transmission in
an infant mouse model of Sp infection (13).

PLY is also a key molecule in the progression of Sp infection
from the nasopharynx to neighboring tissues. A PLY-deficient
mutant causes mild histopathological changes and lower middle
ear bacterial loads in chinchilla OMmodel (72, 73). In guinea pig
infection models, PLY directly damages cochlear hair cells (74,
75). In addition, PLY intracochlear perfusion induces a strong
cytotoxic effect possibly related to pore formation at the PM of
inner hair cells (76, 77) (Figure 1B). PLY also plays a role in
pneumococcal ocular infections causing endophthalmitis and
keratitis (78, 79). Intravitreally injection of PLY causes
inflammation and tissue damage (80, 81), likely related to
PLY-induced corneal epithelial cell lysis (82) (Figure 1C).

In the lungs, PLY targets pivotal cell types during acute injury
at the early phases of pneumonia and becomes a potent inducer
of inflammation, facilitating damage of the respiratory epithelial
barrier and host tissue penetration (Figure 1D). Purified PLY
damages bronchial and alveolar epithelium and slows human
ciliary beating in vitro (83); it damages alveolar epithelial and
endothelial cells impairing barrier function (84, 85); and causes
April 2022 | Volume 13 | Article 878244
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platelet destruction thus inhibiting platelet thrombus formation
(86, 87). Anti-PLY polyvalent antibodies were reported to inhibit
PLY-mediated platelet annihilation and were proposed to be of
pharmacological interest to treat Sp community-acquired
pneumonia (87). In addition, PLY can compromise effective
immune response in the lungs through several mechanisms: it
induces the necroptosis of alveolar macrophages (88–90),
triggers caspase-dependent cell death of dendritic cells (91, 92),
promotes neutrophil transepithelial cell migration and elastase
release, thus impairing macrophage phagocytosis, and damages
epithelial cells (93–95). The pro-inflammatory role of PLY is
discussed in detail in section 4.

If not controlled in the lungs, the bacteria can reach the
bloodstream and cause IPD (Figure 1E). In the heart, sub-lytic
doses of PLY disrupt the PM of cardiomyocytes leading to the
influx of Ca2+, membrane depolarization and induction of ER
stress, which together cause alterations in cardiac rhythm and
depression in contractile force. At higher concentrations, PLY
causes cardiomyocyte cell death, inhibiting cell contractility and
promoting extensive cardiac damage which may lead to
microlesion formation and cardiac remodeling likely associated
with long-term adverse cardiac events described in IPD patients
(34, 96, 97) (Figure 1F). Sp biofilms, established in the heart of
infected mice, release PLY causing rapid macrophage killing and
impairing cytokine production (98).

During brain infection, PLY induces neuronal cell death (99,
100) and targets astrocytes, rearranging cytoskeleton and altering
astrocyte cell shape, which leads to remodeling of brain tissue,
astrocytic retraction, and cortical astroglial reorganization (101–
103) (Figure 1G). PLY-dependent astrocyte cell death is
mediated by connexin 43 (Cx43), a gap junction protein
forming hemichannels, that amplifies ATP release and
cytosolic Ca2+ influx, ultimately leading to astrocyte depletion
and blood-brain barrier destabilization (100). PLY also targets
other cells in the brain promoting endothelial cell disruption
(104), limiting microglia motility (105), and decreasing cilia
beating frequency in ependymal cells (106–108), which
correlates with loss of cilia and damage of ependymal
ultrastructure described in rat meningitis model (109).
3 PLY TRIGGERS MULTIPLE CELLULAR
RESPONSES: IRREVERSIBLE DAMAGE
OR REPAIR

Upon interaction with cells, PLY interferes with a plethora of
signal transduction pathways to induce multiple and antipodal
cellular responses that define the pathogenesis in a whole
organism (Figure 3). Such responses are cell-type specific and
are dependent on PLY concentration, which correlates with the
extent of the PM damage and of the intracellular Ca2+ overload.
Activation of different cellular responses can tip the balance
towards activation of cell death or cell survival pathways, thus
promoting tissue damage or repair, respectively. At lytic
concentrations, PLY triggers irreversible damage and cell death
Frontiers in Immunology | www.frontiersin.org 6
by causing massive mitochondrial damage, excessive
inflammation, and tissue injury. In contrast, at sub-lytic
amounts, PLY activates repair pathways triggering PM
remodeling, cytoskeleton reorganization, and, by transiently
activating MAPK, cell survival.

3.1 Mitochondrial Damage
The role of PLY in mitochondrial damage was first described in
primary rat neurons infected with Sp or incubated with culture
supernatants, which both induce the Ca2+-dependent
mitochondrial release of apoptosis-inducing factor (AIF), a
likely manifestation of massive mitochondrial damage
(Figure 3, left) (110). In addition, PLY was shown to trigger
mitochondrial swelling, loss of mitochondrial membrane
potential, and impairment in mitochondrial metabolism (111,
112). Electron microscopy analysis of PLY-intoxicated neurons
show direct binding of PLY to the mitochondrial membrane
(111). In human alveolar epithelial cells, PLY also induces
dramatic morphological alterations of the mitochondria, which
are accompanied by cytosolic Ca2+ overload, reduction in ATP
levels, membrane depolarization, increased mitochondria
permeability and release of mitochondrial DNA (mtDNA) into
the cytosol (Figure 3, left) (112). mtDNA can then be released
extracellularly through microvesicle shedding and act as a danger
signal, thus contributing to inflammation (Figure 3, right) (112).
In macrophages, cytosolic mtDNA released by PLY-damaged
mitochondria is recognized by STING and upregulates the
expression and secretion of IFN-b, demonstrated both in vitro
and in vivo in lungs of Sp infected mice (113).

