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Abstract

While current genome‐wide association analyses often rely on meta‐analysis of

study‐specific summary statistics, individual participant data (IPD) from multiple

studies increase options for modeling. When multistudy IPD is available, however,

it is unclear whether this data is to be imputed and modeled across all participants

(mega‐imputation and mega‐analysis) or study‐specifically (meta‐imputation and

meta‐analysis). Here, we investigated different approaches toward imputation and

analysis using 52,189 subjects from 25 studies of the International Age‐related
Macular Degeneration (AMD) Genomics Consortium including, 16,144 AMD

cases and 17,832 controls for association analysis.

From 27,448,454 genetic variants after 1,000‐Genomes‐based imputation, mega‐
imputation yielded ~400,000 more variants with high imputation quality (mostly

rare variants) compared to meta‐imputation. For AMD signal detection

(P< 5× 10−8) in mega‐imputed data, most loci were detected with mega‐analysis
without adjusting for study membership (40 loci, including 34 known); we

considered these loci genuine, since genetic effects and P‐values were comparable

across analyses. In meta‐imputed data, we found 31 additional signals, mostly near

chromosome tails or reference panel gaps, which disappeared after accounting for

interaction of whole‐genome amplification (WGA) with study membership or

after excluding studies with WGA‐participants.
For signal detection with multistudy IPD, we recommend mega‐imputation and

mega‐analysis, with meta‐imputation followed by meta‐analysis being a

computationally appealing alternative.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) are one of the
most successful approaches to identify the genetic make‐up
of complex diseases and disease phenotypes (GWAS
catalogue; MacArthur et al., 2017). GWAS require huge
number of subjects usually obtained by combining multiple
studies. The common genetic consortia approach is
the pooling of study‐specific summary statistics for each of
the millions of genetic variants from multiple GWAS in
meta‐analyses (GWAMA; Klarin et al., 2018; Scott et al.,
2017; Turcot et al., 2018). For this, the study analyst conducts
quality control, imputation of untyped variants, and GWAS
analysis and, then, provides summary statistics to the meta‐
analyst. The meta‐analyst combines the per‐variant summary
statistics across studies, usually using a fixed‐effect meta‐
analysis. To increase coverage and power, the number of
studies and participants per study as well as the number of
variants per chip or reference panel are constantly increasing,
with current GWAMA efforts now often including >100
studies with up to 1,000,000 study participants (Visscher
et al., 2017). As a consequence, this requires each of the
hundred study analysts to repeat imputation and analyses to
incorporate the information from larger reference panels and
more complex analyses plans; the meta‐analysts need to
conduct quality control of an ever increasing number of
study files with some, but limited options to detect analysis
errors (Winkler et al., 2014).

Alternatively, individual participant data (IPD) of GWAS
is gathered into one large data set, which enables joint
imputation (“mega‐imputation”) and joint association
analysis (“mega‐analysis”; Fritsche et al., 2016). Certainly,
having IPD of GWAS allows for all kinds of imputation and
association approaches including study‐specific imputation
(“meta‐imputation”) and study‐specific association analysis
(“meta‐analysis”), which mimics the current common
consortia approach. Collecting IPD of GWAS for numerous
studies is a logistical effort, since privacy issues of study
participants have to be certified and study investigators to
be persuaded. In contrast, there is a current trend toward
study‐specific GWAS data as IPD in research data bases that
facilitates the collection of large‐scale multistudy IPD
(dbGaP; Rich et al., 2016; European Genome‐phenome
Archive; Lappalainen et al., 2015). Still, even when IPD is
readily available, the processing of large‐scale genome‐wide
IPD is a substantial computational burden: when mega‐
imputation bares no advantage over meta‐imputation, the
computational burden of imputing across all studies’ data
jointly can be spared; when, additionally, mega‐analysis has
no substantial advantage over meta‐analysis, there is little
motivation to gather IPD or—when IPD is available—to
take on the extra computational effort of conducting mega‐
imputation and mega‐analysis.

While there is previous work comparing mega‐analyses
versus meta‐analysis highlighting mathematical equivalence
of “mega‐models” (i.e., one model applied across studies)
with fixed effect meta‐analysis of study‐specific effects (Lin &
Zeng, 2010a, 2010b), there is no published work comparing
mega‐imputed versus meta‐imputed data. It is unclear to
what extent these two imputation approaches yield differ-
ences in terms of imputation quality. It is also unclear
whether one imputation approach is better in combination
with one or the other association approach: the meta‐
imputation might yield better results when followed by meta‐
analysis, but it is also possible that a mega‐model adjusting
for study membership handles this in a more powerful way.
The questions are whether there is a gain from having IPD
compared with summary statistics based GWAMA and,
when multistudy IPD is available, how this data is to be
imputed and modeled: across all participants (mega‐imputa-
tion and mega‐analysis) or study‐specifically (meta‐imputa-
tion and meta‐analysis).

We thus set out to investigate different approaches
toward imputation (mega‐imputation vs. meta‐imputation)
and analysis (mega‐analysis vs. meta‐analysis). One chal-
lenge in comparing different imputation approaches is the
fact that simulated genome‐wide genotype data is never
realistic given the complexity in linkage disequilibrium and
covariate structure. For this reason, imputation is often
investigated using real data, but real data for an objective
like ours needed to be large, from different studies, and
available as IPD. We utilized the International Age‐related
Macular Degeneration Genomics Consortium (IAMDGC)
data on the genetics of age‐related macular degeneration
(AMD; Fritsche et al., 2016), which is a data set available to
us as IPD from 25 studies with a total of 52,189 individuals
(Section 2.1). Our IPD is unique, since DNA was gathered
and genotyped centrally with the same chip; the chip
contained GWAS and exome content enabling the analysis
also of rare variants. We imputed the data with multiple
approaches (Sections 2.2 and 3.1) and evaluated the
resulting mega‐ and meta‐imputed data sets for their
association based on 16,144 advanced AMD cases and
17,832 controls, which were the unrelated IAMDGC
participants with European ancestry and a clear advanced
AMD or no‐AMD status. We applied five different
association models implementing different levels of ac-
counting for between‐study differences, including a model
that fully ignored study membership (as in the original
analysis; Fritsche et al., 2016) and a model that mimicked a
meta‐analysis of study‐specific summary statistics (the usual
current GWAMA approach, Section 2.3). The genetics of
advanced AMD and this data is ideal due to the strong
genetic component of advanced AMD—with 34 genome‐
wide significant loci having been identified in this IAMDGC
data in the original analysis (Fritsche et al., 2016).
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Therefore, the IAMDGC data gave us the opportunity to
explore the ability of each imputation/model combination
to detect disease signals in a real setting.

Another challenge when comparing different imputa-
tion approaches is the fact that it is not fully straightfor-
ward how to compare different types of imputed data due
to its high dimensionality. We defined a set of criteria of
what made one imputed data set better than the other:
we judged the resulting imputed data sets by the number
of variants that were at high imputation quality (Sections
2.2 and 3.1) and, for each imputation/model combina-
tion, by the number of variants that yielded reliable
results (“analyzable variants,” Sections 2.4 and 3.2), by
the degree of inflation/deflation in the empirical P‐value
distribution under the null hypothesis (Sections 2.5 and
3.3), and the number of true and false detected disease
loci (Sections 2.6, 3.4–3.7, and Figure S1).

