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SUMMARY
Currently, the primary imaging methods used in clinical diagnosis are X-ray, computed tomography (CT), ul-
trasound, magnetic resonance imaging (MRI), PET-CT, etc. The sensitivity and accuracy of these imaging
methods bring many difficulties in clinical diagnosis; at the same time, CT, X-ray, PET-CT, etc. can cause ra-
diation to the human body; some invasive operations of the gold standard bring much pain to the patients.
Some of these tests are costly and do not allow real-time in vivo imaging (IVI). For these reasons, a new field
of nanoprobes is gradually being developed in the clinical direction. Nanoprobes are known for their nonin-
vasive, highly sensitive, real-time IVI and can even be expanded to intracellular imaging. This paper intro-
duces the mainstream nanomaterial probes and reviews them regarding imaging means, imaging principles,
biosafety, and clinical application effects.
INTRODUCTION

In clinical practice, medical diagnosis primarily involves labora-

tory tests in the clinical pathology department, imaging examina-

tions in the radiology department, pathological biopsies or intra-

operative pathological biopsies, and genetic testing. However,

clinical physicians need to consider multiple factors during the

diagnosis and treatment process, including cost-effectiveness,

accuracy, invasiveness, and time constraints. Therefore, there

is an urgent need to explore efficient, non-invasive, and precise

diagnostic and therapeutic methods.

Currently, nanoprobes have attracted the attention of clinical

physicians and scientists in the field of medical materials due

to their relatively accurate diagnostic and therapeutic capabil-

ities, as well as their ability to perform non-invasive in vivo imag-

ing (IVI), and there are already in vivo applications for detecting

atherosclerotic plaque, Silica and Silicon materials, gastric

acid, or even adenosine triphosphate.1–6 This proves that current

technology can detectmaterials at the single-cell and subcellular

levels that provide new hope for precision medicine in modern

clinical practice. Significant progress has been made in live im-

aging by using nanoprobes, and research in this area is ongoing.

However, there are also many challenges to overcome, such as

the potential accumulation of probes in the body and the issue of

whether they can be excreted by the liver or kidneys.7,8

Nevertheless, researchers are actively exploring the biological

safety of nanoprobes. Currently, cell viability tests after the appli-

cation of probes in cell culture show a basic level of over 80%.

Therefore, the application of nanoprobes in IVI still holds great

promise.

Presently, the forefront nanoprobes include those operating

within the NIR-II spectrum, surface-enhanced Raman scattering
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(SERS) probes, DNA probes, etc. Among these, NIR-II spectrum

probes exhibit diverse fluorescent markers for various bio-

imaging applications, facilitated by distinct delivery and surface

encapsulation techniques. However, all types of probes remain

experimental and await translation into clinical diagnostic or

therapeutic settings. Fluorescent markers comprise organic

and inorganic dyes that emit fluorescence during in vivo fluores-

cence imaging. Organic dyes encompass aggregation-induced

emission (AIE),9 donor-acceptor-donor (D-A-D) dyes, indocya-

nine green (ICG) dyes, semiconductor polymer nanoparticles

(SPNs), and porphyrin dyes, among others, offering high sensi-

tivity and contrast for in vivo bio-imaging. And recently an un-

precedented research about AIE open a new door for detecting

the tumor and give us new hopes to realize precise treatment.10

Nonetheless, they encounter limitations such as low energy

transfer efficiency, poor visible emission, low photostability,

and complex preparation processes.9,11–14 Inorganic dyes

include rare earth nanoparticles, carbon nanotubes, lithium

nanoparticles, quantum dots (QDs), and gold nanoparticles

that are deemed the most biocompatible and promising for clin-

ical applications (Figure 1).

However, the biosafety and stability of other inorganic probes

necessitate ongoing exploration. Notably, certain QDs probes

have demonstrated good biosafety, whereas rare earth nanopar-

ticles exhibit poor biosafety profiles.15 Thus, there is a pressing

need to develop biologically safe and stable nanoprobes. Deliv-

ery methods encompass liposome encapsulation, microbubble

delivery, nanocellular micelles, and protein encapsulation

techniques. Some rare encapsulation materials also show

marvel effects, such as transferrin, BSA, etc.15–17 Surface treat-

ment techniques involve antibody coupling, aptamer, peptide,

polyethylene glycol, and cell membrane surface encapsulation.
uary 17, 2025 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Three types of nanoprobes and their trackers
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Employing these techniques, nanoprobes strive to advance

high-resolution real-time IVI technology.12 DNA probes primarily

serve to investigate cellular-level functions, constructed with

backbones, i-motifs, ligands, DNA enzymes, and other compo-

nents. Current research, primarily focused on MCF-7 cells, en-

ables probing at the microscopic level of the cell membrane,

Zn2+ ion,18–26 and intriguingly, functioning as voltage clamps to

investigate ion flow in sodium-potassium pumps at the single-
2 iScience 28, 111459, January 17, 2025
cell level. Nanoprobes harbor immense potential for future clin-

ical applications. SERS probes, characterized by high sensitivity,

facilitate the study of ion channels on cell surfaces and cell iden-

tification at varying pH values, thus heralding an emerging field

for future development. We primarily focus on the current appli-

cations of near-infrared (NIR) nanoprobes, DNA probes, and

SERS probes in the IVI area, presenting the latest advancements

in their utilization and offer deliberations for their clinical

translation.
NEAR-INFRARED NANOPROBES (NIR-II)

NIR nanoprobes represent a prevalent choice for IVI: I, II, and III.