3.2 Interactions With the Host
Cytoskeleton
PLY was reported to bind and promote actin polymerization in
vitro (114) and was shown to interact with actin filaments
underneath the PM of astrocytes (115) or exposed at the
surface of damaged neuronal cells (99) (Figure 3, left). In fact,
PLY D4 domain interacting with cholesterol in the PM of
neurons enables b-actin exposure to the outer surface of the
cell, facilitating Sp adhesion and invasion and increasing cell
death (99). In addition, in those cells, PLY induces cytoskeleton
instability depolymerizing intracellular actin filaments likely due
to increased Ca2+ levels (99). How these data relate to the PLY
intrinsic ability to polymerize actin in vitro needs further
investigation, and an understanding of the consequence of
PLY-mediated Sp interactions with the actin cytoskeleton may
require kinetic analysis of the infection in relevant models.

PLY also bundles and stabilizes host cell microtubules during
intoxication of neuronal cells and during pneumococcal
meningitis in rabbit infection models (Figure 3, left) (102).
Consistent with increased microtubule stabilization, high levels
of acetylated tubulin were found in both the cell culture and
animal model (102). PLY-triggered microtubule stabilization is
comparable to pharmacological microtubule-stabilizing agents
(e.g., taxol) and has been suggested to perturb axonal transport,
likely contributing to neuronal damage during pneumococcal
meningitis (102). PLY-induced microtubule perturbations are
April 2022 | Volume 13 | Article 878244
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dependent on cholesterol binding and require Src kinase activity
but are independent of Ca2+ influx and actin remodeling (102).

Several reports, primarily in neuronal cells, suggest that at low
concentrations, PLY interaction with host PM causes rapid
cytoskeleton remodeling which translates into cell shape
changes (Figure 3, right). Alterations in the brain structure
detected in infected rats were associated with PLY-mediated
astrocytes retraction and reshaping of focal adhesions, which are
underlined by cytoskeleton reorganization (101, 103). In primary
mouse astrocytes and neuronal cells, sub-lytic concentrations of
PLY binding to cholesterol promotes the formation of actin
stress fibers, filopodia, and lamellipodia through the activation of
RhoA and Rac1 GTPases (Figure 3, right) (114, 115).
Frontiers in Immunology | www.frontiersin.org 7
3.3 Activation of Cell Survival Pathways
PLY binding to the PM triggers activation of cell survival
pathways such as the mitogen-activated protein kinase p38
(p38/MAPK) (116, 117), which is a conserved response to sub-
lytic doses of PFTs dependent on K+ efflux (118), that can
stimulate cell survival pathways (117). In epithelial cells,
activation of p38/MAPK by sub-lytic concentrations of PLY
(119, 120) triggers the production of pro-inflammatory
cytokines (e.g., IL-8) to attract neutrophils, thus promoting an
effective immune response early in infection when bacterial
numbers are low (Figure 3, right) (119). In macrophages,
PLY-induced p38/MAPK activation and cytokine production
take place at the PM upon pore formation (119, 120) and has
FIGURE 3 | PLY is a trigger for multiple cellular responses. PLY interacts with cells and, depending on PLY concentration and the intracellular Ca2+ levels, induces a
variety of antipodal cellular responses that can lead to irreversible damage or the induction of cellular repair mechanisms. Left Panel: At lytic amounts, the overwhelming
increase in intracellular Ca2+ levels induces the surface exposure of actin which facilitate Sp adhesion and invasion, increasing cell death. In addition, PLY-mediated
microtubule stabilization may perturb axonal transport, likely contributing neuronal damage. Also, in neuronal cells, p38/MAPK activation is detrimental for the host cell
as it increases ROS production and induces senescence. High PLY concentrations cause irreversible mitochondrial damage by inducing swelling, loss of mitochondrial
membrane potential, and morphologic and metabolic alterations. Concomitantly with Ca 2+ overload, mitochondrial permeability increases, the ATP levels decrease,
and mitochondrial DNA is released into the cytosol. Following these events, the mitochondrial apoptosis-induced factor (AIF) reaches the cytoplasm and activates
caspase-independent cell death. Right Panel: At sub-lytic amounts, the influx of limited amounts of extracellular Ca2+ triggers the sequential recruitment of annexins to
the damaged sites where they assemble in 3D arrays to clog the PM pore. Increased intracellular Ca2+ also induces cytoskeleton remodeling through the activation of
small GTPases Rac1 and RhoA and triggers PM rearrangements culminating in PM blebbing and ESCRT-mediated release of microvesicles containing PLY, annexins,
actin-binding and Ca2+ regulated proteins, ESCRT components and mitochondrial DNA among others. Released microvesicles promote survival by eliminating the
pore, transporting danger signals and enhancing immune responses. In response to K+ efflux cell survival pathways such p38/MAPK are activated and stimulate the
production of pro-inflammatory cytokines such as IL-8, promoting neutrophil recruitment, and enhancing phagosomal integrity, thus limiting the release of toxic bacterial
components into the cytosol.
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been suggested to promote Sp clearance (121). Later in infection,
following Sp uptake by macrophages, PLY induces the trafficking
of pneumococcal cell wall components to the host cell cytosol,
presumably through phagosomal damage (122). If p38/MAPK
activation is blocked, leakage of Sp cell wall components to the
host cell cytosol is exacerbated and results in macrophage cell
death. Thus, PLY-induced p38/MAPK activation protects
phagosomal integrity and limits the release of bacterial
components, likely modulating the recognition of pathogen-
associated molecular patterns by the host surveillance systems
(Figure 3, right) (122, 123).

