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Background. IQGAP3 has important function in cancer progression and has become a potential therapeutic target as a
transmembrane protein. But its role in tumor immunity and pan-cancer was not systematically investigated. This study
evaluated the potential role of IQGAP3 and clinical significance in pan-cancer through combined multiomics analysis.
Methods. From Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, transcriptomic datasets
were first obtained, and from Gene Expression Omnibus (GEO), expression profiling microarray data were acquired and
integrated to systematically assess the expression differences and prognostic relevance of IQGAP3 in pancreatic cancer.
Immunohistochemical data were obtained from Human Protein Atlas (HPA) to assess IQGAP3 protein expression differences,
and exome data from TCGA were used to analyze IQGAP3 expression in relation to tumor mutational burden (TMB),
microsatellite instability (MSI), and mutation. Additionally, we also analyzed the relationship between IQGAP3 expression and
immune checkpoints, mismatch repair (MMR), and IQGAP3 relationship with methylation and copy number variation based
on expression profiles. Results. Microsatellite instability (MSI), immune checkpoints, mismatch repair (MMR), and tumor
mutational burden (TMB) all closely interacted with IQGAP3 mRNA. In addition, detailed relationships between the immune
microenvironment and IQGAP3 mRNA as well as immune cell CD4+ Th2 and myeloid-derived suppressor cells (MDSCs)
were determined. Mechanistically, IQGAP3 was involved in cytoskeleton formation, T cell receptor signaling pathways, DNA
damage, cell cycle, P53 pathway, Fc gamma R-mediated phagocytosis, and apoptosis. Conclusion. IQGAP3 could serve as an
effective prognostic biomarker for pan-cancer immune-related therapy.

1. Introduction

The incidence of malignant neoplasms has increased at an
alarming rate in the last decades, which can be attributed
to the increase in life expectancy, changes in lifestyle habits,
and the interaction between genetic factors and external fac-
tors (physical, chemical, and biological carcinogens) [1].
Pan-cancer analysis has been widely used in cancer research

to reveal the common features, heterogeneity, emerging
themes, and breadth of analysis of various human malignan-
cies [2]. Pan-cancer analysis is the analysis of molecular
abnormalities in various types of cancer that identifies any
common features and heterogeneity in important biological
processes that are in a state of dysregulation due to different
cancer cell lineages. Pan-cancer analysis projects, such as the
Cancer Cell Lineage Encyclopedia (CCLE) and The Cancer
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Genome Atlas (TCGA), are created based on the evaluation
of different human cancer cell lines and tissues at the epige-
nomic, genomic, proteomic, and transcriptomic levels [3-5].

The GTPase isoleucine-glutamine sequence activator
protein (IQGAP) is an evolutionarily conserved protein
family that includes three members, IQGAP1, IQGAP2,
and IQGAP3. Its main components include calmodulin
homology domain (CHD), polyproline binding domain
(WW), calmodulin binding protein (IQ), and GTPase acti-
vator protein-related domain (RGD). They are implicated
in regulating different cellular processes, for example, intra-
cellular signal transduction [6], cell proliferation [7, 8], cell
migration [9], and cell division [10].

IQGAP3 is the newest member of this family and is
located at 1g21.3, a region with a high incidence of cancer
spread [10]. IQGAP3 has been shown to be overexpressed
in liver cancer [11], colorectal cancer [12], and breast cancer
[13]. IQGAP3 is involved in various tumor pathways,
including MAPK signaling pathway [14], Ras signaling
pathway [14], and TGF-f/Smad signaling pathway [15].
However, the potential role of IQGAP3 in various tumor
types has not been fully elucidated. Therefore, a systematic
analysis of IQGAP3 in pan-cancer was conducted based on
multiomics data; here, IQGAP3 was determined as an effec-
tive prognostic molecular immune biomarker. In addition,
the role of IQGAP3 in immunotherapy and targeted therapy
may shed light on future tumor therapy.