2 | MATERIALS AND METHODS

2.1 | The IAMGDC data set

To compare the impact of different imputation ap-
proaches on real data, we utilized the 52,189 study
participants from the IAMDGC (Table S1). Data and
quality control procedures had been described in detail
elsewhere (Fritsche et al., 2016). Briefly, DNA of each
study participant across 26 studies had been gathered.
These included four studies where DNA had been
derived from Whole Genome Amplification (WGA).
The samples of all 52,189 individuals had been genotyped
centrally using a custom‐modified HumanCoreExome
array (Illumina, Inc., San Diego, CA) yielding 508,740
genotyped autosomal variants after quality control (call
rate ≥98.5%, Hardy‐Weinberg P> 10−6). Ethnicity, relat-
edness and the first two genetic principal components
(genoPC1 and genoPC2) had been derived from this
genetic data. The full IAMDGC data included individuals
with advanced AMD, early AMD, and no AMD, related
individuals and individuals from non‐European ancestry.
For our association analyses, we focused on the unrelated
participants of European ancestry with advanced AMD or
no AMD as in the original analysis yielding 16,144
advanced AMD cases and 17,832 controls, including
2,188 subjects from four studies with WGA as DNA
source (Table S1). These study participants spread across
26 studies, but two studies (NHS_HPF and Rotterdam)
contained only few participants with advanced AMD or
no AMD, respectively; thus, we combined these two
studies resulting in 25 studies for our methodological
investigation here to enable a meta‐analysis, while the
data was originally designed for a mega‐imputation and
mega‐analysis approach.

2.2 | Mega‐ versus meta‐imputation and
imputation quality

For the imputation of the genotypes of untyped variants
for the 52,189 participants, we first phased the data to
yield study haplotypes and then estimated the alleles of
untyped variants using the 1000G Phase I v3 cosmopo-
litan reference panel (Web Resources). We used the
508,740 genotyped autosomal variants for the phasing
step and 345,274 of these genotyped variants overlapping
with the reference panel (Web Resources) for the
estimation step. We applied two imputation approaches
genome‐wide: (a) a “mega‐imputation,” consisting of the
phasing of all subjects jointly and the estimation of
untyped variants for all subjects jointly, and (b) a “meta‐
imputation,” where the data of each of the 25 studies was
phased and estimated separately and the resulting study‐
specifically imputed data was joined afterwards. We
utilized shapeit.v2.r727.linux.x64 for the phasing (Dela-
neau, Marchini, & Zagury, 2011; 200 states, window size
2.5Mb) and minimac‐omp_2013_7_17 (Web Resources)
for the estimating step (1,115 2.5Mb‐chunks, 200 states,
500 kb overlapping regions).

For each of the two imputed data sets, each variant’s
imputation quality was computed as the ratio of the
observed variance of allele dosages across individuals
compared to the expected variance of allele dosages given
the observed allele frequency (RSQ, Web Resources; Li,
Willer, Ding, Scheet, & Abecasis, 2010). For the mega‐
imputed data, we obtained the variant’s RSQ across all
individuals (“mega‐RSQ” derived from minimac); for the
meta‐imputed data, we derived a formula to compute a
variant’s pooled RSQ from study‐specific minor allele
frequencies (MAFs) and RSQs, where each study‐specific
RSQ is weighted by the number of study subjects and the
study‐specific MAF (“meta‐RSQ,” Supporting Informa-
tion Note 1). Study specific MAFs and RSQs were
obtained from minimac. A variant’s MAF was computed
across all 52,189 subjects in the mega‐imputed data
(“mega‐MAF”) and as a pooled MAF weighted by the
number of subjects per study from study‐specific MAFs
in the meta‐imputed data (“meta‐MAF”). To quantify
differences between imputation approaches, we com-
pared the number of variants yielded by each of the
imputation approaches within categories of RSQ and
MAF: RSQ< 0.3 (low quality), 0.3≤RSQ< 0.8 (medium
quality), 0.8≤RSQ (high quality); MAF= 0 (mono-
morphic), 0 <MAF< 0.01 (rare), 0.01≤MAF≤ 0.05 (less
frequent), and 0.05 <MAF (common).

To further differentiate effects of the phasing from
the estimation step, we conducted an extended
imputation experiment, where we did not only conduct
mega‐imputation and meta‐imputation in the sense of
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mega‐phasing/mega‐estimation and meta‐phasing/
meta‐estimation, but also the hybrid approaches
mega‐phasing/meta‐estimation and meta‐phasing/
mega‐estimation. We applied these four imputation
approaches in an example region on chromosome 5
(chr5:37.5‐40 M) and compared differences in per‐
variant imputation quality between these four data
sets overall and by MAF‐ and RSQ‐categories. In a
sensitivity analysis, we added the reference panel in the
phasing step to conduct an extra imputation experi-
ment for chromosome 1. For this, we restricted the
genetic variants in the IAMDGC data to those available
in the reference panel (29,741 variants from 47,359
genotyped variants on chromosome 1) and utilized the
cosmopolitan 1000G Phase I version 3 reference panel
for both phasing and estimation).

2.3 | Association analyses

For the mega‐imputed and the meta‐imputed data
(here again: referring to the mega‐phased/mega‐esti-
mated or meta‐phased/meta‐estimated data, respec-
tively), we conducted association analyses comparing
persons with advanced AMD versus no AMD (16,144
advanced AMD cases, 17,832 controls from 25 studies;
Table S1). We applied five logistic regression models: a
Model I that fully ignored study membership, Models
II–IV that adjusted for increased levels of between‐
study differences, and a Model V being a fixed effect
meta‐analysis of study‐specific summary statistics. In
Models I–IV, we applied one logistic regression model
across all study participants (“mega‐models”), which
requires IPD, while Model V treats the studies
separately mimicking the current GWAMA approach
(“meta‐model”).

The five models to estimate the genetic effect of each
variant j, βj, are described in the following. For the ith
individual, we denote the imputed “observed” dosage as
Gij and the observed binary AMD outcome as Yi; f is the
logistic function and correspondingly f −1 the logit
function; Y XProb( =1| )i the probability of AMD given
the covariate vector X. First, we applied a model across
all participants ignoring study membership, adjusting for
the first two genetic principal components, genoPC1i and
genoPC2i, and DNA source ∈WGA {0,1}i ),

f Y X α β G γ

δ ε

(Prob( = 1| )) = + + WGA

+ genoPC1 + genoPC2 . (Model I)

i j ij i

i i

−1

Second, we added study membership (K= 25 studies)
via 24 dummy variables, studyik (1 if individual i is from
study k= 1…24, and 0 else, Regensburg study as

reference), which corresponds to estimating study‐
specific intercepts (intercept of Regensburg being α and
α θ+ k for each other study k),

∑

f Y X α β G γ

δ ε

θ y

(Prob( = 1| )) = + + WGA

+ genoPC1 + genoPC2

+ stud . (Model II)

i j ij i

i i

k

K

k ik

−1

=1

−1

Third, we added interaction between study (M= 4
studies including participants with WGA as DNA source)
and DNA source, via three interaction terms,
WGA × studyi im (1 for individual i with WGA as DNA
source and if individual i is from WGA study m= 1…3,
Columbia study as reference), which corresponds to
estimating study‐specific WGA effects (WGA effect of
Columbia being γ and γ + ϑm for study m),

∑ ∑

f Y X

α β G γ δ PC ε PC

θ

(Prob( = 1| ))

= + + WGA + geno 1 + geno 2

+ study + ϑ WGA × study .

(Model III)

i

j ij i i i

k

K

k ik
m

K

m i im

−1

= 1

−1

=1

−1

Forth, we added interaction between study (K= 25
studies) and two PCs via 48 interaction terms,

PCstudy × geno 1ik i and PCstudy × geno 2ik i (1 if indivi-
dual i is from study k= 1…24, Regensburg study as
reference), which corresponds to estimating study‐
specific effects of principal components (PC1 effect of
Regensburg being δ and δ τ+ k for study k, PC2 effect of
Regensburg being ε and ε φ+ k for study k),

∑

∑

∑

∑

f Y X α β G γ δ

ε θ

τ

φ

(Prob( = 1| )) = + + WGA + genoPC1

+ genoPC2 + study

+ ϑ study × WGA

+ study × genoPC1

+ study × genoPC2 .

(Model IV)

i j ij i i

i

k

K

k ik

m

M

m im i

k

K

k ik i

k

K

k ik i

−1

=1

−1

=1

−1

=1

−1

=1

−1

Fifth, we applied one model per study (25 models,
K= 25), adjusting for genoPC1, genoPC2, and DNA
source (like Model I, but now per study),
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f Y X α β G γ

δ ε

(Prob( = 1| )) = + + WGA

+ genoPC1 + genoPC2 .