The timing of the MAPK response to PFTs can influence
tissue injury. Although MAPK activation can promote cell
survival responses upon intoxication by PFTs, its subsequent
modulation by protein phosphatases PP1 and PP2A, observed in
epithelial cells (120), can prevent excessive inflammatory
responses that could lead to irreversible tissue damage.
Conversely, the transient nature of p38/MAPK activation
might not be sufficient to block cell death triggered by the
recognition of Sp components in the macrophage cytosol (122).

Finally, in some cell types, activation of p38/MAPK is
detrimental. In SH-SY5Y neuronal cells, p38/MAPK is
associated with increased neuronal cell death and neurotoxic
effects (124), and in microglial, PLY-mediated MAPK activation
increases ROS production and promotes senescence (Figure 3,
left) (125).

3.4 Activation of Plasma Membrane
Repair Mechanisms
Supernatants from stationary phase cultures of Sp produce
sufficient amounts of PLY to permeabilize cells (126); however,
during infection, the majority of these perforated cells are able to
recover from damage and survive. PLY pore assembly renders
host cell PM permeable to ions and small molecules (116, 127,
128). An increase of Ca2+ concentrations to above 20 mM impairs
host-cell signaling and engages cell death pathways (116, 129).
However, an initial increase in intracellular Ca2+ levels act as a
danger signal and activates PM repair mechanisms to prevent
cell lysis (119, 124, 130–132). Thus, at otherwise sub-lytic PLY
concentrations, reduced extracellular Ca2+ enhances PLY toxicity
and result in lysis (133, 134). In the presence of extracellular
Ca2+, PLY-induced Ca2+ influx triggers the recruitment of
annexins, cytoplasmic Ca2+ responsive proteins that bind to
negatively charged phospholipids at the sites of PM injury
(135). Annexin A2, which displays the highest Ca2+ sensitivity,
is the first to translocate to the site of damage, followed by
annexin A6 and A1 (Figure 3, right). Annexin translocation
fosters the formation of plasmalemmal nanotubes at the pore site
that culminates in the release of microvesicles enriched in PLY,
annexins, actin-binding and Ca2+ regulated proteins, and ESCRT
components (Figure 3, right) (126, 134), thus shedding the PLY
pore and modulating the rise in intracellular Ca2+ (129). This
repair process has potential immunological implications for Sp
infection, as PLY-containing microvesicles induce macrophage
polarization that enhances the immune response towards
molecular patterns of Gram-positive bacteria (136). By
contrast, in alveolar epithelial cells, human lung explants and
Frontiers in Immunology | www.frontiersin.org 8
infected mice, PLY mediates the release of microvesicles
containing mitochondrial cargo that, when uptake by
neutrophils suppress their ability to release ROS and thus
impair efficient immune response against Sp (137). The
differential PLY sensitivity of immune cells is thought to be
due to differential efficiency in PM repair (138). Myeloid cells, the
first-line defenders, show enhanced shedding of PLY-containing
microvesicles and increased resistance to PLY. In contrast,
lymphoid cells are enriched in cholesterol-containing lipid
rafts, which facilitate PLY binding and pore formation, and are
impaired in microvesicles formation and PM resealing activity,
leading to high PLY susceptibility (138).
4 PLY INTERACTIONS WITH THE
IMMUNE SYSTEM: PRO- OR
ANTI- INFLAMMATORY RESPONSES

PLY can either exacerbate or mitigate damage during infection
depending on the state of the immune system as well as the
infection site, dose, timing, and interacting host cell type (26,
139). It can trigger inflammation-mediated tissue damage and
promote bacterial dissemination (18, 140, 141). However, PLY
can elicit host-protective responses in the innate and adaptive
branches of the immune system, including activation and
stimulation of cytokine production by macrophages,
neutrophils, endothelial, epithelial, and dendritic cells (22,
142–144). The multifaceted nature of PLY-induced immune
responses may account for some of the disparate outcomes of
infection by PLY-deficient strains in different infection models
(Figure 4 and Table 1). This also reflects the dual relationship of
Sp with host cells, sometimes invasive and inducing severe
disease, and other times remaining localized as an
asymptomatic colonizer (as discussed in sections 1 and 2.4.).

4.1 Pro-Inflammatory Properties
4.1.1 Epithelial Cell Activation
Epithelial cells are a first line of defense against Sp, in part by
functioning as a physical barrier against invasion and, in the
lower respiratory tract, maintaining the mucociliary elevator that
removes microbes from the lung. PLY both disrupts epithelial
cell junctions, compromising this barrier, and interfering with
the number and organization of cilia in human and mouse
airway epithelium-derived air-liquid interface organoid
cultures (145, 146), crippling the mucociliary elevator. In
addition, as the sentinels for infection, the mucosal epithelium
produces a range of antimicrobial peptides and pro-
inflammatory signaling molecules to eliminate invading
pathogens and alert immune cells to response to invasion. PLY
induces b-defensin 2 secretion in A549 human lung epithelial
cells and in human middle-ear cells (147). PLY, is also a potent
activator of cytokine and chemoattractant secretion through
pore forming insult to airway epithelial cells (94, 119, 148)
(Figure 4, left). PLY induces epithelial cell release of IL-1b,
TNF-a (148), and the neutrophil chemoattractants IL-8 (119)
and hepoxilin A3 (HXA3) (94, 149, 150). Accumulation of
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inflammatory cytokines and chemokines facilitate the
recruitment of leukocytes responding to and clearing Sp.
Nevertheless, in both a lung epithelial tissue culture and a
mouse pulmonary infection model , HXA3-mediated
basolateral-to-apical neutrophil transmigration exacerbates
damage to epithelial barrier and promotes lethal Sp systemic
spread (151, 152).