2. Materials and Methods

2.1. Data Acquisition. We collected IQGAP3 data on various
cancer samples from TCGA (http://cancergenome.nih.gov)
database via the UCSC Xena platform (http://xena.ucsc
.EDU) [16]. It mainly includes related clinical data, somatic
mutation, and RNA sequencing of 33 cancers. Clinical data
included disease-specific survival (DSS), progression-free
(PFI), and overall survival (OS), disease-free (DFI) data for
33 cancer patients. Supplementary Table 1 shows the
detailed abbreviations for the 33 cancer types. From GTEx
(https://commonfund.nih.gov/gtex), we downloaded gene
expression data of 31 different tissues. We manually
retrieved m6A-related literature from PUBMED (https://
pubmed.ncbi.nlm.nih.gov/) and collected m6A regulators
from past literature.

2.2. IQGAP3 mRNA Expression in Pan-Cancer. To explore
the expression levels of IQGAP3 in normal tissues and
various cancer tissues, we used data from TCGA and
GTEx. TIMER2 (timer2.0; http://timer.Cistrome.org/) [17],
a resource platform, allows the exploration of TCGA-based
cancer-related analyses, including coexpression analysis,
gene differential expression analysis, and tumor immune cor-
relation analysis. With “gene_de” module in Tumor Immune
Estimation Resource 2.0 (TIMER2.0), the differential expres-
sions of IQGAP3 mRNA in TCGA tumors were analyzed.
For statistical significance, the Wilcoxon test was used.
TCGA database was not statistically convincing due to the
lack of normal samples in some tumors. Therefore, normal
samples from TCGA and GTEx databases were integrated

Disease Markers

to match tumor samples from TCGA database, and to
respond more convincingly, we further conducted log2(x +
0.001) transformation on each expression value. We calcu-
lated differences in IQGAP3 expression between tumorous
and healthy samples in each tumor using the R software
(version 3.6.3) and analyzed the significance of differences
using unpaired Wilcoxon rank sum and signed rank tests.
These analytics were implemented via SangerBox. Statistical
significance was considered if P < 0.05.

2.3. Expression of IQGAP3 at the Protein Level and Its
Localization in Subcellular. The Human Protein Atlas
(HPA) portal (http://www.proteinatlas.org) [18] offers infor-
mation on the cellular and tissue distribution of 26,000
human proteins. Here in the database, using highly specific
antibodies and using immunoassay techniques (immunobhis-
tochemistry, immunofluorescence, and immunoblotting),
researchers examined each protein in detail in 48 human
normal tissues and 64 cell lines [19]. With HPA, we explored
the subcellular localization of IQGAP3, and, according to
the tissue and pathology section, we explored the expression
of IQGAP3 in protein and compared it with IQGAP3
mRNA expression.

2.4. Association between IQGAP3 Expression with Prognosis
and Tumor Stage. To understand the association of tumor
prognosis with IQGAP3, we analyzed the relationship of
OS, DFI, PFI, and DSS with IQGAP3 expression in each
tumor by the Kaplan-Meier survival analysis in the “sur-
vival” R package. In addition, we created forest maps using
the Cox regression analysis in “survminer” and “forestplot”
R packages. P < 0.05 was statistically significant.

We further validated the relationship between IQGAP3
and patient outcomes using the PrognoScan (http://www
.prognoscan.org) [20] database. The source of data for the
PrognoScan database is different from the aforementioned
databases. Its data sources are mainly Gene Expression
Omnibus (GEO), ArrayExpress, and individual laboratory
websites. In addition, we used R packages “limma” to ana-
lyze IQGAP3 mRNA expression difference in TNM stage
of various tumors. The R software ggpubr package was used
to perform statistical analyses, and P < 0.05 was considered
significant.

2.5. Mutation Profiles of IQGAP3 in Different Tumor Tissues.
We investigated IQGAP3 mutations in the pan-cancer
group through Cancer Genomics cBioPortal (http://www
.cbioportal.org) [21], an open-access cancer genome data-
base. In this study, the maftools package was used to observe
genomic changes in IQGAP3 in 32 TCGA cancer types. At
the same time, using a summary table of cancer types, the
frequency of change for each cancer type was plotted. Fur-
thermore, the positions of specific mutations in protein
domains and IQGAP3 were explained based on mutation
signatures.

2.6. IQGAP3 CNV Profiles in Pan-Cancer. Genomic Cancer
Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/web/gsca/)
[22] integrates multiple TCGA omics data and RNAactDrug
database. GSCA supports analyses such as methylation,
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pathway activity, copy number variation (CNV), drug
sensitivity, and immune penetration. According to the
CNV model of GSCA, heterozygous/homozygous and
amplification/deletion of pan-cancer IQGAP3 gene and the
correlation between IQGAP3 gene expression and CNV
Spearman’s difference in IQGAP3 gene and wild-type sur-
vival difference were analyzed.