(Model V)

i k k kj ij k i

k i k i

−1

we meta‐analyzed study‐specific effects using the
inverse‐variance weighted fixed effects model,

∑ ∑β β w w= /j k

K
kj kj k

K
kj=1 =1
, with being the inverse var-

iance estimate for the estimated study‐specific βkj, as
implemented in METAL (Willer, Li, & Abecasis, 2010;
Web Resources).

All Models I–V assumed equal genetic effects across
studies (or that the estimated average effect across studies
is a reasonable effect; Rice, Higgins, & Lumley, 2017). We
estimated and tested single‐variant association based on
Firth bias‐corrected logistic regression and corresponding
likelihood ratio tests (Firth, 1993), as in the original
analysis, using EPACTS (Web Resources). The Firth‐bias
corrected test is recommended for binary trait genetic
studies that include rare variants using EPACTS (number
of maximum iterations for model fitting set to 150).

Different modeling approaches might work differently
for the mega‐ or the meta‐imputation approach: we thus
compared results of each imputation/model combination
with regard to the number of analyzable variants (see
below), the P‐value distribution under the null, and the
ability to detect true disease signals.

2.4 | Number of analyzable variants

For GWAS, valid statistics are needed for as many
variants as possible, to avoid false‐positives and to not
miss disease signals. Rare variants can lead to complete
or quasi‐complete separation yielding unstable, and thus
unreliable, test‐statistics due to the nonconvergence of
the numerical optimization. We expect that the meta‐
model analyzing each variant by study (Model V) will
have more issues with nonconvergence for rare variants
than the mega‐models (Model I–IV). It is also possible
that models including more study‐specific covariates will
have more issues with rare variants than the model with
the fewest covariates (Model I). There are different
GWAMA approaches of how to filter variants with
association results from logistic regression to ensure
reliable estimates; we defined a variant as “analyzable”
for a specific imputation/model (i.e., yielding trustworthy
association test‐statistics), if it had a MAC> 5, nonmiss-
ing effects/standard errors (SE)/P‐values, and SE< 10
across all studies combined (for mega‐models, Models
I–IV) or per study (for meta‐model, Model V), in analogy
as described before (Mahajan et al., 2018). A higher
number of analyzable variants in one imputation/model
combination compared to others can be considered an

advantage. We quantified the number of analyzable
variants in each imputation/model combination on the
example of chromosome 5.

2.5 | P‐value distribution under the null
hypothesis and genomic correction factor

In genome‐wide screens for disease loci, we aim to avoid
false positives. Therefore, we want to avoid inflation of test
statistics under the null hypothesis, which can stem from
uncontrolled confounding. Thus, the model should include
covariates as much as necessary to account for confounder,
but only as many as necessary to ensure sufficient power.
One way to investigate the performance of a model is the
inspection of the P‐value distribution under the null in
simulation experiments. When genome‐wide variant data is
available, a more realistic experiment for genome‐wide
results under the null is the empirical P‐value distribution
across variants excluding known disease signals.

Therefore, we explored whether any of the imputation/
model combinations exhibited inflated/deflated statistics for
all variants analyzable in all five models (see Section 2.4) on
the example of chromosome 5 excluding known AMD loci
(C9 and PRLR/SPEF2, see Table S2). We visually inspected
the P‐value distribution in Quantile‐quantile‐plots and
quantified inflation/deflation of the chi‐squared statistics
by the ratio of the median empirically observed chi‐squared
test statistics to the expected median (“lambda factors”), in
analogy to the factor for genomic control (GC) correction
(Devlin & Roeder, 1999).

2.6 | AMD signal detection

The genetics of (advanced) AMD is well‐established with 34
AMD loci having shown genome‐wide significance
(P<5× 10−8) in the IAMDGC data in the original imputa-
tion/model (mega‐imputation, Model I; Fritsche et al., 2016).
We considered an imputation/model combination as ad-
vantageous when it identified more AMD loci than another
combination, while at the same time making sure that the
additionally identified loci were no artifacts. We postulated
that a genome‐wide significant locus was likely an artifact,
when it appeared in one imputation/model result, but
showed no effect or a strongly attenuated effect size in the
others. Vice versa, we considered a genome‐wide significant
locus as a likely true locus, when effect sizes were similar
across the different imputation/model approaches.

We evaluated AMD locus detection analyzing the 16,144
IAMDGC participants with advanced AMD and the 17,832
controls in each of the two imputed data sets (mega‐ or
meta‐imputed) and up to five association models (Models
I–V). Furthermore, we explored extended imputation
approaches and models (four imputation approaches x 5
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models, see Section 2.2) in example regions and selected
lead variants. We conducted all comparisons without (for
comparability across imputation/models) and with GC‐
correction (for comparison with the original results).

For the GC correction, we computed—for each imputa-
tion/model combination—the same GC‐factors as in the
original work (Fritsche et al., 2016), which were based on
all common genotyped variants that were in the reference
panel and outside of the 34 AMD loci (Table S2). The GC‐
correction was applied for test statistics computed across all
studies; no study‐specific GC‐correction was applied. When
using METAL for the Model V analyses, the study‐specific
GC‐correction was turned OFF for all analyses.

For this investigation of AMD signal detection, we
included all analyzable (see Section 2.4) and well‐imputed
variants (RSQ≥ 0.3 for common or less frequent variants,
≥0.8 for rare variants) as in the original work (Fritsche
et al., 2016). We defined a locus as “associated with
advanced AMD,” when it contained at least one variant
with genome‐wide significance, and a “locus region” as the
±500 kb region around the “lead variant” (i.e., variant with
the smallest P‐value), merging loci in case of overlapping
regions. We visualized association P‐values with Manhattan

Plots (Winkler et al., 2015) or locuszoom plots (Pruim et al.,
2010) and compared effect sizes across imputation/model
combinations via forest plots.

3 | RESULTS

3.1 | Comparing the imputation quality
between mega‐ and meta‐imputation

First, we were interested in whether we obtained more
variants with high imputation quality with the mega‐
imputation (mega‐phasing/mega‐estimation) or the
meta‐imputation (meta‐phasing/meta‐estimation). We
thus compared the mega‐ and the meta‐imputed data of
the 52,189 IAMDGC subjects (Section 2). We had
27,448,454 imputed variants in both data sets, which is
the exact number of reference panel variants. When
computing the imputation quality as mega‐RSQ or meta‐
RSQ (Section 2, Supporting Information Note 1), we
found 9,878,708 versus 9,479,610 variants with high RSQ
(≥0.8) in the mega‐ or the meta‐imputed data, respec-
tively (Table 1). Thus, the mega‐imputation yielded
399,098 more variants with high RSQ, most of them

TABLE 1 Frequency of mega‐ and meta‐imputed variants by imputation quality

MAF category RSQ category No. of variants (%), mega‐imputation No. of variants (%), meta‐imputation

Total Low 6,703,742 (24.42%) 7,145,953 (26.03%)

Medium 10,866,004 (39.59%) 10,822,891 (39.43%)

High 9,878,708 (35.99%) 9,479,610 (34.54%)

All 27,448,454 (100.00%) 27,448,454 (100.00%)

Monomorphic Low 10,010 (0.04%) 767 (<0.01%)

Medium 49 (<0.01%) 0 (0%)

High 0 (0%) 0 (0%)

All 10,059 (0.04%) 767 (<0.01%)

Rare Low 6,257,084 (22.80%) 6,679,661 (24.34%)

Medium 8,800,129 (32.06%) 8,730,179 (31.81%)

High 2,921,222 (10.64%) 2,578,360 (9.39%)

All 17,978,435 (65.50%) 17,988,200 (65.54%)

Less frequent Low 293,253 (1.07%) 316,112 (1.15%)

Medium 1,238,935 (4.51%) 1,247,128 (4.54%)

High 1,381,942 (5.03%) 1,352,121 (4.93%)

All 2,914,130 (10.61%) 2,915,361 (10.62%)

Common Low 143,395 (0.52%) 149,413 (0.54%)

Medium 826,891 (3.01%) 845,584 (3.08%)

High 5,575,544 (20.31%) 5,549,129 (20.22%)