4.1.2 Neutrophil Activation
As described above, neutrophil infiltration and the associated
epithelial damage promote bacterial dissemination into the
bloodstream, resulting in lethal systemic disease (151). While
neutrophil recruitment to the lungs during early stages of
infection aids Sp clearance, overtime, reduction in adenosine
production by lowered CD73 expression correlated with loss of
neutrophil antimicrobial efficacy (153). Extracellular ATP is
shown to neutralize PLY-mediated neutrophil activation and
may explain this shift in neutrophil response profile (154).
Excessive neutrophil activities can be harmful to the host
(140). Indeed, the prolonged accumulation of PMNs in a
murine model of pneumococcal pneumonia results in
increased burden and high tissue damage (153). Upon
Frontiers in Immunology | www.frontiersin.org 9
extravasation and encountering invading bacteria, exposure of
PMNs to PLY can trigger the release of additional neutrophil-
recruiting signals, including Ca2+-dependent increases in IL-8, f-
MLP, phospholipase A, A2, prostaglandin E2, and leukotriene B4
(155, 156), reinforcing neutrophil-direction inflammation.
Neutrophils at the site of infection can be further activated by
Sp and PLY to produce reactive oxygen species (ROS) (93, 142,
157), degranulate, and form neutrophil extracellular traps
(NETs) (Figure 4, left).

ROS have multiple immune-modulatory functions during
bacterial infection: in addition to direct antimicrobial activity
and signaling to modulate immune cell function, ROS can also
cause damage to host cells and tissues (158). Interestingly,
pretreating neutrophils with PLY promotes sensitivity to f-
MLP (157), which conditions neutrophils to release higher and
more sustained levels of ROS, and become more prone to
degranulation (Figure 4, left) (142).

During degranulation, neutrophils secrete proteolytic
enzymes capable of propagating tissue damage. These include
serine proteases neutrophil elastase (NE), cathepsin G and
proteinase-3, and neutrophil metalloproteinases (MMPs). PLY
can trigger NE release either by degranulation of primary
FIGURE 4 | Pro-inflammatory and anti-inflammatory host responses to PLY. S. pneumoniae triggers both pro-inflammatory and anti-inflammatory responses
depending on interacting host cell type and infection context. Left Panel: In excess, pro-inflammatory actions of PLY enhance tissue damage and promote bacterial
spread. In epithelial cells, PLY induces production of pro-inflammatory cytokines and chemokines, promoting neutrophil transmigration and compromising epithelial
barrier function. PLY-stimulated neutrophils engage in a wide range of effector functions, including degranulation, reactive oxygen species (ROS) production, and
neutrophil extracellular trap (NET) release, many of which propagate inflammatory tissue damage and are associated with severe pathology in the lung. PLY can
activate macrophages independently or in conjunction with other co-stimulants to cause the release of pro-inflammatory cytokines and chemokines. Macrophages
can also be activated by PLY-dependent inflammasome activation, which in bone marrow-derived macrophages leads to IL-1b -mediated inflammation, and in
microglia, pyroptotic cell death. PLY is also a potent inducer of macrophage necroptosis, often leading to acute tissue injury. Right Panel: Anti-inflammatory activities
of PLY downregulate immune responses and may aid bacterial evasion. During pneumococcal colonization and early stages of lung infection, PLY suppresses
inflammatory cytokine production by airway epithelial cells and enhances recruitment ofT regulatory cells, promoting unchecked bacterial colonization. Internalization
of PLY by alveolar macrophages and dendritic cells via the mannose receptor MRC-1, or, in bone marrow derived macrophages, PLY triggered LC3- associated
phagocytosis, suppress the production of inflammatory cytokines. To avoid complement mediated detection and opsonization, PLY acts as a decoy molecule to
sequester complement proteins. Finally, PLY triggers apoptosis in a wide range of cell types, including endothelial cells, neurons, and dendritic cells, allowing for non-
inflammatory removal of these cell types.
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granules or by direct cell lysis (93, 142). Although NE degrades
pneumococcal cell wall-localized aminopeptidase N and can
facilitate opsonophagocytic killing in the presence of an
antiphagocytic capsule (93, 159–161), excessive NE activity is
Frontiers in Immunology | www.frontiersin.org 10
detrimental to the host (162). NE has potent catalytic activity
against a range of extracellular matrix proteins, including elastin,
proteoglycan, fibronectin, and several collagen types (163),
surfactant proteins (162), and alveolar epithelial cell junction
TABLE 1 | PLY-triggered pro- and anti-inflammatory immune modulations.