2.7. Methylation Profile of IQGAP3 in Pan-Cancer. We
assessed differential methylation of IQGAP3 between nor-
mal and tumorous samples. Spearman’s correlation between
methylation and IQGAP3 mRNA expression through the
GSCA database and survival comparison (OS and DSS)
between IQGAP3 hypermethylation with hypomethylation
in different cancer types were assessed. By using the cor.test
function, the coexpression patterns of IQGAP3 expression
and M6A-related genes were analyzed, and Spearman’s
correlation analysis was performed.

2.8. IQAGP3 Expression and Immunotherapy, Immune
Checkpoints and Tumor Microenvironment. Based on the
data in TCGA database, coexpression analysis of IQGAP3
mRNA and genes encoding MHC, mismatch repair genes
(MMR) genes, immune activation, chemokine receptor
protein-related genes, and chemokines were explored and
plotted heatmap. The “limma” package was used for the
coexpression analysis using human-related tests, and the
“reshape2” and “RColorBrewer” packages were used for
visualization.

Microsatellite  instability (MSI) status and tumor
mutational burden (TMB) are biomarkers for evaluating
immunotherapy and selecting high-quality immunotherapy
groups [23]. We analyzed the relationship between TMB,
IQGAP3 mRNA expression, and MSI by Spearman’s corre-
lation and visualized these results using the “fmsb” package
based on TCGA somatic mutation data. Furthermore, to
explore the correlation of IQGAP3 mRNA with the immune
scores, matrix scores and immune microenvironment were
calculated using the “estimate” and “limma” packages. For
correlation coefficient calculations, Spearman’s test was
used.

2.9. IQGAP3 mRNA Expression Level and Immune Cell
Infiltration. To further explore the relationship between
immune infiltration and IQGAP3 in the tumor microenvi-
ronment. Based on TCGA data, to investigate the potential
relationship between different levels of immune cell infiltra-
tion and IQGAP3 gene expression in different tumor types,
we utilized XCELL algorithms, the TMER2 database, and
TIDE.

2.10. Enrichment Analysis. We screened 49 experimen-
tally validated IQGAP3-binding proteins based on the
String ((https://string-db.org/) [24] database. 100 IQGAP3
expression-related genes were obtained using the GEPIA2
(http://gepia2.cancer-pku.cn/) [25] tool combined with
TCGA data, and several genes were selected for validation
by coexpression in the TIMER?2 database. Functional analysis
was performed on two datasets based on R packages of
“limma,” “http://org.Hs.eg/.db,” “Cluster Analyzer,” and

“Enrichment Map” and displays the 30 paths with the most
significant associations.

3. Result

3.1. IQGAP3 Expression in Tumor and Normal Samples,
According to Different Databases. We analyzed IQGAP3
expression in TCGA and GTEx databases. First, the expres-
sion of IQGAP3 was compared between tumor and normal
samples in TCGA database using TMER2. As shown in
Figure 1(a), IQGAP3 was upregulated in 20 tumors, includ-
ing BRCA, UCEC, THCA, GBM, CHOL, CESC, KIRC,
HNSC, KIRP, LUSC,LIHC, READ, LUAD, COAD, PAAD,
BLCA, PCPG, ESCA, STAD, and PRAD. Due to the small
number of some normal tissues in TCGA database or the
lack of normal samples, it is not statistically convincing.
Therefore, we integrated normal samples from GTEx and
databases to match tumor samples from TCGA database to
reflect IQGAP3 expression in a more convincing manner.
As shown in Figure 1(b), the expression level of IQGAP3
in tumors other than KICH was higher than that in normal
tissues.

3.2. Expression of IQGAP3 at the Protein Level and Its
Location in Cells. We used the HPA database to obtain the
subcellular location of the IQGAP3 protein. As shown in
Figure 2(a), according to the immunofluorescence analysis
of human epidermal carcinoma cell line A-431 and human
sarcoma U-2 OS cell line, IQGAP3 protein located almost
in the nucleoplasm. In addition, based on the HPA database,
the IQGAP3 gene expression data of TCGA was compared
with the THC results provided by the HPA database to deter-
mine the expression of IQGAP3 at the protein level. The
data analysis results of these two databases are consistent.
Compared with normal tissues, IQGAP3 protein was signif-
icantly overexpressed in tumor tissues of LUAD, BRCA,
COAD, LIHC, and PRAD, as shown in Figures 2(b)-2(f).