Among these, NIR-II, particularly emitting wavelength within the

1,000–2,000 nm range, stands out as the most common.27,28

NIR-II further subdivides into a andb.27,28 This technique ismainly

used in the clinical identification of lymph nodes,29–32 tumors,

vascular anastomosis sites,33,34 anatomical structure etc. (Fig-

ure 2). Usually, the fluorescent tracker (for example, indocyanine

green [ICG] dyes) is dissolved in sterile water or saline water,

then being injected through intravenous/ureteral catheter35

(Figure 3). Presently, adiverse arrayofNIR-II luminescent trackers

have emerged, encompassing entities such as indocyanine

green, benzothiadiazole (BBTD), butyl dibenzyl aminocyclopen-

tene, semiconductor-based materials, polymer nanoparticles,

and aggregation-sensing emitter-luminescent materials, among

others. Additionally, inorganic luminescent trackers, including

single-walled carbon nanotubes, black phosphorus, rare earth-

doped nanoparticles, golden nanoclusters, and quantum dots,

have been developed.12,36,37 Among organic luminescent mate-

rials, NIR-II imaging based on ICG is a conventional modality.

However, challenges arise from the accumulation of certain

coupling agents in metabolic organs, prompting the need for
Figure 2. NIR-II applications in clinical

cases



Figure 3. Steps of application of NIR-II

nanoprobes
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enhancements and innovations in ICG luminescent-material-

based nanoprobes. In this context, transferrin emerges as one

of the analogs of ICG luminescentmaterials, offering potential so-

lutions.16,38–40 Numerous meticulous research endeavors have

been undertaken to engineer NIR-II fluorescent probes utilizing

BBTD-derived D-A-D frameworks. These BBTD frameworks

exhibit notable characteristics such as high photostability and

large Stokes shifts, enabling the realization of high-performance

NIR-II fluorescence imaging. This advancement encompasses

enhanced imaging sensitivity and contrast, thereby offering sub-

stantial benefits for biomedical imaging applications.11 Simulta-

neously, inorganic luminescent materials such as upconversion

nanomaterials (UCNPs) are frequently employed. UCNP offers
Table 1. The main pros and cons of the NIR-II imaging

NIR-II advantages

Effectively eliminates background luminescence

interference in biological systems13

NIR-II fluorescence imaging has been shown to have

high performance, including improved imaging

sensitivity and contrast, which facilitates

biomedical imaging38

Deep tissue penetration, low autofluorescence,

and high contrast-to-noise ratio43,44

iS
advantages such as mitigating back-

ground interference from endogenous

cellular fluorophores, reducing the risk of

photodamage to biological samples, and

enhancing tissue penetration depth.

These properties have made UCNP a

prevalent choice in probe research.15,41

Furthermore, golden nanoclusters are

highly regarded as luminescent materials

suitable for clinical applications, primarily

owing to their lowbiotoxicity. Their excep-

tional photothermal conversion efficiency

and customizable NIR absorption make

them extensively utilized in NIR imaging

endeavors.15,27 NIR-II probes have lower

photon scattering, higher resolution and

sensitivity, and higher SBR compared to

the limitations of the earlier NIR-I probe.

Resolution and sensitivity, high SBR ratio,

and deep tissue penetration11,12,36 also

overcome visible light imaging probe

observation limitations. Furthermore, the

advantages of NIR-IIb (1,500–1,700 nm)

over NIR-IIa (1,300–1,400 nm)42 are

particularly pronounced. NIR-IIb exhibits

reduced fluorophore density, diminished
light scattering, and decreased absorption effects from endoge-

nous chromophores, thereby enhancing imaging quality (Table 1)

(Figure 442).

NIR nanoprobes are commonly combined with photoacoustic

(PA) imaging to enable fluorescence imaging with ultra-high

spatial resolution and high contrast.16 Conversely, their integra-

tion with three-dimensional multispectral PA tomography (3D

MSOT) enables the visualization of disease sites, such as meta-

static lesions in lymph nodes, by providing comprehensive

three-dimensional spatial information.7,45 The construction of a

nanoprobe entails the incorporation of biosensors for signal im-

aging, with Förster resonance energy transfer (FRET) emerging

as themost prevalent technique inmedical imaging applications.
Drawbacks

–

–

Poor aqueous solubility of most drugs

and low diagnostic specificity and

sensitivity for the target of interest

cience 28, 111459, January 17, 2025 3



Figure 4. Different absorbance of water

during different wavelengths

We can see the absorbance of water has a slice

increase in the wavelength of NIR-II.
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FRET employs a non-radiative mechanismwhere the photon en-

ergy from an excited fluorophore (donor) is transferred to another

nearby fluorophore (acceptor) when donor and acceptor are

near (1–10 nm). This technique enables the visualization of mo-

lecular interactions between two protein components beyond

the resolution limit of optical microscopy. Additionally, lumines-

cence resonance energy transfer (LRET) and excitation ratiomet-

ric nano detectors are utilized for specific target sensing, further

enhancing the versatility of nanoprobe-based imaging method-

ologies.41,46 NIR imaging is frequently used for in vivo biolumi-

nescence imaging (IVIS systems) and in vivo fluorescence imag-

ing for diagnostic purposes, with potential for future noninvasive

imaging applications (Figure 3). Our review encompasses cur-

rent clinical applications of developed probes, offering insights

into the prospective utilization of nanoprobes in clinical diag-

nostic imaging.