Nature of PLY-
triggered immune
response

Immune processes
activated

Target host cell or factor
type

Specific actions Effect on infection outcome

Pro-inflammatory Epithelial cell
activation

Epithelial cells Disruption to cilia organization and movement
Disruption to cell junction complexes

Compromised airway epithelial
barrier function

Release of pro-inflammatory cytokines IL-1b, TNF-a
Release of chemokines IL-8, and HXA3

Increased tissue damage

Neutrophil
activation

Neutrophils Release of chemokines IL-8, f-MLP, PLA2s, PGE2,
LTB4

Increased neutrophil transmigration
Prolonged neutrophil accumulation

Increased tissue damage and
systemic spread

Enhanced pro-inflammatory secretory profile: ROS,
serine proteases, MMPs
Increased NETosis

Disrupted ECM, surfactants and
cell junction proteins increasing
lung permeability
Increased systemic spread

Inflammasome
activation

Macrophage and dendritic
cells

NLRP3 or AIM2 triggered inflammasome-dependent
cytokine production: IL-1a, IL-1b, and IL-18

Enhanced bacterial clearance

Microglia Pyroptotic death Increased neurotoxicity

Macrophage
activation

Macrophage Enhanced pro-inflammatory secretory profile: IL-1b, IL-
6, TNF-a, IFN-b, IL-23, GM-CSF, MIF, NO, and pro-
inflammatory exosomes

Enhanced bacterial clearance and
immune cell recruitment

Necroptosis Tissue resident
macrophages and
cardiomyocytes

Alveolar macrophage depletion
Cardiac macrophage depletion and cardiomyocyte
death

Increased tissue injury

Epithelial cells Epithelial cell death Anti-Sp. antibody production

Anti-inflammatory Tolerization to
colonization

Epithelial cell TGF-b secretion
Suppressed TNF-a production

Increased Treg activity and
reduced neutrophil infiltration
Increased nasopharyngeal
colonization

Downregulation of Sp.-detecting receptors: CD21,
PAFR, OLR1

Nasopharyngeal colonization
evading immune detection

Anti-inflammatory
polarization
through MRC-1

Alveolar macrophage and
dendritic cells

SOCS1-mediated suppression to TNF-a
Decreased lysosomal fusion

Decreased cytokine production
Increased bacterial burden

Autophagy Epithelial cells, fibroblasts,
and macrophages

Canonical autophagy and/or LC3-associated
phagocytosis

Decreased cytokine production
Increased intracellular bacterial
clearance

Microglia Delay of caspase-1 activation and pyroptotic death Decreased neurotoxicity

Complement
subversion

Complement proteins Sequestration of complement components by binding
to immunoglobulins (classical pathway) and L-ficolin
(MBL pathway)

Decreased serum opsonic activity

Apoptosis Neurons, endothelial cells,
cochlear hair cells, and
dendritic cells

Mitochondrial damage-associated release of AIF Decreased inflammatory cytokine
production

Epithelial cells DNA damage-induced cell cycle arrest Depletion of responding immune
cells

Macrophages and
dendritic cells

Phagolysosome membrane disruption-induced caspase
activation
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protein such as E-cadherin (164). In addition, NE stimulates the
lung epithelium to release proinflammatory cytokines and
induces epithelial apoptosis (165–167). Severe pneumonia in
human patients and experimental animals is associated with
increased NE levels in lung bronchoalveolar lavage fluid (168,
169) and plasma (170). NE may thus be a critical inducer of
epithelial permeability during pneumococcal pneumonia,
compromising lung epithelial barrier and promoting bacterial
dissemination (171). Cathepsin G and proteinase-3, which like
NE are stored in azurophilc granules, also contribute to
infection-related lung injury, albeit to a much lesser degree
than NE (172). Metalloproteinases (MMPs) are neutrophil
granule components that are also released following the
increase in cytosolic Ca2+ levels resulting from PLY-mediated
pore formation and can be augmented by concurrent stimulation
by f-MLP (173). MMPs, especially MMP-8 and -9, have been
correlated with tissue injury in pneumococcal pneumonia and
meningitis (174–176). Thus, the PLY-mediated release of
neutrophil granule components contributes to inflammation
and pathogenesis, especially during severe forms of Sp disease.

Finally, pneumococcal capsule and PLY work in synergy to
promote neutrophil extracellular trap (NET) production (162), a
vital neutrophil effector function for trapping and killing
extracellular microbes (Figure 4, left). While NETs exhibit
significant antibacterial activity against Sp (177), their efficacy
is counteracted by Sp-secreted endonucleases EndA and TatD
that digest NETs and facilitate escape (162). NETs are
intercalated with NE and other proteases that can damage host
cells just as they can a pathogen, and excessive NETosis against
Sp is implicated in promoting lung injury (178), sepsis (179), and
increasing mortality (180). PLY is thus a potent activator of
multiple neutrophil effector functions, most of which can
propagate inflammatory tissue damage in the lung and are
associated with severe pathology.

4.1.3 Inflammasome Activation
PLY induces inflammasome-dependent IL-1b secretion and
initiates the pro-inflammatory cascade associated with Sp
infection (181–183). PLY-mediated K+ efflux, which is
sufficient to trigger NLRP3 activation (184), results in caspase-
1 cleavage and the consequent production and secretion of IL-1b
(181, 185). An alternative inflammasome activation pathway
aided by PLY is the AIM2 inflammasome pathway. AIM2
senses double-stranded DNA from lysed bacteria, which can
localize to host cell cytosol after PLY-mediated phagosomal
membrane disruption (186, 187). PLY-deficient Sp induces less
inflammasome-dependent cytokines production (including IL-
1a, IL-1b, and IL-18), which influence downstream cytokine and
chemokine responses to Sp. Indeed, inflammasome-dependent
cytokines promote secretion of IL-17A, IFN-g, and neutrophil
chemoattractants, each of which aids bacterial clearance (123,
182, 188). Inflammasome activation is host protective in mouse
and human macrophages ex vivo and in mouse pneumococcal
infection models (182, 188, 189). Sp strains impaired in
inflammasome activation, including some serotype 1, serotype
8, serotype 7F, and strains expressing the nonhemolytic allele 5 of
PLY, tend to cause more invasive disease (189–191) and chronic
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infection (17). In contrast, in pneumococcal meningitis models,
PLY-dependent inflammasome activation increasing
neurotoxicity and pathology (192), possibly because PLY-
triggered inflammasome activation results in rapid pyroptotic
death in microglial cells (193). Thus, while inflammasome
activation is in general a protective response against Sp
infection, tissue types such as the brain can be susctiple to
pathologies due to pyroptotic death (Figure 4, left).