All 6,545,830 (23.85%) 6,544,126 (23.84%)

Note. We applied the mega‐ and the meta‐imputation genome‐wide (No. of variants = 27,448,454 after imputation, No. of participants = 52,189). Shown are
absolute and relative frequencies of variants by RSQ categories (low: RSQ < 0.3, medium: 0.3≤ RSQ< 0.8, high: 0.8≤RSQ) and by MAF categories
(monomorphic: MAF= 0, rare: 0 <MAF< 0.01, less frequent: 0.01≤MAF≤ 0.05, common: 0.05 <MAF). For mega‐imputed variants, RSQ and MAF were
obtained by minimac (“mega‐RSQ” and “mega‐MAF”), for meta‐imputed variants they were computed as pooled RSQ and MAF from study‐specific RSQ and
MAF values (“meta‐RSQ” and “meta‐MAF,” see Section 2.2).
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being rare (342,862 variants, 0 <MAF< 0.01). The meta‐
imputation yielded only 88% of the rare variants with
high RSQ achieved by the mega‐imputation (2,578,360
out of 2,921,222 rare variants). The number of less‐
frequent (0.01≤MAF≤ 0.05) and common variants
(MAF> 0.05) with high RSQ was comparable between
the two approaches, though slightly higher for the mega‐
compared to the meta‐imputation (Table 1).

We were then interested in whether the gain in rare
variants with high RSQ by mega‐ versus meta‐imputation
derived from the phasing or the estimation step. For this, we
conducted an extra imputation experiment in a 2.5 MB
region on chromosome 5 (chr5:37.5‐40Mb) extending to four
hybrid imputation approaches: mega‐phasing/mega‐estimat-
ing, mega‐phasing/meta‐estimating, mega‐phasing/meta‐es-
timating, or meta‐phasing/meta‐estimating (Section 2).
Overall, we obtained 26,469 imputed variants in this
chromosome 5 region by each of the four approaches. We
found the highest number of rare variants with high RSQ
from the mega‐phasing/mega‐estimating, followed by the
mega‐phasing/meta‐estimating, meta‐phasing/mega‐estimat-
ing, or meta‐phasing/meta‐estimating (3,586, 3,431, 3,126 or
3,027 variants, respectively; Table S3). We found slightly
more common variants with high RSQ for the mega‐mega‐
imputation compared to the other three approaches.

A quantitative comparison of RSQ values showed, for
common and less frequent variants, similar median RSQ
(Figure 1, D1–D4) across the four imputation approaches
and little differences in pairwise comparisons (Figure 1,
U1‐U6). For rare variants, we found the highest median RSQ
for mega‐phasing/mega‐estimating and decreasing for mega‐
phasing/meta‐estimating, meta‐phasing/mega‐estimating,
and meta‐phasing/meta‐estimating (Figure 1, D1–D4). We
found larger differences also in the pairwise comparisons
(Figure 1, L1–L6), predominantly when comparing different
phasing approaches (Figure 1, L2, L5). Our results indicated
that the gain in rare variants with high imputation quality by
mega‐imputation (mega‐phasing and mega‐estimation) com-
pared to meta‐imputation (meta‐phasing and meta‐estima-
tion) was primarily driven by the mega‐phasing with a
smaller gain from the mega‐estimation.

3.2 | Number of analyzable variants for
different imputation/model approaches

We would deem an imputation/model combination as
superior that yields more variants with reliable association
statistics (“analyzable variants,” Section 2) than other
combinations, to ensure the best possible coverage of
variants with association results and to avoid variants with
unreliable results. Thus, we were interested in whether the
mega‐imputation (here again: mega‐phasing and mega‐
estimating) yielded more analyzable variants compared to

the meta‐imputation (meta‐phasing and meta‐estimating)
in dependency on the association model (Section 2). We
counted the number of analyzable variants after applying
each of the five association models on each of the two
imputation data sets (2 × 5 combinations) on the example of
chromosome 5 (1,808,081 imputed variants, analyzing
16,144 subjects with advanced AMD and 17,832 controls;
Section 2). We found a similar proportion of analyzable
variants across Models I–IV in both the mega‐imputed and
the meta‐imputed data (~86%; Table 2). For Model V, we
obtained substantially fewer analyzable variants in the
mega‐ and the meta‐imputed data (~60%) compared to the
other models. This drop was due to fewer rare variants
being analyzable with Model V compared to Model I–IV
(Table 2). In a sensitivity analysis applying alternative
filtering for variants to guarantee stable statistics (|β| < 5
instead of/ or additional to the filter of SE< 10), we found
the same pattern. Our observation is in line with the
statement by Lin and Zeng (2010a) that rare variants
analyzed per study (like our Model V) have more likely
invalid or unstable statistics (i.e., not being “analyzable” in
our setting) than when analyzed across all studies (our
Models I–IV).

3.3 | P‐value distribution under the null
for different imputation/model
approaches

The empirical P‐value distribution for all variants
excluding known disease loci mimics a simulation
experiment under the null hypothesis and can provide
insights into inflation/deflation of tests statistics, which
can point toward modeling issues. Therefore, we were
interested in whether any imputation/model combina-
tion yielded association statistics that were inflated or
deflated when excluding known AMD loci. Again, we
analyzed the 16,144 cases and 17,832 controls for
association with advanced AMD for each imputation/
model combination (2 × 5 combinations). We investi-
gated the P‐value distribution for all analyzable variants
(see Section 3.2) on the example of chromosome 5,
excluding known AMD loci (C9, PRLR/SPEF2, Table S2).

When visualizing the results as QQ‐Plots (Figure 2a–f),
we found an excess of small P‐values and 224 variants with
P<5× 10−8 for meta‐imputation/Model I, which was
apparent for common and rare variants. This excess of
small P‐values and the genome‐wide significance of the 224
variants disappeared when analyzing the meta‐imputed
data with Models II–V. We did not find this excess of small
P‐values for mega‐imputation/Model I, which was not
surprising, since this was the imputation/model approach
in the original analysis identifying the two AMD loci on
chromosome 5 (that were excluded here). The question
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arose whether these “newly identified” AMD variants with
meta‐imputation/Model I were true loci or artifacts. When
quantifying the inflation/deflation of statistics by lambda
factors (Figure 2a,b) we found that λ factors were slightly
above unity for Models I–IV, decreasing toward unity with

increasing number of covariates in the model, for both
imputation approaches (mega‐imputation: λ=1.083–1.047;
meta‐imputation: 1.117–1.047). This was found for the
common variants and to some extent also for the rare
variants (Figure 2c–f).

FIGURE 1 Imputation quality from four different imputation approaches on the example of one chunk on chromosome 5. We applied
four different imputation approaches by conducting the two steps of imputation (phasing, estimating of untyped variants) across all studies
(“mega”) or by study (“meta”): mega‐phasing/mega‐estimating (mega–mega), mega‐phasing/meta‐estimating (mega–meta), meta‐phasing/
mega‐estimating (meta–meta), meta‐phasing/meta‐estimating (meta–meta). This was conducted on the example of chunk chr5:37.5M–
40Mb (#variants = 26,469). Shown is the distribution of RSQs (D1–D4) and the pairwise comparison of RSQ values between two imputation
approaches (upper triangle U1–U6: common variants, MAF< 0.05, green, #variants = 5,730 and less frequent variants, 0.01 <MAF<= 0.05,
orange, #variants = 3,305; lower triangle L1–L6: rare variants, 0 <MAF< 0.01, red, #variants = 17,434). The median imputation quality was
0.96 for common and less frequent variants in all four imputed data sets and 0.51, 0.50, 0.48, and 0.47 for the mega–mega, mega–meta, meta–
mega, and meta–meta imputed rare variants, respectively. Variants are categorized based on the MAF computed on the mega‐phased and
mega‐imputed variants
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For Model V, which is a meta‐analysis of study‐specific
effects, we found λ factors below unity for both mega‐ and
meta‐imputed data (Figure 2a,b, λ=0.874 or 0.874,
respectively). This was specific to rare variants (Figure
2e,f, λ=0.724 or 0.729, respectively). The tendency for
larger P‐values compared to those expected assuming χ2

distributed test statistics was also seen in the QQ‐plots for
rare variants (Figure 2e,f). The λs below unity for rare
variants was not a finding specific to the meta‐analyzed
Firth logistic regression estimates, but was also found when
meta‐analyzing estimates from standard logistic regression
(λ=0.83). This can be attributed to unmet distributional
assumptions (i.e., χ2 distribution) for rare variants due to
low MACs (as low as 5) in single studies.