Presently, the clinical applications of NIR-II imaging are classi-

fied into several categories, including intraoperative navigation,

lymph node metastasis monitoring, liver injury and inflammatory

response detection, and identification of tumor components

based on the tumor-specific microenvironment. This microenvi-

ronment often comprises characteristics such as ATP overex-

pression, acidic pH, hypoxia, elevated levels of reactive oxygen

species (ROS), and enzyme overexpression.25 Another emerging

research approach reveals the crucial role of microRNA in

discriminating between tumor and normal tissue during imaging.

Specifically, microRNA probes offer a non-destructive means

of distinguishing between different types of tumor cells. For

instance, fluorescence intensity measurements during imaging

indicate higher intensity in A549 cells compared to HeLa cells

and other cell types. However, the fluorescence intensity of mi-

croRNA probes for tumor detection exhibits variability across
4 iScience 28, 111459, January 17, 2025
different tumor cell types,47 which brings

new ideas for future exploration of nonin-

vasive tumor diagnosis.47 The biosafety

and biocompatibility of NIR-II probes

have become focal points of discussion

within the contemporary materials com-

munity.38,48–53 In the development of

such probes, it is essential to initially

elucidate the probe construction pro-

cess. Subsequently, assessing the

impact of adding exciters in mouse

models becomes imperative. Further-

more, a thorough evaluation of the

probe’s biotoxicity is warranted, along

with considerations for pharmacokinetics

and clearance methods.12 The most

prevalent assay involves assessing cell

viability, with the option of performing

HE staining on tissue sections. A control
group was established to further corroborate the effectiveness

of the inhibitors alongside the exciters. Currently, the most com-

mon material is Ag in the NIR-II area and is usually encapsulated

by SIO2 or any other inorganic material. The table below outlines

the Ag nanoprobes’ clinical applications of in vivo probe con-

struction over the past 5 years (Table 2).

ICG dye
ICG fluorescent trackers represent the most extensively utilized

and traditional class within the NIR-II field. Nonetheless, it en-

counters challenges such as severe background signal interfer-

ence, altered spectral properties, a narrow imaging window, and

limited penetration depths, including issues like severe photo-

bleaching.14,16,39,43 ICGs necessitate coupling with various mol-

ecules to achieve clinical applicability. Although literature reports

indicate their utilization in cancer staging and lymphatic drainage

imaging, conflicting opinions exist. Some articles suggest ICG’s

effectiveness in identifying the lymph node itself, whereas others

argue that it cannot determine whether the lymph node is meta-

static.43 The following table summarizes ICG dye modifications

and their analogs and their imaging advantages within the last

5 years (Table 3).

Inorganic QD quantum dot tracker
Quantum dots are prevalent trackers in the field of nanoprobes,

utilized across various applications. They possess the capability

to absorb photons and subsequently emit them at diverse wave-

lengths. Quantum dots offer several advantages, including

a substantial absorption coefficient, a narrow and adjustable

emission spectrum based on size, a wide spectral window span-

ning from UV to IR, a prolonged fluorescence lifetime exceeding

10 ns, as well as robust optical and chemical stability.12,40



Table 2. The main application of Ag nanoprobes and the new explorations of creative nanoprobes in the NIR-II area

Trigger/Biomarker Probe type Clinical applications

Ag2S iodide nanoparticle Upconversion luminescent nanoprobe (UCNP) near-infrared

fluorescent Ag2S nanodots (NDS),

AU-CU955 nanoparticles UCNPs@SiO2-Ag2S

In vivo pH sensing and imaging (tumors)

H212 Bimodal second NIR/photoacoustic smart nanoprobes SiO2@Ag Highly specific imaging of colorectal cancer

HClO54 Ag2Te@Ag2S core-shell QDs Arthritis and peritonitis

H2S55 NIR-II optical properties of NaYF4:Gd/Yb/

Er@NaYF4:Yb@SiO2@Ag by adding S2�
Metformin-induced liver injury

Different kinds of probes have different excitation conditions, depending on PH and different chemicals. These different biomarkers provide a lot of

thinking for the clinical diagnostic process. The use of different probes in the clinic is also different and can be used for tumor lymph node biopsy

and tumor microenvironmental detection, which are at the microscopic level or even subcellular structure level of the non-invasive in vivo biomarker

imaging, so for the future of the clinical precision therapy to provide a new choice and thinking.
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Currently, the commonly used quantum dot coupling agents are

PbS/CDS/ZnS, CdSe/ZnS, CdTe/CDS, and CdTe.40,45 Previous

studies in the literature have demonstrated the utility of quantum

dots in various applications, including cellular imaging of HER2-

positive breast cancer, imaging of lymph node metastasis, and

intraoperative navigation for prostate cancer. Biosafety assess-

ments confirmed a cell survival rate of 80%, indicating the poten-

tial of inorganic quantum dot tracing for future clinical research

endeavors. PSMA-QD655 is a deep-tissue imaging agent that

is used for intraoperative navigation. Krishnan et al. have re-

ported this technology in prostate cancer. This nanoprobe is de-

signed and synthesized by coupling functionalized amino-PEG

quantum dots (QDs) to DUPA-targeted peptide constructs with

heterobifunctional linkers. Interestingly, this nanoprobe is

distinct from typical ICG fluorescent navigation that is used

mainly for navigation of lymph nodes and leaves the potential

for inorganic trackers that are less likely to accumulate in meta-

bolic organs.56–60 Furthermore, two kinds of quantum dots

attract our attention, Ag2Te@Ag2S core-shell QDs that can

detect arthritis and peritonitis by sensing the density of HClO.

Quantum dots release positive ions to present them to Ag, and

NaBH4 reduces the Ag ion to stimulate fluorescence quenching.