4.1.4 Macrophage Activation
PLY activates macrophages to release of IL-1b, IL-6, TNF-a,
IFN-b, IL-23, granulocyte-macrophage colony-stimulating
factor (GM-CSF), macrophage migration inhibitory factor
(MIF), and nitric oxide (NO) (194–197). Many of these pro-
inflammaroty and chemotactic responses rely on p38 or
inflammasome activation. Some PLY-induced macrophages
responses require additional Sp factors as co-stimulants (198).
For instance, phagosomal membrane disruption by PLY allows
for pneumococcal DNA to enter the cell cytoplasm, triggerring
cytosolic DNA sensors for IFN-b production (113). PLY can also
modulate macrophage activation when sequestered into vesicles
shed during membrane repair; interaction with PLY-containing
vesicles increases macrophage IL-1b, TNFa, CCL5, CCL8, and
CCL1 (136).

In the monocyte-derived THP-1 cell line, PLY is responsible
for the majority of gene modulations upon exposure to Sp (194).
Upregulated genes include those encoding proinflammatory
molecules such as IL-8 and monocyte chemotactic protein 3
(MCP-3), and cell surface receptors that impact inflammation,
such as macrophage inflammatory protein 1b (MIP-1b), IL-2
receptor b (IL-2Rb), IL-15 receptor a (IL-15Ra), and interferon
receptor 2, promoting pro-inflammatory cytokine propagation
(Figure 4, left).

4.1.5 Necroptosis of Multiple Cell Types
PLY induces necroptosis, an inflammatory pathway of
programmed cell death, in the lungs (90) and heart (199). In
the lungs, PLY-mediated necroptosis of alveolar macrophages
(90) and epithelial cells (90) is triggered in response to loss of ion
homeostasis, ATP depletion, and ROS generation (90), and
depends on the phosphorylation of MLKL (200), a master
effector of necroptosis. The rapid depletion of alveolar
macrophages by necroptosis may greatly contribute to
extensive lung damage (Figure 4, left). In the heart, PLY-
mediated necroptosis occurs in macrophages that infiltrate the
infected myocardium and in cardiomyocytes, thereby
suppressing the anti-Sp immune response at that site (199) and
contributing to cardiac injury (201). The use of pharmacological
inhibitors of necroptosis reduces acute injury in the lungs and
heart during Sp infection, providing a novel therapeutic target to
overcome infection (201). Interestingly, PLY-induced
necroptosis was also reported in nasopharyngeal epithelial cells
during Sp asymptomatic colonization and was associated with
the increased production of anti-pneumococcal antibodies (202),
suggesting a role in the development of protective immunity
against Sp and highlighting the infection contex dependent
nature of PLY-host interactions.
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4.2 Anti-Inflammatory Properties
4.2.1 Epithelial Cell Tolerization
As a prerequisite to becoming a deadly pathogen, Sp
asymptomatically colonizes the human nasopharynx. This
immune-silent colonization and long-term Sp carriage are
thought to be sustained by anti-inflammatory responses, which
prevent the disruption of the epithelial barrier and the
infiltration of neutrophils (203). After nasopharyngeal
inoculation of 105 Sp in mice, a dose that results in
asymptomatic carriage, the production of PLY is associated
with higher levels of the immunosuppressive cytokine TGF-b1
and immunomodulatory T regulatory cells (Tregs) and lower
levels of neutrophil recruitment (Figure 4, right). Sp infection of
human nasopharyngeal epithelial cells and fibroblasts resulted in
PLY-dependent secretion of TGF-b1. Treatment of these cells
with purified PLY likewise results in TGF-b1 secretion (203). In
contrast, compared to the 105 dose, nasopharyngeal inoculation
of 107 Sp, which leads to bacterial clearance, results in the
production of lower levels of TGF-b1 and Tregs, and higher
levels of IFN-g and neutrophil infiltration (203). These findings
indicate that PLY is capable of fostering nasopharyngeal carriage
by limiting proinflammatory responses.

Interestingly, compared to other bacterial respiratory
pathogens, such as Haemophilus influenzae, Sp induced
cytokine production by epithelial cells in vitro appears delayed
(148), consistent with the low numbers of infiltrated neutrophils
detected in early stages of lobular pneumonia in human patients,
despite bacterial load (204). At these early infection stages, PLY
promotes the expression of MAPK phosphatase 1, which
dephosphorylates p38 to suppress TNF-a production (205)
(Figure 4, right). Later during infection, secretion of pro-
inflammatory cytokines by epithelial cells increase (148). This
delay in the initiation of epithelial cell-mediated inflammation
may delay immune cell infiltration and provide Spwith a window
of unchecked growth to establish infection. In addition, PLY
downregulated many binding receptors that aid Sp detection by
macrophages, including complement component receptor 2/
CD21, platelet-activating factor acetylhydrolase, and oxidized
low-density lipoprotein receptor 1 (OLR1). Thus, on top of
directly targeting epithelial cells for tolerization, PLY evades
surveilling immune cells by downregulating critical receptors
for Sp recognition.