3.4 | On the impact of different models
on AMD signal detection using
mega‐imputed data

We consider an imputation/model approach as advanta-
geous, when it enables the detection of more true AMD loci
with the same data set than the other imputation/model
approaches. A model with an increased level of accounting
for covariates has less power, but also less probability to be

miss‐specified. Thus, we compared the results of the
association analysis that mimics the original approach
(Fritsche et al., 2016) (mega‐imputation/Model I) with
results fromModel II–V and asked the question whether we
would have identified the same loci, additional true or false
loci. Again, we utilized the 16,144 AMD cases and 17,832
controls and all analyzable (Section 3.2) and well‐imputed
variants (RSQ≥ 0.3 for common and less frequent, ≥0.8 for
rare variants). Since GC‐factors vary between imputation/
model combinations disrupting comparability, we com-
pared the following results without GC correction. We say
that “the same locus is detected by two different models,”
when each model yields at least one genome‐wide
significant variant and the lead variant from one model
resides in the locus region of the other. When re‐evaluating
mega‐imputation/Model I, we obtained 40 loci (Figure 3a),
including the 34 loci from the original analysis (Fritsche
et al., 2016) and six additional loci. These six loci were also
genome‐wide significant in the original analysis without
GC‐correction, but had not been published due to the focus
on GC‐corrected results in the original work (Table S4).

Next, we evaluated the impact of the alternative
models (Model II–V) compared to Model I on AMD
signal detection in the mega‐imputed data. We detected

TABLE 2 Frequency of mega‐ and meta‐imputed variants that were analyzable with Model I–V on the example of chromosome 5

Model

MAF
#Overall
(100%) I II III IV V

Mega‐imputed

All 1,808,081 1,551,442
(85.81%)

1,549,774
(85.71%)

1,549,495
(85.70%)

1,549,400
(85.69%)

1,077,905
(59.62%)

Rare 1,215,401 958,793
(78.89%)

957,128
(78.75%)

956,849
(78.73%)

956,754
(78.72%)

485,371
(39.94%)

Less frequent 177,603 177,577
(99.99%)

177,574
(99.98%)

177,574
(99.98%)

177,574
(99.98%)

177,472
(99.93%)

Common 415,077 415,072
(100.00%)

415,072
(100.00%)

415,072
(100.00%)

415,072
(100.00%)

415,062
(100.00%)

Meta‐imputed

All 1,808,081 1,559,275
(86.24%)

1,557,904
(86.16%)

1,557,634
(86.15%)

1,557,510
(86.14%)

1,083,272
(59.91%)

Rare 1,215,432 966,654
(79.53%)

965,289
(79.42%)

965,018
(79.40%)

964,894
(79.39%)

490,764
(40.38%)

Less frequent 177,622 177,599
(99.99%)

177,593
(99.98%)

177,594
(99.98%)

177,594
(99.98%)

177,493
(99.93%)

Common 415,027 415,022
(100.00%)

415,022
(100.00%)

415,022
(100.00%)

415,022
(100.00%)

415,015
(100.00%)

Note. Shown are absolute and relative frequencies of mega‐ and meta‐imputed variants overall (52,189 subjects) and that were analyzable (MAC> 5,
nonmissing effects/SE and P‐values and SE< 10) for Model I–V (16,144 advanced AMD cases and 17,832 controls) on the example of chromosome 5. Results
are shown for all variants and by MAF categories (rare: 0≤MAF< 0.01, less frequent: 0.01≤MAF≤ 0.05; common: 0.05 <MAF). Mega‐ and meta‐imputed
variants were categorized in all models by the MAF obtained from the Mega/Model I and Meta/Model I analysis, respectively. Proportions in parentheses are
given relative to the number of variants per MAF category (second column, “#overall”)
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FIGURE 2 P-value distribution under the null for different imputation/model approaches on the example of chromosome 5. We
analyzed all mega‐ and meta‐imputed variants for association with advanced AMD (16,144 cases, 17,832 controls) with Models I–V (red,
orange, green, light blue, and blue, respectively). Shown are observed vs. expected P-values and λ value for (a,b) all variants on chromosome
5 and (c,d) separately for the common (MAF> 0.05) or (e,f) rare variants (MAF < 0.01). AMD: age‐related macular degeneration; MAF:
minor allele frequency
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29 genome‐wide significant loci by each of the Models
II–V (Figure 4a; Table S5). There were several interesting
results: (a) all of the loci detected by Models II–V were
among the 40 loci from Model I, making Model I the
“most powerful model” if all 40 loci were genuine.

(b) There were 28 loci that were identified by all five
models, indicating that these loci were robust to different
modeling and can be considered genuine (“safe loci”).
This is supported by equal effect sizes across models
(example for “safe” locus shown in Figure 5a; effect sizes

FIGURE 3 AMD signal detection for mega‐ and meta‐imputed data analyzed with Model I. These results are from the association
analysis for advanced AMD (16,144 cases and 17,832 controls) without GC‐correction. Shown are genome‐wide minus log10 P‐values vs.
genomic position for (a) the mega‐imputation/Model I and (b) the meta‐imputation/Model I. Color coded are the 34 loci identified in the
original publication with GC‐correction (Fritsche et al., 2016) (blue), the NTN5 locus (orange, P= 6.8 × 10−9 in a, P= 3.4 × 10−7 in b), the
additional five signals with P< 5 × 10−8 (green), and the 31 additional signals with P< 5 × 10−8 in b (red). AMD: age‐related macular
degeneration; GC: genomic control correction

FIGURE 4 AMD locus detection in the mega‐ and meta‐imputed data comparing Model I results with the other models. These results
are from association analysis for advanced AMD (16,144 cases and 17,832 controls) without GC‐correction. For the (a,b) 40 loci detected with
P< 5 × 10−8 with mega‐imputation/Model I and the (c) 31 additional loci detected with meta‐imputation/Model I, we show the number of
genome‐wide significant loci (at least one variant with P< 5 × 10−8) detected by each of other models (Models II‐V) (a) in the mega‐imputed
data (among the 40 loci), (b) in the meta‐imputed data (among the 40 loci), and (c) in the meta‐imputed data (among the 31 loci). AMD: age‐
related macular degeneration; GC: genomic control correction
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for all loci in Figure 3a). We also found a tendency
toward larger (though still genome‐wide significant)
P‐values and SE for models with higher levels of
accounting for covariates, which mirrors the lower power
for these models to detect these loci. (c) There were
further 12 loci that were identified by at least one model,
but not with each model (“jumping loci”). Of these, 10
loci were solely detected by Model I, two loci by Models
I + II or Models I + III + IV +V (KMT2E/SRPK2 and
MIR6130/RORB, respectively, Figure 4a). We found
similar P‐values across all five models for all of these 12
loci (Table S5), just barely missing genome‐wide sig-
nificance for one or the other model, but always hitting
genome‐wide significance with Model I. We also found
similar effect sizes across models (example for “jumping”
locus in Figure 5c; effect sizes for all loci in Figure S3b).

Therefore, we considered these 12 loci as genuine. (d)
When looking more closely into the effect sizes across
models and judging even smaller deviations, we found
that Model II–V effect sizes were very stable across the
four models for the 40 Model I lead variants, but Model I
effect sizes differed slightly from these estimates for
several of these 40 variants (Figure S3A,B, example
variant Figure 5c). This might indicate a small bias from
Model I from ignoring study membership due to the
differing case–control ratios across the 25 IAMDGC
studies (0.06–5.8), but this is difficult to judge conclu-
sively from the observed data.