Then, after sensing the HClO that exists in arthritis and peritonitis

patients, the QDs restore to remit, counteracting the fluores-
Table 3. The ICG dye and its analogs applied for NIR-II imaging exp

Cypate (Cy@aft) apolipoprotein coupling16

Folate receptor alpha38 Bimodal nanoprobe indocyanine green (ICG)

dye and DOTA chelator coupling

Thermosensitive,

lipopolysaccharide

(LPS) endotoxin39

VEGFR-317 TMVP1-ICG-NPs

ICG dyes are currently the most widely used organic dyes, but due to some

emerging field of probes. ICG dyes are still more traditional and widely used,

nanoprobes.
cence quenching effect.54 This delicate design qualifies the

extent of this type of disease and has the specific index to eval-

uate.45 Another nanoprobe MnCuInS/ZnS@BSA-Ab ingeniously

combines QDs with BSA and encapsulates certain chemical

groups to characteristically combine with HER2 antibodies.40

Coincidentally, Chen et al. also use BSA as encapsulation for

lymphatic metastasis visualization for surgery. This tricyanofuran

heteroanthracene alanine nanoprobe X-APN@BSA sense

aminopeptidase N to be activated for photoacoustic/NIR-II fluo-

rescence dual-mode imaging to track lymphatic metastases and

guide tumor resection procedures.7,45

Golden nanoparticles
The main difficulties faced by small molecule trackers at present

are poor biocompatibility, easy aggregation in metabolic organs,

poor water solubility, etc.39 Gold nanoparticle tracker probes are

considered to be the most appropriate nanoprobes to apply to

bioimaging because of their excellent biosafety, high sensitivity,

and real-timemonitoring.15,27 In addition to possessing excellent

photostability and chemical stability akin to quantum dots, gold

nanoparticles offer numerous advantages, including straightfor-

ward synthesis, ultra-small size, substantial Stokes shift, and

good water solubility. However, it is important to consider eco-

nomic costs, as well as the fact that the absorption spectrum
lorations

Tumor imaging (PTT enabling

tumor RF ablation)

Activity targeting and long-

circulation properties facilitate

accurate tumor visualization over

long windows

Fluorescence imaging and

image-guided surgery for

glioblastoma

–

Rheumatoid arthritis With high sensitivity, specificity,

and signal-to-background ratio

(SBR)

Sentinel lymph node tumor

metastasis

–

of their biotoxicity and other drawbacks, people continue to explore the

so we summarize some of the last five years of ICG dyes and their analog
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of gold nanorods primarily falls within the NIR-I region. Conse-

quently, a current research focus and challenge involve red-

shifting their absorption to the NIR-II region. Furthermore, gold

nanomaterials exhibit ease of integration with DNA probes, as

elaborated upon later.27 We conclude the gold nanoprobes de-

picted by recent articles are applied in tumors’ in vivo pH sensing

and imaging, predict heart failure, and monitor the potential for

second proximal gastric acid and even cranial imaging,13–15,27

which are separately triggered by HCL, phosphoprotein (PLN)

(a neuropeptide present in the sarcoplasmic reticulum [SR] of

cardiac myocytes), and special luminous metal material. Pres-

ently, gold nanoparticles find clinical applications in microRNA

imaging and encapsulation within dopamine for gastric acid

detection. Notably, the nanoprobe designed for gastric acid

detection can be administered directly via gastric gavage, exhib-

iting favorable characteristics such as good biosafety, rapid

excretion, and absence of accumulation in metabolizing organs.

This nanoprobe is composed of Au NCs@PDA-MB (PDA: dopa-

mine and MB: methylene blue). Gold nanoprobe is triggered by

glutathione and enfolded by PDA, then loadedMB on the surface

of the nanoprobe; this entails the sensitivity, high-response

speed high SBR, and better biosafety and enables this nanop-

robe to accurately sense the HCl density.15 Gold nanoprobes

are also explored in the neurosurgery department, but it was

only limited to the laboratory animal science area. Nanoprobes

detecting mouse cranial nerve are created, which combine

GNR (Au nanorods enfolded by SIO2) with P dots. However,

this kind of nanoprobe still has limitations. Even though, NIR-II

fluorescence imaging provides a valuable method for accurately

visualizing biological structures deep within the body. Unfortu-

nately, most NIR-II fluorophores suffer from low absorbance

and low quantum yield (QY) in cranial nerve detection.14 Another

literature has used glutathione-induced change of MnO2 to

Mn2+ and, thus, in situ aggregation of gold nanoparticles for im-

aging of tumors.27 When it comes to heart failure, there is no

evident golden standard to diagnose except for detecting BNP

or NT pro-BNP. We usually do not make biopsies to identify

the heart condition in the initial diagnosis and treatment process

because it is invasive, so gold nanoprobes become a potential

choice. Because it is triggered by the phosphoprotein that only

exists in heart failure patient that specifies the accuracy of

our diagnosis, the composition of this nanoprobe is the function-

alization of thiol-modified DNA short strand (C-strand) combined

with gold nanoparticles that have specific roles for detecting and

imaging phosphoprotein micro peptides in cardiomyocytes.61

UCNP
Upconversion luminescence absorbs two or more low-energy

photons and emits one high-energy photon.41 Upconversion

luminescent materials are categorized into four main groups:

lanthanide-doped rare-earth UCNPs, single-photon frequency

upconversion luminescence (FUCL), triplet-triplet annihilation

(TTA), and two-photon absorption upconversion luminescence

(TPA).21–24 Rare-earth upconversion nanomaterials, which

include rare-earth elements, offer numerous advantages for

probe construction and fluorescence imaging. These advan-

tages comprise significant anti-Stokes shifts, excellent photo-

stability, absence of photobleaching, high tissue permeability,
6 iScience 28, 111459, January 17, 2025
and minimal photodamage. UCNPs can effectively detect