4.2.2 MRC-1 as a Mediator of Anti-Inflammatory
Response
As mentioned, PLY was recently described to directly interact
with MRC-1, which is expressed by DCs and alveolar
macrophages, two cell types that represent a first line of
defense mounted against Sp in the lungs (61). The PLY-MRC1
interaction impairs inflammatory response, limiting
inflammatory cytokine secretion through the cytokine
suppressor SOCS1, as well as neutrophil infiltration (Figure 4,
right) (61). Consistent with its role as a phagocytic receptor,
MRC-1 expressed on DCs binds to sub-lytic concentrations of
PLY and promotes internalization of PLY-producing Sp. In
mouse alveolar macrophages, internalized PLY-producing Sp
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colocalizes with MRC-1, whereas PLY-deficient Sp colocalizes
with lysosomes (Figure 4, right). Upon pulmonary challenge of
mice, PLY production is associated with lower levels of TNF-a
and greater numbers of bacteria in lavage fluid. Similarly, genetic
ablation or antibody inhibition of MRC-1 results in higher levels
of TNF-a and lower bacterial load (61).

These findings opened new therapeutic strategies to fight
pneumococcus infection. Indeed, molecular docking approaches
identified MRC-1-derived peptides that neutralize PLY-MRC-1
interaction that impair Sp internalization and promote pathogen
killing by autophagy (206). Furthermore, MRC-1-derived
peptides were shown to inhibit PLY-driven cell lysis,
inflammation, and lung epithelium damage by limiting PLY
interaction with cells and decreasing IL-8 and TNF-a secretion
(206). In zebrafish and mouse models of pneumococcal infection,
MRC-1-derived peptides reduce disease development, promote
host survival, and decrease bacterial burden (206).

4.2.3 Triggering of Autophagic Processes
Autophagy is a natural self-degradative mechanism that is
activated in epithelial and immune cells to degrade cytoplasmic
content. Autophagy also plays major roles in pathogen
elimination controlling both inflammation and adaptive
immune response (207). Sp activates autophagy, which
functions as a host protective mechanism by promoting Sp
clearance (208). As anticipated by a membrane-damaging
agent, PLY was shown to initiate autophagy in a variety of
cells such as human alveolar epithelial cells (208), murine
microglia (193), and osteoblast cells (209). ROS generation
triggered by PLY leads to the inhibition of the PI3K/AKT/
mTOR pathway and the consequent activation of canonical
autophagy (193, 208), which degrades intracellular Sp and
limits infection in host cells (208). In murine microglia,
autophagy activated by Sp transiently blocks caspase-1
activation and IL-1b secretion, delaying pyroptosis, the
caspase-1-dependent inflammatory cell death pathway (193).
In these cells, Sp infection increases the expression of
autophagy-related genes in the early phase of infection as a
host protective mechanism before pyroptosis and concomitant
extensive tissue damage can occur (Figure 4, right). However, at
later stages of infection, sustained PLY-mediated high-level ROS
generation activates caspase-1 and microglia pyroptosis (193). In
osteoblasts, PLY-mediated activation of autophagy impairs
differentiation by regulating the expression of differentiation-
related genes, which require mTOR signaling (209), a finding
with potential relevance to Sp osteomyelitis. Finally, PLY induces
selective autophagy promoting the delivery of Sp entrapped in
autophagosomes to lysosomes for further degradation (210). In
fibroblasts, PLY triggers (LC3)-associated phagocytosis (LAP),
followed by canonical autophagy activation, suggesting a
hierarchical autophagy activation process leading to Sp
clearance (211). In fibroblasts, the activation of canonical
autophagy is required for Sp degradation, but in bone-marrow-
derived macrophages (BMDMs), PLY-induced LAP is sufficient
for bacterial clearance, allowing degradation to occur much more
rapidly (212). In aged BMDMs, LAP is compromised, and cells
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display reduced Sp killing capacity and increased expression of
proinflammatory cytokines (Figure 4, right) (212).

4.2.4 Complement Subversion
Complement activation has a crucial role in host protection
against pathogens, but Sp utilizes PLY-mediated complement
activation to sequester complement components away from Sp
surface, thus protecting Sp from host defenses and facilitating
bacterial spread and survival. Purified PLY activates the human
complement cascade via the classical pathway independently of
its lytic activity (62, 213). Homology domains shared with CRP,
mediate the PLY binding to the Fc portion of immunoglobulins,
which in turn recruit and activate C1q, and are required for PLY-
triggered complement activation (62, 63). While in serum from
C1q KO mice PLY fails to trigger complement activation, in
human C1q-depleted serum, PLY still activates the complement
and C3b deposition is observed (214), suggesting that in humans,
PLY may stimulate complement through C1q-independent
pathways that directly target C3. PLY was further shown to
trigger lectin pathway by binding to L-ficolin with high affinity
(214). However, PLY-triggered complement activation decreased
the serum opsonic activity for Sp both in vitro and in vivo in
mouse models, reducing bacterial uptake by neutrophils and
impairing the recruitment of T cells to the sites of infection in the
lung (62, 64, 213).