In summary, we found—for the mega‐imputed data—
that Model I yielded the most genome‐wide significant
loci compared to Models II–V. Since P‐values and effect
sizes were comparable across all models for all 40 lead

FIGURE 5 Effect sizes across imputation/model approaches on the example of four different types of variants. Results are shown from
association analyses for advanced AMD (16,144 cases and 17,832 controls) without GC correction. Shown are effect sizes and confidence
intervals (“genome‐wide”: effect ± 5.45 SE) for Models I–V (red, orange, green, light blue, and blue, respectively) illustrating example lead
variants for four different types of loci: (a) a locus detected with genome‐wide significance (P< 5 × 10−8) in all imputation/model approaches
(“safe locus”), (b) the sole locus (NTN5) of the 40 that was detected with mega‐imputation/Model I, but not with meta‐imputation/Model I,
(c) a locus that was detected by mega‐imputation/Model I, but not with all models (“jumping locus”), and (d) a locus detected only with
meta‐imputation/Model I or Model II (“pseudo‐signal”). AMD: age‐related macular degeneration; GC: genomic control correction; SE:
standard error
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variants, we considered these signals as genuine and as
detectable with genome‐wide significance in Model I
most likely due to the fewer parameters in the model
compared to the other models.

3.5 | On the impact of meta‐imputation
compared to mega‐imputation on AMD
signal detection using model I

Mega‐imputation of large‐scale IPD, as conducted in the
original IAMDGC analysis, is computationally much
more challenging than a study‐specific imputation (meta‐
imputation). We evaluated, on the example of our
IAMDGC data, how the choice of meta‐imputation rather
than mega‐imputation would have affected AMD signal
detection (using Model I, 16,144 advanced AMD cases vs.
17,832 controls).

For meta‐imputation/Model I, we identified 70 loci,
including 39 of the 40 loci that we had detected with
mega‐imputation/Model I (Figure 3b): (a) For these 39
loci, we found similar effect sizes and P‐values for meta‐
imputation/Model I and mega‐imputation/Model I, with
larger P‐values (and larger confidence intervals) for the
meta‐imputed data (Table S6 and Figure S3). From this we
conclude that mega‐imputation had better power to detect
these loci (given that we had already concluded that these
loci were genuine, see above), but the meta‐imputation
would have been sufficient to detect these.
(b) The one locus missed here (NTN5 locus) showed a
P= 3.4 × 10−7 comparable to mega‐imputation/Model I
(P= 6.8 × 10−9) and exhibited similar effect size (Figure
5b). We thus conclude that this locus was barely missed
here, but genuine and detected in the mega‐imputed data
by chance or due to larger power. (c) For the 31 loci
identified by meta‐imputation/Model I “de novo” (i.e., not
detected by mega‐imputation/Model I), we found no
immediate explanation: lead variants in these 31 loci had
a wide range of MAF 0.0026–0.49) and effect sizes
(β=− 2.47 to 1.90; Table S7); so this was not specific to
rare variants or small effects. Furthermore, lead variants
were not characterized by low RSQ (RSQ≥ 0.8 for 15 of
these 31 variants). However, most of these 31 loci (28 of
these) exhibited a striking pattern by residing at the tails of
the chromosomes or near gaps in the reference panel
(Table S7). We did not find any of the pseudosignals when
analyzing the genotyped data without imputation (data
not shown). We hypothesized that these 28 loci were
artifacts due to insufficient LD information from flanking
regions, which appeared as an issue in the meta‐imputed,
but not in the mega‐imputed Model I analysis. The other
three of the 31 were distant from tails or gaps and thus
inconclusive with regard to why these signals appeared in
meta‐imputed/Model I, but not mega‐imputed/Model I.

3.6 | On the impact of different models
on AMD signal detection using
meta‐imputed data

We were interested in the impact of alternative Models
II–V on the meta‐imputed results: we asked the question
whether the 70 loci detected by meta‐imputation/Model I
showed robust results across models and whether the one
locus missed by meta‐imputation/Model I compared to
mega‐imputation/Model I (NTN5) was detectable in any
of the other models. We thus analyzed all variants in
these 71 locus regions with Models II–V in the meta‐
imputed data.

We found the following: (a) among the 39 loci that
were detected by both meta‐imputation/Model I and
mega‐imputation/Model I, 27 loci were detected by all
the other four models in the meta‐imputed data (Figure
4b, Table S6). These 27 were among the 28 loci identified
by all five models in the mega‐imputed data. Thus, the
detection of these 27 loci was independent of imputation
or model approach (“safe loci,” see Section 3.4). (b) The
NTN5 locus (the one missed by meta‐imputation/Model I
compared to mega‐imputation/Model I) was not detected
in any of the Models II–V in the meta‐imputed data
(smallest P in each of these models 3.02 × 10−5 to
6.46 × 10−5). (c) Among the 31 loci detected by meta‐
imputation/Model I “de novo,” none of these survived in
Models III–V with genome‐wide significance (i.e.,
P≥ 5 × 10−8) and the 31 signals showed little excess of
small P‐values (most signals with P> 0.05/31 = 0.0016,
four signals with P<= 0.0016 consistently across Models
III–V); 10 of the 31 still “survived” at genome‐wide
significance in Model II and there was an excess of low
P‐values also among the 21 other loci (13 of these 21
signals with P<= 0.0016), Figure 4c; Table S8). The
effect sizes vanished or decreased substantially for
Models III–V compared to Model I + II (example variant
Figure 5d, effect sizes for all 31 variants, Figure S3C).
This supports the notion that these loci were pseudo-
signals from meta‐imputation/Model I.

3.7 | Measurement error by meta‐
imputation as source for pseudosignals

It was interesting that the models accounting for
between‐study differences in WGA exposure (Models
III–V, see Section 3.6) did not detect any of the 31
pseudosignals from meta‐imputation/Model I at genome‐
wide significance. From the 25 studies in our data, four
studies included study participants with WGA as DNA
sources (“WGA‐studies”). The proportion of participants
with WGA varied between these studies 0.06–0.90); this
proportion varied—within study—between cases and
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controls (0.03 in cases vs. 0.06 in controls, 1.00 vs. 0.59,
0.55 vs. 1.00, and 0.32 vs. 0.90 in the 4 WGA‐studies,
Table S1), but not when joining the four studies (0.06 in
cases, 0.06 in controls). Thus, WGA status and AMD
were associated in each of the four WGA‐studies with
varying extent (OR of AMD for WGA vs. no WGA
status = 0.53, 1.7, 0.55, 0.35).

Additionally, we have inferior DNA quality for WGA‐
participants (and thus in WGA‐studies on average)
compared to non‐WGA‐participants (non‐WGA‐studies)
leading to a larger genotyping error and more missing
genotypes. A variant with a larger proportion of missing
genotypes is potentially subjected to larger imputation
error, when genotype and LD information from flanking
variants is insufficient. We thus expect a larger “mea-
surement error” from imputation in allele dosages among
WGA‐studies versus non‐WGA‐studies. When inspecting
the meta‐imputed 31 pseudo‐signal lead variants, we
found different MAFs in the dosages among the four
WGA studies, which also differed—more or less—from
the MAF for non‐WGA studies (e.g., rs79879353 MAF=
0.01–0.02 for non‐WGA‐studies and 0.01, 0.03, 0.08, and
0.32 in WGA studies; rs2289165 MAF= 0.21–0.26 in non‐
WGA‐studies and 0.09, 0.15, 0.23, and 0.42 in WGA‐
studies). The latter was a genotyped variant not showing
MAF differences in the genotypes (MAF 0.23–0.31 in
non‐WGA studies and 0.24, 0.26, 0.33, and 0.34 in WGA‐
studies), but differences in the proportion of missing
genotypes (<0.01 of participants in each non‐WGA‐study,
0.08, 0.62, 0.83, 0.91 in WGA‐studies). We did not find
MAF differences for the mega‐imputed pseudo‐signal
lead variants between WGA‐studies and non‐WGA‐
studies (MAF 0.01–0.04 for all studies for rs79879353
and 0.21–0.32 for rs2289165). The observed MAF
differences in meta‐imputed variants between WGA‐
and non‐WGA‐studies supported our hypothesis of a
“measurement error” in allele dosages that differed
within WGA‐studies and compared to non‐WGA‐studies.