deep-tissue microRNAs through NIR reactivity, although chal-

lenges persist regarding their bioadaptation. Despite the adapt-

ability challenge, an ongoing exploration into the utilization of

UCNP materials for IVI with fluorescent probes is underway,

leveraging the LRET process mentioned earlier. Successful

surface assembly of pyranonitrile dyes on lanthanide upcon-

verted nanofluorescent powders (UCNPs) has been reported,

indicating the potential for UCNPs in future clinical applica-

tions.23,41,62–64 UCNP is most commonly composed of

NaYF4:Yb,Er encapsulated by silica,36,47,55 and most UCNPs

are currently used mainly for microRNA detection. UCNPs are

extensively applied in material areas and cooperate with biosci-

ence technology. By sensing b-gal, DCM-b-Gal UCNPs upcon-

version nanoprobes modified with pyranonitrile nanoprobe are

used for ovarian cancer tracing changes in b-GAL activity in

living cells (293T and SKOV-3 cells).41 Another interesting

nanoprobe is a dumbbell-shaped UCNP-loaded UV-responsive

DNA dumbbell-like structure probe (PH1) that senses ultraviolet

rays and microRNA to emit green fluorescence to detect the

density of the tumor area.47

Rare-earth nanoprobes
This type of nanoprobe faces a lot of challenges because it will

cause damage to the human body. Thus, it is less likely to apply

to clinical conditions,43 but due to its smaller apparent diameter/

width and higher SBR, scientists still try to exploit this area. Based

on approval of the biosafety of these nanoprobes, we summarize

two types of rare-earth nanoprobes in breast cancer detection,

NaErF4@NaYF4 NIR-IIb nanoprobes (ErNPs). Rare-earth nanop-

robes modified ErNPs with balisafopeptide (ErNPs@POL6326)

to detect breast cancer sentinel lymph nodemetastasis. Balisafo-

peptide plays as a biomarker and is a peptide antagonist of

the chemokine receptor CXCR4.Rho@ErNPs@POL6326. Even

though authors verified the biosafety of this nanoprobe, they also

admitted that they may have some hindering risks during the pro-

cess of fluorescence quenching and restoration.43 Another

instance is the rare-earth core-shell nanoprobe NaGdF4: 5%

ND@NaLuF4 depicted by Wei et al. They prove the cell viability is

over 80% and the hemolysis is less than 5%.65 Interestingly, Zhu

reported that nanoprobes that use rare-earth dye can detect

bacterial infection. TPEO-820-dye-sensitized rare-earth doped

nanoprobes (RENPs) with a ZIF-8 layer incorporating the photo-

chemically triggered nitric oxide donor CysNO to detect MARSA

infection.Thisprovidesanewarea for clinicaloperators toevaluate

healing of the patients in their convalescent phase.66 All in all, the

resolution of this material is critical; excluding vital drawbacks,

rare-earth nanoprobes still hold bright prospects.

Other nanoprobes
Except for the aforementioned nanoprobes, some burgeoning

nanoprobes are also being explored. ROS nanoprobes, for

example, are booming in the material area. RHyLI nanoprobes

allow real-time quantitative measurement and monitoring of tu-

mor hypoxia during radiation therapy sessions. It is a non-radia-

tion and low-cost device and can even detect the oxygen level of

the vessel.67 Then, there are some rare nanoprobes, all used

in tumor detection; glyoxal-triggered FRET-based peptide



Table 4. Other nanoprobes of different clinical applications

Trigger/Biomarker Probe type Clinical applications

H2027 Benzothiadiazole core nanoprobe

BTPE-NO2@F127

Interstitial cystitis and liver ischemia-

reperfusion injury

Methylglyoxal11 MGSLNP organic magnesium

oxide probe TDTCD

Type 2 diabetes mellitus (T2D)

Nitroreductase8 Pep(peptidized)/BDP-NO2@Lip.

The nanoprobe is a liposome-based

nanostructure that is functionalized by

a peptide (GGGGDRVYIHPF)

Myocardial hypoxia visualization

AIE-activated aggregation-

induced emission9
A total of four acrylonitrile-based

aggregation-induced emission (AIE)

active two-photon (TP) fluorescent probes

Efficient deep brain vascular imaging

– NaGdF4:Nd 5%@NaGdF4@Lips (named

GdREs@Lips) liposome encapsulation

Imaging studies in a xenograft model

of hepatocellular carcinoma patients

have been shown

Granzyme B, semiconductor

polymer (SP)61
Activatable semiconductor polymer

nanoprobes (SPNP)

T-lymphocytes

ATP70 NIR@ZIF-90 was prepared by embedding

a rhodamine-like near-infrared (NIR) dye in

a molecular sieve imidazole backbone (ZIF-90)

Colon inflammation
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nanotubes examine tumor tissue.46 AIM-Probe, Cys(StBu)-

Lys(Cy5.5)-EDA-PMA-CBT self-extinguishing fluorescent nano-

particles can sense the PH of tumor because it has low PH.68

Wang et al. invented an ‘‘albumin�conjugate’’ nanoprobe.