4.2.5 Induction of Apoptosis
Pathogen-induced apoptosis, a non-inflammatory programmed
cell death pathway, plays an important role in tissue damage
caused by infectious diseases and constitutes an important
mechanism of protection from invasive disease. PLY cytolytic
activity can prompt cells to engage in apoptosis by different
mechanisms depending on PLY concentration and the cell type
involved (Figure 4, right). One of the first studies connecting
PLY to apoptosis showed that in neurons, PLY pore-forming
activity triggers Ca2+ influx and mitochondrial damage which
results in the release of pro-apoptotic factor (AIF) and induces
apoptosis in a caspase-independent manner (110, 111). The same
mechanism was described in brain microvascular endothelial
cells, inner cochlear hair cells, and DCs (77, 91, 215). In addition,
intracellular PLY induces caspase-dependent apoptosis in Sp-
infected human dendritic cells, whereby blocking their
maturation and the production of inflammatory cytokines,
thus inhibiting dendritic cell-mediated inflammatory responses
(92). Caspase-dependent apoptosis, triggered by PLY-induced
phagolysosomal membrane permeabilization, also occurs in
human monocyte‐derived macrophages (216, 217). In
endothelial cells, PLY-triggered caspase activation and
apoptosis depend on the activation of p38/MAPK and
suppression of extracellular signaling regulation kinase (ERK)
1/2 (218). Further supporting PLY’s ability to trigger apoptosis,
in human epithelial lung alveolar cells PLY causes double-
stranded DNA breaks, which led to cell cycle arrest followed
by non-homologous end joining DNA repair or, if DNA damage
persists, by engagement in apoptosis (219). Clinical isolates
deficient for PLY are unable to induce DCs apoptosis and
trigger a strong proinflammatory response leading to excessive
Frontiers in Immunology | www.frontiersin.org 13
lung inflammation (92). Thus, the deleterious effect of PLY on
immune cells, blocking their maturation, inhibiting the secretion
of inflammatory cytokines, and inducing apoptosis, promotes
bacterial evasion from immune detection and allows for
immune-silent colonization.
5 FUTURE PERSPECTIVES

A better understanding of the complex “Yin” and “Yang”
properties of PLY will facilitate the translation of critical Sp
pathogenesis mechanisms into clinical intervention strategies.
PLY stands as an attractive therapeutic target to complement
classical antibiotic therapy, which, besides fostering the
development of resistance, can trigger bacterial lysis and
consequent release of PLY that alone can have deleterious
effects on cells and the immune system (25). Several
repurposed drugs and PLY-neutralizing compounds have been
investigated. Statins, which inhibit cholesterol production,
administered prior to infection both in vitro or in vivo confer
significant resistance to PLY cytotoxicity by impairing binding
(220, 221). Also, some natural compounds were shown to target
the oligomerization process by binding to specific D3 and 4
residues, resulting in reduced cytolytic activity (222–226). The
use of artificial liposomes was also suggested as a way to
sequester PLY. The administration of liposomes prior to
pneumococcal infection reduced septicemia and invasive
disease in a mouse model (171). Recent efforts have been made
to find novel therapeutic tools to inhibit PLY release, and
recently, a study demonstrated that clarithromycin
downregulates ply transcription in vitro and in vivo and
consequently reduces PLY production by bacteria (227),
proposing a new strategy to treat pneumococcal disease. The
clinical potential of current PLY-neutralizing therapeutic
strategies and their limitations have been extensively reviewed
elsewhere (22, 25).

Since PLY is also a potent trigger for anti-Sp immune
responses, harnessing the immunogenic potentials of PLY has
long been of therapeutic interest. PLY-immunized mice
displayed significantly increased survival upon infection, and
thus suggested that PLY should be considered for inclusion in a
human vaccine (228). Further studies using different animal
models aimed to obtain an active immunization using a
genetic toxoid derivative of PLY, alone or in combination with
other proteins (229–234). In fact, PLY toxoid demonstrated
potential effectiveness as an immunogenic component and in
controlling bacteremia and bacterial colonization (229–235).
Phase I clinical trials concerning the use of PLY toxoid vaccine
formulations were performed in adults and children, and results
demonstrated that it is well-tolerated and immunogenic when
administered as individual protein vaccines or combined with
capsule polysaccharide conjugates (230, 236, 237). Experimental
evolution studies revealed the emergence of variants that
produce low levels of PLY showing decreased virulence but
increased persistence (238). Such lineages have been proposed
to serve as starting point to the development of live-attenuated
pneumococcal vaccines.
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To use PLY-targeting therapies and treatment tailored to the
stage and severity of pneumococcal infection, requires a better
elucidation of the role of PLY in pathogenesis. As highlighted in
this review, PLY induces multiple contradicting responses. The
parameters that dictate the exact mechanisms triggered in the
host cells during pore-formation are still elusive. It is known that
PLY is present in circulation during early pneumococcus
infection and sub-lytic doses induced toxicity and modulated
host immune response; furthermore, host cells can trigger PM
repair mechanisms to recover from damage and get rid of the
toxin (116, 127, 130, 239). However, it is still not clear which
molecular mechanisms and host proteins are involved during the
process of cell survival and the importance of these events in the
context of infection. Cells can expel the toxin through vesicle
shedding, but whether they can function as a danger signal to
neighboring cells or as a modulator of the immune response
remains unclear (126, 129, 136, 138). PLY can also have several
effects in intracellular signaling and modulate host cytoskeleton
but remains uncertain how these events can help cells to survive
and repair the damage (101, 103, 114, 115, 240). Furthermore,
the use of complex models like 3D cell culture or in vivo models
should now be considered to clarify the crosstalk between
different host cell types and their microenvironment. Insights
into the mechanistic control for cellular response to PLY pores
may also help resolve the apparent contradictory inflammatory
and anti-inflammatory implications under different infection
Frontiers in Immunology | www.frontiersin.org 14
contexts. The discovery of new mechanisms of host PM repair
and survival may bring new insights to the development of
therapies against the injurious actions of PLY during
pneumococcus infection.
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