Why does this “measurement error” in allele dosages
yield pseudosignals for AMD? When considering one of
the WGA‐studies, the measurement error induces an
association between WGA status and dosages of some
variants. The difference in AMD case‐control ratios
between WGA‐participants and non‐WGA‐participants
would yield a spurious association between dosages and
AMD by confounding, when WGA‐status was not
accounted for in the model. When joining the four
WGA‐studies, we have an association of WGA‐status and
dosages with varying extent between WGA‐studies and a
varying association between WGA‐status and AMD,
which induces a spurious association between dosage
and AMD when WGA‐status is not accounted for study‐
specifically (Figure S4). This is consistent with our

observation that most of the pseudosignals disappeared
when including an interaction of study membership and
WGA‐status into the model (Models III–IV), while the
mere inclusion of WGA‐status as covariate in the mega‐
model was not always sufficient (Models I–II). The study‐
specific analysis including WGA‐status also accounted
effectively for this issue (Model V). We thus hypothesize
that the majority of pseudosignals were derived by
unaccounted confounding from varying imputation error
and an unlucky situation of our strongly varying case‐
control ratios between WGA‐studies.

We followed up on our suspicion that the WGA‐studies
triggered pseudosignals by restricting the Model I analysis
to the 21 non‐WGA‐studies (14,953 cases and 15,414
controls, Table S8) and found the following. (a) For 24 of
31 pseudo‐signal lead variants, the association disappeared
(P>0.05/31= 0.0016, one example in Figure S5A,B). We
would thus deem these 24 pseudosignals as WGA‐study‐
related. (b) It was interesting to look at the other seven of
the 31 lead variants (one still genome‐wide significant and
six that showed some association P<=0.0016): these seven
included the three pseudosignals that did not reside at
chromosome tails/gaps. We would deem these seven
pseudosignals as related to a study‐specific issue, but not
necessarily to a WGA‐study or study ×WGA‐interaction
issue. Overall, our observations supported our hypothesis of
an issue in the WGA‐studies that triggered the majority of
the 31 pseudosignals.

We also followed up on our observation that the
pseudosignals appeared in meta‐imputed (meta‐phased/
meta‐estimated), but not in mega‐imputed (mega‐phased/
mega‐estimated) data by conducting an extra imputation
experiment: based on mega‐ or meta‐phased genome‐wide
haplotypes, we re‐estimated all variants in the 31 “chunks”
(i.e., 2.5Mb region used for the estimation step) containing
the 31 pseudo‐signal lead variants across (a) all studies
(mega‐estimation) or (b) by study (meta‐estimation). Then
we extracted the 31 meta‐imputation/ Model I lead
variants in the 31 pseudosignals from the four imputed
data sets. By this, we obtained allele dosages for all
participants for each of the 31 pseudo‐signal lead variants
from four imputation approaches (meta‐phased/meta‐
estimated, meta‐phased/mega‐estimated, mega‐phased/
meta‐estimated, mega‐phased/mega‐estimated). We re-
peated association analyses for these 31 variants using
the five models (4 × 5 results for each of the 31 variants).
For most of these 31 variants, we found the same pattern
in the meta‐phased/mega‐estimated data as in meta‐
phased/meta‐estimated data: a genome‐wide significant
signal for Model I, but not for Models III–V (e.g.,
rs2483220 Model I P= 2.14 × 10–36, Model III–V P= 0.11
to 0.25; Table S9). Most pseudosignals vanished in the
mega‐phased/meta‐estimated/Model I + II. From this, we
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conclude that the issue derived from the meta‐phasing
rather than the meta‐estimation.

We then investigated if including the reference
haplotypes into the study‐specific phasing eliminated
the observed pseudosignals (on the example of the region
around the chromosome 1 pseudo‐signal, chr1:0‐5 MB).
We found still a genome‐wide significant pseudo‐signal at
the start of the chromosome with Model I that was
diminished with Model II and vanished with Models
III–V. We concluded that this alternative phasing did not
avoid the pseudo‐signal generation.

In summary, we conclude that a majority of the 31
signals detected additionally with meta‐imputation/Mod-
el I (not detected by mega‐imputation/Model I) were
pseudosignals from an issue in the WGA‐studies includ-
ing a WGA‐related imputation error and the varying
case–control ratio in WGA‐studies.

3.8 | AMD genetics in IAMDGC data
with alternative imputation/model
approaches

When identifying genetic loci for advanced AMD is the
primary objective, GC‐corrected P‐values are to be judged.
While the original work had applied a sequential forward
selection approach to detect independent variants and
identified 34 loci (Fritsche et al., 2016), the same 34 loci
were detected by our regular single‐variant association search
genome‐wide in the same imputed data. Our mega‐
imputation/Model I approach with GC correction can be
considered a repetition of the originally published imputation
model (same software specifications). In our mega‐imputa-
tion/Model I results with GC correction (λ=1.13 as in the
original publication), we detected 36 loci for advanced AMD
including the 34 loci described before and two new loci (near
DNMP and NTN5, both P=4.9× 10−8 in our analysis vs.
1.26 × 10−7 and 1.23 × 10−7 originally, Table S4). We
attributed these two new loci to slight differences in allele
dosages and thus a chance difference from reimputation
(Figure S2 and Supporting Information Note 2).

When we applied Models II‐V with GC correction in the
mega‐imputed data, we obtained 26, 27, 25, and 29 genome‐
wide significant loci, respectively (GC‐factor= 1.10, 1.09,
1.09, and 1.01, respectively). All of these were included in the
36 loci (Table S5). The consistency of effect sizes across the
models also holds for GC‐corrected results (Section 3.3),
since effect sizes do not change upon GC‐correction.

4 | DISCUSSION

Here, we investigated whether mega‐imputation or meta‐
imputation was preferable for genome‐wide searches for

disease loci across multiple studies, when the data is
available as IPD. To exemplify this on real data, we utilized
one of the largest case‐control data sets on advanced AMD
with genome‐wide information, the IAMDGC data, on
>50,000 participants from 25 studies. We found that the
mega‐imputation was superior to the meta‐imputation with
respect to a higher number of well‐imputed variants,
particularly for rare variants, and more genuine AMD loci
detectable with genome‐wide significance.

When comparing differently imputed genetic data
sets, it is not fully straight forward as to how to compare
these data sets given the high dimensionality of the data.
We opted to count the number of variants imputed with
high imputation quality and the number of variants that
yielded trustworthy association statistics for a specific
imputation/model combination (“analyzable variants”).
We found that meta‐imputation yielded only 88% of the
rare variants at high imputation quality achieved by the
mega‐imputation. For the number of analyzable variants,
we found that the choice of the model was more relevant
than the choice of the imputation approach: only ~60% of
variants in the reference panel were analyzable with a
“meta‐model” (Model V) compared to ~85% analyzable
with a “mega‐model” (i.e., one model applied to the full
data, Models I–IV). This drop was predominantly due to
rare variants: among the rare variants analyzable with
mega‐models, only 50% were analyzable with the meta‐
model. These results highlight the gain from mega‐
models to analyze rare variants independent of the
imputation approach.

Another approach to compare differently imputed data
sets is a comparison of disease signal detection. Among the
overall 20 different approaches towards imputation and
association modeling that we explored, we found the
highest number of genuine AMD signals when analyzing
the mega‐imputed data with an association model fully
ignoring study membership (Model I), namely 40 loci
without GC‐correction and 36 loci with GC‐correction.
The lead variants’ effect estimates were stable across the
five models, and also P‐values were similar, but tended to
increase for models with increasing level of accounting for
covariates. Based on this observation, we considered these
signals as genuine and Model I as a reasonable
parsimonious model for a genome‐wide screen in the
mega‐imputed IAMDGC data. However, Model I does not
account for the varying case‐control ratios across the 25
IAMDGC studies, and is therefore not an ideal model for
this data. A model accounting for study membership
(Model II), and thus for varying case‐control ratios, would
be a good alternative and a follow‐up of findings with
more complex models is advisable. In fact, the ideal
logistic regression model to quantify a variant's effect for
AMD is a model that includes all associated risk factors,
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that is all other associated genetic variants and age
(additionally to study membership).