HSA-Er-RI-Cl contains serumprotein erlotinib and a hypoxia-tar-

geting heptamethine carbocyanine dye. Because it uses small

molecules, it is rare in nanoprobe materials due to poor biocom-

patibility. Small molecule preparations are easy to accumulate in

metabolic organs such as the liver and kidney. But this research

uses albumin to smoothly tackle this problem. It detects subcu-

taneous andmetastatic tumors in the HNSCC cell line and tumor

tissue from the HN30 group.69 Moreover, QT-RGD NIR-emitting

organic fluorophore and two cyclic (arginine-glycine-aspartate)

(CRGD) peptides are other interesting nanoprobes that are

used for tumor thermotherapy, which is triggered by avb3 integ-

rin.44 A more sophisticated type of MnO2-JANUS-PPA nanop-

robe is used to detect tumor immune microenvironment.40

Except for the oncology field, there are also other nanoprobes

used in different areas, which are shown in Table 4.

DNA NANOPROBE

DNA nanoprobes offer several advantages, including

programmability, high molecular recognition accuracy, good

biocompatibility, straightforward synthesis, easy modification

functionalization, and a modular structure. In the context of

DNA nanoprobes, which primarily serve as auxiliary modifiers,

we compile a summary of nanoprobes incorporating DNA

modifications that have been visualized under NIR and utilized

in various fluorescent trackers as mentioned earlier. These

DNA nanoprobes are predominantly employed for imaging

within living cells and molecular imaging of cell membranes,

among other applications.18–26 The following table describes

the components of DNA nanoprobes and their functions

(Table 5).
The main applications of DNA nanomaterials on cell mem-

brane surfaces are fluorescence imaging and functional modula-

tion. In this paper, we investigated the application of DNA nano-

materials in fluorescence imaging of cell membranes.8 Gao et al.

introduced a multicolor covalent organic backbone DNA probe,

where the DNA fluorescence signal is initially quenched by the

probe backbone, and recognition of the aptamer restores the

fluorescence signal. The construction of DNA nanoprobes ne-

cessitates a backbone and multiple modification groups to

ensure probe stability. Typically, the aptamer is furnished with

fluorescence signals at both ends (e.g., Cy3/Cy5). Moreover,

recent studies have demonstrated the utility of DNA nanoprobes

in imaging sodium-potassium pumps on cell membranes, remi-

niscent of the voltage clamp principle in physiological investiga-

tions. This presents promising opportunities for advancements

in basic research.71–74 Specific DNA nanoprobes from the last

5 years of research are summarized in Figure 5.

The aptamers are protein-specific binding units of receptor

proteins (MUC1 is the most common) that are labeled to restore

the fluorescent signal cy3/cy5,20–23,26 DNA tetrahedral nano-

structures, AuNP, etc.. I-motif is a proton recognition probe.

DNAzyme is used for building sensors, similar to the aptamer,

but is absorbed on skeletons, which can be used in future

gene tests.24,25,75

DNA nanoprobes, precisely because of their specific binding

ability, have a wide range of clinical application prospects.

Different nanoprobes have different ways of improving their spe-

cific binding ability, among which are the application of freezing

methods,18,76 increase in nucleic acid loading density, fluores-

cence burst and signal recovery, real-time tracking ability, and

specificity and sensitivity of the nanoprobe design. For example,

AS1411 ligands are modified on DNA tetrahedral nanoprobes

(apt-ADTNs) to enable specific binding to tumor cells, Q-oligo

is modified from the nanoprobe to enable piRNA-36026

specific binding, and Q-oligo is modified on DNA tetrahedral
iScience 28, 111459, January 17, 2025 7



Table 5. Main application of nanoprobes and the new explorations of creative nanoprobes in the DNA area

Excitation substances Probe type Imaging pattern Fluorescence signal recovery

Gao et al.18 COF@Survivin/MUC1 Transmission electron microscopy,

scanning electron microscopy,

confocal imaging

Cy5, TAMRA

microRNA-2119 UCNPs-NH2/PEG-DNA/FA Fluorescence imaging UCNP fluorescence signal

piRNA-3602620 Aptamer-functionalized activatable

DNA tetrahedral nanoprobes

(APT-ADTNs)

Confocal fluorescence imaging Cy5 of APT-ADTNS

PH, protein26 AuNP-IAQs Confocal microscopy imaging,

which can also image MUC1

protein in situ on the surface

of living cells

Cy5

Survivin21 M-BQD Ratiometric fluorescence imaging M-BQD

APE-1, TE22 MGB-BHQ-DNA Confocal microscopy imaging By cleaving APE1

ATP23 DNA nanoprobes exposed to

Mn2+ and split aptazyme probes

Confocal imaging, fluorescence

images of live mice acquired at

different time points with the

IVIS imaging system

Fluorescein isothiocyanate (FITC)

(excitation/emission wavelengths

of 488/517 nm) and cyanine-5 (Cy5)

(excitation/emission wavelengths

of 633/670 nm)

DNA probes are mainly used for intracellular imaging, and the cells used in the development of the probes are MCF-7 cells. The exploration of DNA

probes provides new explorations for the implementation of subcellular structural localization and even genetic diagnosis in the future clinic, which is

currently being attempted by researchers. We summarize the imaging techniques used for DNA nanoprobes in the last 5 years, the biomarkers of stain-

ing, and the application of high-resolution imaging in vivo. COF@Survivin/MUC1 nanoprobes adsorbed on functional nucleic acids, a Cy5-labeled

MUC1 aptamer and a TAMRA-labeled survivin mRNA antisense oligonucleotide, UCNPs-NH2/PEG-DNA/FA, Upon attachment of double-stranded

DNA to the surface of UCNPS-NH2/PEG nanocomposites, APT-ADTns have the advantages of low cell permeability, low cytotoxicity, and high resis-

tance to enzymatic degradation. Intracellular probes. AuNP-IAQs is an integrated dual-response probe that is biocompatible and biostable, respond-

ing to acidity changes from pH 7.4 to pH 6.5, sensitively and selectively recognizing, and imaging target proteins in situ on the surface of living cells.