When applying Model I on the meta‐imputed data, we
found 31 signals additional to those detected with Model I
in the mega‐imputed data, most of them located near tails
of chromosomes or gaps in the reference panel. We
considered these 31 signals as pseudosignals, since they
vanished with other models. We attributed the majority of
these signals to an issue in the WGA‐studies, mostly from
unaccounted confounding from WGA‐related imputation
error and the varying case‐control ratios within the four
WGA‐studies. The imputation error was inconspicuous in
the mega‐imputed data, but re‐enforced by meta‐imputa-
tion, possibly due to the weaker information in flanking
variants in the study‐specific phasing. While we found this
issue accounted for by modeling the interaction of study
membership and WGA‐status (Models III + IV) or by
excluding WGA‐studies, this requires the issue to be
known. A more general recommendation would be a
meta‐analysis (Model V) for meta‐imputed data.

There is no previously published work on the compar-
ison of mega‐imputation with meta‐imputation. A large
body of work on clinical trials highlights scenarios where
mega‐analysis and meta‐analysis are equivalent (Mathew &
Nordstrom, 1999; Olkin & Sampson, 1998). There is some
work comparing mega‐ and meta‐analysis for genetic
variants: Lin and Zeng (2010a) analyzed 224 genotyped
SNPs (4,792 subjects from two studies) with various models
similar to our Models II–V. They demonstrated empirically
little differences between mega‐ and meta‐analyses and
concluded that the differences observed in variants with
low MAF (<3.1%) were due to the instability in effects
estimates. The same authors showed, theoretically and
empirically (30 genotyped variants, 3,135 cases of depres-
sion and 3,266 controls, four studies) that meta‐analysis was
statistically as efficient as mega‐analysis evaluating different
models comparable to our Models II, III, and V (Lin &
Zeng, 2010b). Both publications were based on genotyped
variants without aspects of imputation. Some previous work
investigated aspects of imputation: in one study genotyped
twice with different arrays (1,952 subjects; 32,903 or 14,071
SNPs on chromosome 22 with Illumina Omni 2.5 or
Illumina 1M, respectively) and imputed (411,376 variants,
using 1000G), the impact of the different arrays on variant
imputation quality and signal detection was explored (Xie,
Hancock, Johnson, & Rice, 2014). In another investigation
merging nine studies genotyped with different arrays
(overall 51,000 subjects), the steps of mega‐imputation
including variant panel harmonization and quality control
were described without association analysis (Verma et al.,
2014). While these investigations address an important
aspect of imputation across multiple studies, namely the
issue of different genotyping arrays, they do not compare

different imputation approaches or association models. In
contrast, we focused on issues that were beyond diverse
array technologies, for which our IAMDGC data was ideal,
since all samples were genotyped on one array centrally.
Another work applied meta‐imputation, but not mega‐
imputation (131,880 HapMap‐II‐imputed variants on chro-
mosome 16 and 18; 9,791 subjects from four studies) to
search for gene‐smoking interaction for systolic blood
pressure; they compared mega‐analysis to meta‐analysis
with different interaction modeling (Sung et al., 2014).

Our work thus represents the first investigation of
mega‐imputation compared to meta‐imputation, which
fills a current gap, and we investigate this systematically
in combination with various association models. Further-
more, our investigation is substantially larger in the
number of participants and the number of variants as a
realistic scenario of GWAMA research. An alternative
approach to explore structure in differently imputed data
sets is the determination of genetic principal components
and their inclusion as covariates in association models.
We did not analyze this in full detail in our study, which
can be considered a limitation. Our investigation was
restricted to the analysis of unrelated samples, as in the
original analysis (Fritsche et al., 2016), and on a binary
outcome. Some of our findings apply also to continuous
outcome: our conclusions on imputation quality, the
equivalence of results from mega‐ compared to meta‐
analysis for common variants, and the potential con-
founding from study‐specific differences in imputation
error when the mean outcome differs between studies.
Our work focused on analytical steps after genotype
quality control: we had genotypes assessed centrally with
the same chip array across all individuals and we kept the
genotype quality control constant across our scenarios.
This leaves issues from non‐centralized genotyping,
heterogeneous variant panels, and study‐specific versus
overall genotype quality control to future research.

Our investigation has a particular strength due to the
fact that our IAMDGC data was genotyped with one
array centrally, which limits the sources of between‐study
differences. The only uncontrolled source of between‐
study difference in this genetic data was the difference in
DNA isolation: four studies included study participants
where DNA was derived via WGA. This uncontrolled
source was then promptly the reason for most of the
pseudosignals in the meta‐imputed data. The fact that
our data included WGA‐participants can be considered a
limitation, but also an opportunity for methodological
investigation. It should be noted that the IAMDGC data
was designed to conduct mega‐imputation and mega‐
analysis and not for a study‐specific approach. It is
possible, that IPD from multiple studies, where each
study is well designed with matched cases and controls,
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would not feature such issues as the ones we observed.
Therefore, our investigation might be considered a rather
extreme example of unaccounted confounding; still, this
example was able to highlight difficulties of meta‐
imputation and helped us understand this methodologi-
cal issue in principle.

To what extent are our experiences from investigating
the IAMDGC data relevant for future studies? The issue
that some of our studies included participants with WGA
is not ubiquitous to GWAS. However, it is always possible
‐ and not necessarily known or observable—that there
are study‐specific issues of any kind: it might not be fully
clear what these issues are, making it impossible to
define an adequate mega‐model. The inclusion of all
possible study characteristics and their interaction with
study membership into a mega‐model is not an appealing
alternative, due to the substantially increased computa-
tional burden. A mega‐imputation followed by a mega‐
model ignoring study membership might be a reasonable
parsimonious approach for genome‐wide searches also
for other scenarios with central genotyping on a single
array. Still, such a simple model is not ideal and more
fine‐tuned models need to be considered, including a
detailed exploration of potential sources of bias or
confounding that will be specific to each situation. The
question of how to impute and analyze large multistudy
or multisite IPD is particularly timely given the
numerous and large study data that becomes more and
more available as IPD by open access research platforms
(dbGaP, UKBB; Bycroft et al., 2018; Rich et al., 2016), the
European initiative for open research data, Web Re-
sources). We recommend mega‐imputation and mega‐
analysis, with meta‐imputation followed by meta‐analysis
being a computationally appealing alternative. For multi-
site studies still at the brink of DNA isolating and
chipping, like the NAKO study from 18 sites across
Germany (German National Cohort, 2014), our findings
support the value of central DNA isolation and genotyp-
ing or a random assignment of participants to DNA
isolation/genotyping site combined with appropriate
modeling. With regard to the question whether it is
worthwhile to gather IPD of GWAS rather than sticking
to the current approach of gathering summary statistics,
our results indicate that meta‐imputation in combination
with meta‐analysis works well for common and less
frequent variants. However, we also find a potential gain
from IPD for rare variants and, of course, from more
options towards exploring the data.

In summary, our comprehensive investigation of differ-
ent imputation and modeling approaches for multistudy
GWAS provides insights into the handling of such data that
will facilitate future GWAS and help enhance the detection
of disease signals.

5 | WEB RESOURCES

The URLs for data presented herein are as follows:

EPACTS: Association analysis tool: https://genome.-
sph.umich.edu/wiki/EPACTS;

GIANT ALL 1000G PhaseI v3 reference panel: http://
www.sph.umich.edu/csg/abecasis/MaCH/download/
1000G.2012‐03‐14.html;

METAL: Meta‐analysis software: https://genome.-
sph.umich.edu/wiki/METAL_Documentation;

Imputation software minimac: https://genome.sph.
umich.edu/wiki/Minimac;

European initiative for open research data: http://
ec.europa.eu/research/openscience/index.cfm?pg=ope-
naccess;

Imputation quality RSQ definition: http://genome.-
sph.umich.edu/wiki/Minimac3_Info_File;
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