M-BQD is single-stranded DNA complementary to the base sequence of survivin mRNA that can be used to target tumor cells. MGB-BHQ-DNA can

avoid mutual interference and background noise and ensure enhanced fluorescence signal output during dual enzyme catalysis. All the cell lines the

experiments applied are MCF-7/MCF-10, except for AuNP-IAQs, which also use HepG2 cells to better detect PH levels.
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nanoprobes, binding and enabling piRNA-36026 to specifically

bind and Q-oligo to detach from the nanoprobes, leading to

the recovery of Cy5 fluorescence signal. There are also studies

designing specific split-type nanoprobes18,20,23,77 using gluta-

thione, where the MnO2 nanocarrier is degraded in the presence

of GSH, releasing Mn2+ ions and split-type aptazyme probes.

Intracellular ATP then triggers the formation of integrative apta-

zyme, which activates the catalytic reaction of DNAzyme,

thereby specifically lighting up tumor cells. There are also probes

of different designs, such as those realized on nanoscale fluores-

cent COFs by adsorbing TAMRA-labeled survivin mRNA

antisense nucleotides and Cy5-labeled transmembrane glyco-

protein MUC1 (mucin 1) aptamers.18,20,23,77 Furthermore, ac-

cording to Wang et al., DNA nanoprobes have its own structure

evolutionary history, from 1D (nanowire shape78) and 2D (tiles,79

DNA origami, which sounds like a delicate and sophisticated

work,80,81 Starpattern82) to 3D (cube, tetrahedron/octahedron,

prism, nanorobot, hydrogel, nanoflowers, DNA network).

SERS NANOPROBE

Raman imaging represents a cutting-edge advancement in sur-

face-scanning laser Raman technology, seamlessly integrating

microscopyprincipleswith laserRamanspectroscopy.Character-

ized by high-speed operation, noninvasiveness, label-free capa-

bilities, andexceptional resolution, it offersanovel approach to im-
8 iScience 28, 111459, January 17, 2025
aging.83 Regarding Raman scattering fluorescent nanoprobes,

which are more applied to the single-cell field,84 Zhang et al.

engineered a nanoparticle composed of gold-nucleated-4-mer-

captobenzonitrile-silver-shell-goat-anti-rabbit-immunoglobulin G

(Au@4-MBN@Ag@IgG) nanoparticles, which serves as an SERS

nanoprobe. This nanoprobe demonstrates efficacy in detecting

the HERG ion channel at the single-cell level.84 Additionally, pH

SERS probes are constructed using sensitive molecules primarily

comprising carboxyl, amino, and pyridine rings with pH respon-

siveness. Among themost notable signalingmolecules utilized are

4-mercaptobenzoic acid (4-MBA), 4-mercaptopurine (4-MPY),

and p-aminophenyl thiol (4-ATP).83,85–87 Lin et al. developed a

bimodal nanoprobe designed for detecting the BAX mRNA gene.

As the probe approached the sequencemodifiedby this apoptotic

site, the SERSsignalwas attenuatedwhile the fluorescence signal

was intensified, leading to successful differentiation from normal

tissues.88 Lin et al. discovered that ultrafine Fe3O4 nanoparticles

exhibit excellent SERS activity. These nanoparticles possess nar-

row forbidden bandwidths and high densities of electronic states

(DOS), facilitating the formation of stable ultrasmall-molecule

Fe3O4-SERS molecular systems and strong coupling and reso-

nance. These factors synergistically endow ultrasmall Fe3O4

nanoparticles with an efficient photo-induced charge transfer

(PICT) process, amplifying the molecule’s polarization tensor and

resulting in significantly enhanced Raman signals.89 Pure

Fe3O4-based probes were employed as T1 magnetic resonance



Figure 5. The description of the structure of DNA nanoprobes
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contrast agents for in vivo tumor imaging, facilitating effective tu-

mor diagnostics through SERS-MRI dual-mode imaging at both

cellular and tissue levels. The optimized SERS-MRI bimodal

nanoprobes hold promise for widespread application in early tu-

mor diagnosis, both in vivo and in vitro, and exhibit significant po-

tential for utilization in image-guided tumor therapy.

The probes delineated in the present study encompass gold

nanoparticles, silver nanoparticles, hybrid nanoparticles, car-

bon-based nanomaterials coordinated with metals, and black

phosphorus-based nanomaterials coordinated with metals.90

Given the robust localized surface plasmon resonance (LSPR)

exhibited by gold nanoparticle probes, Au SERS nanoprobes

currently stand as the foremost choice, boasting enhanced im-

aging prowess even at the microscopic scale. Leveraging these

nanoprobes for binding with molecular markers on cellular sur-

faces facilitates the generation of potent Raman signals.84,89,91

Raman signaling molecules adhere to the probe via chemical

bonding and physical adsorption mechanisms. However, both

modes exhibit inherent instabilities. Consequently, researchers

have delved into diverse material structural designs and modes

to address these challenges. Among these explorations, Li et al.

pioneered the development of an Au-Se SERS probe, demon-

strating significant enhancements in bonding modalities and
stability compared to conventional approaches.89 Au always

combinedwith SERS nanoprobes because of its outstanding ad-

vantages.92–98 Table 6 shows the new advances in SERS probe

technology in the last 5 years. Explorations into achieving supe-

rior intracellular imaging, characterized by intensified Raman sig-

nals, have extended beyond nanomaterials to encompass en-

hancements in physical conditions and related factors. In this

vein, Zhang et al. innovatively devised a strategy involving the

integration of a 4-NBTRaman reporter within an electromagnetic

hotspot termed P-GERT. This design capitalizes on internal

nano-GaP entities positioned at nucleus-shell junctions and

external nano-GaP constituents arranged in a petal-like shell

structure. The resulting configuration enables high-speed and

high-contrast bioimaging of cells and tissues.99 Zheng et al.

have pioneered a novel small molecule detection methodology

leveraging two distinct signaling mechanisms: SERS peak inten-

sity and peak displacement. This innovative approach, termed

INSPIRE assay, integrates 3D printing for precise delineation of

the plasma substrate. The INSPIRE assay offers an optical bio-

sensing strategy characterized by high throughput, scalability,

efficiency, and immunity to cross-talk. Its implementation holds

promise for enabling future clinical tests, including enzyme-

linked immunosorbent assay (ELISA), to offer novel solutions.100
iScience 28, 111459, January 17, 2025 9



Figure 6. Comparison of three nanoprobes
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CONCLUSION

In conclusion, the application of nanoprobes for in vivo high-res-

olution imaging holds significant promise for the future of

biomedical research and clinical practice. Throughout this re-

view, we have meticulously examined and synthesized the utili-

zation of nanoprobes in three key areas: NIR spectroscopy,

SERS Raman spectroscopy, and DNA functional probes for

intracellular imaging (Figure 6). These modalities represent cut-

ting-edge technologies that are currently the focus of intense

research and development efforts.

However, the translation of these technologies into consistent

and effective clinical applications poses several challenges. One

such challenge lies in achieving uniformity in fluorescence imag-

ing directionality across different types of probes. This necessi-

tates advancements not only in probe design and synthesis but

also in the development of standardized protocols for probe

administration and imaging protocols.

Regarding the comparison of the three types of nano-fluores-

cent probes, first of all, putting aside the probe technology, the

clinical technology that is widely used is ICG fluorescent dye

This technology is used for surgical navigation to determine the

site of the tumor. DNA nanoprobes are more confined to the

cellular and subcellular level of the basic research,22,25,107–109
10 iScience 28, 111459, January 17, 2025
and Raman spectroscopy is currently used in the clinical diag-

nosis of pathological area.90,110–112 Therefore, in the future direc-

tion of nanoprobes, the application areas of these three kinds of

probes may also tend to be clinical diagnosis, pathological diag-

nosis, and drug delivery and release. ICG has been widely used

in surgical navigation, and in future NIR nanoprobes are more

hopeful to be used in more sophisticated clinical diagnosis, surgi-

cal operations, drug delivery, and so on and in all nanoprobe ma-

terials. We are prone to think that gold nanoprobes are more likely

to be used to determine the location of tumors.We tend to believe

that gold nanoprobes cause the least damage to patients. Still,

they also have many disadvantages: for example, expensive

cost, which is also an aspect we need to consider, whereas

DNA nanoprobes may tend to be used for basic research in the

clinic, as well as genetic diagnosis, etc., and SERS probes are ex-

pected tomaximize their value in the process of pathological diag-

nosis in the future. There is noway to saywhich probe ismore suit-

able for clinical use, but we can only say that these three kinds of

nanoprobes are expected to play their greatest value in various

fields in the clinic.

Furthermore, the process of evaluating the safety and efficacy

of nanoprobes for clinical use involves comprehensive assess-

ments of biocompatibility, tissue distribution, and metabolic

pathways. This often requires the construction of relevant animal



Table 6. The main application of nanoprobes and the new explorations of creative nanoprobes in the SERS area

Au@Ag NPs101 HER2 biomarker detection Breast cancer

Molybdenum-disulfide-based

nanoprobes, mos2102
4T1 cells Cell imaging in vivo

SiO2@Au@Au500 NPs103 HCT116 Cell imaging in vivo

AuNFs90 Hek 293 and HeLa cells

According to PH

Cell imaging in vivo

Ag/Au NS104 Chemotherapeutic drugs’

action on cancer cells

–

Manganese dioxide (MnO2) core and

silver/gold nanoparticles (Ag/Au NPs)105
Glutathione (GSH) –

Nucleotide–Au-NP–graphene106 Nucleotide detection –

SERS-based boric acid nanoprobe100 Intracellular ROS level and PI(3,4,5)P3 content Ginsenoside Rg3-induced cell apoptosis

that participates in PI3K/Akt pathway’s

regulatory effect

SERS probe is a probe IVI means based on Raman spectroscopy, using the strong signal of Raman for imaging in vivo. At present, there are many

Raman spectroscopy techniques applied to tumor diagnosis to achieve accurate diagnosis with non-invasive operation techniques, and the develop-

ment of nanoprobes in the field of Raman spectroscopy still has many challenges.

iScience
Review

ll
OPEN ACCESS
models to simulate in vivo conditions and rigorous testing to

ensure the probes’ compatibility with biological systems.

In addition to these technical challenges, the sheer diversity of

available nanoprobes underscores the need for systematic

experimentation to identify the most suitable probes for specific

biomedical applications. This requires interdisciplinary collabo-

ration between researchers in material science, biology, and

medicine to leverage their collective expertise and resources.

Despite these challenges, the ongoing advancements in nano-

technology and imaging modalities offer unprecedented oppor-

tunities for non-invasive and high-resolution visualization of

biological processes in real time. By addressing the current lim-

itations and overcoming the hurdles in clinical translation,

nanoprobes have the potential to revolutionize diagnostics, ther-

apeutics, and personalized medicine soon.
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