3.3. The Relationship between the Expression Level of QGAP3
and the Survival of Cancer Patients, in Pan-Cancer. In pan-
cancer, to evaluate the prognostic value of IQGAP3 mRNA
expression levels, DSS, OS, PFI, and DFI were analyzed
based on TCGA. The results showed that high-expressed
IQGAP3 is a risk factor for various cancers, whether DFI,
OS, PFI, or DSS. OS Kaplan-Meier curves demonstrated that
high-expressed IQGAP3 were associated with poor progno-
sis in multiple tumors, MESO, ACC, UCEC, LIHC, KIRP,
LGG, PAAD, and KIRC Figures 3(a)-3(h). The univariate
Cox hazard regression analysis showed that high expression
of IQGAP3 mRNA was associated with shorter OS of LIHC,
ACC, KIRC, LGG, UCEC, PAAD, KIRP, MESO, PRAD,
PCPG, KICH, SKCM, LUAD, and UVM, as shown in
Figure 3(i). Furthermore, DSS Kaplan-Meier curves in Sup-
plementary Figures 1A-1I indicated that high-expression
levels of IQGAP3 mRNA were associated with poor
prognosis in KICH, ACC, PRAD, LIHC, KIRP, MESO,
KIRC, UCEC, and LGG. The Cox regression analysis
revealed that high expression of IQGAP3 mRNA was a
risk factor for ACC, LIHC, KIRP, PCPG, LGG, KIRC,
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Ficurek 1: Differential expression of IQGAP3. (a) Comparison of IQGAP3 expression between tumor and normal samples based on TCGA
database. (b) Differential expression analysis of IQGAP3 mRNA in different cancers by SangerBox 3.0 based on TCGA and GTEx databases.

*P<0.05, **P<0.01, ***P < 0.001.

PAAD, KICH, SKCM, UVM, PRAD, UCEC, and MESO,
as shown in Supplementary Figure 1J. As shown in
Supplementary Figure 2A-F, DFI Kaplan-Meier curves
showed that high-expression levels of IQGAP3 mRNA
were linked with poor prognosis in KIRP, PAAD, SARC,
LUAD, THCA, and PRAD. The Cox regression analysis
revealed that high expression of IQGAP3 mRNA was a risk
factor for PAAD, LUAD, THCA, KIRP, LIHC, UCEC,
SARC, and PRAD, as shown in Supplementary Figure 2P.
PFI Kaplan-Meier curves showed that high-expression
levels of IQGAP3 mRNA were associated with poor
prognosis in UVM, KIRC, ACC, LGG, KICH, THCA,
MESO, KIRP, PRAD, LIHC, and SKCM, as shown in

Supplementary Figures 3A-K. The Cox regression analysis
indicated that high expression of IQGAP3 mRNA was a
risk factor for KICH, SKCM, KIRP, LIHC, LGG, PCPG,
MESO, PRAD, PAAD, LUAD, UVM, ACC, THCA, KIRC,
UCEC, and SARC, as shown in Supplementary Figure 3L.

3.4. The Relationship between the Expression Level of QGAP3
and the TNM Stage of Tumor Patients. We also analyzed the
correlation of IQGAP3 expression in tumor stage and found
that IQGAP3 expression was significantly correlated with
tumor stage in multiple cancers, including BRCA, ACC,
ESCA, THCA, KIRP, and KICH, as shown in Figures 4(a)-
4(g). Notably, there were significant differences in the
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LIHC tissue

LUAD tissue

PRAD tissue

Ficure 2: Immunofluorescence of IQGAP3 and comparison of IQGAP3 gene expression in normal and tumor tissues (left) and
immunohistochemical images in normal and tumor tissues (right). (a) According to immunofluorescence analysis of skin cancer cell line
A-431 and human sarcoma U-2 OS from the HPA database, IQGAP3 protein was almost exclusively located in the nucleoplasm of the
cell lines. IQAGP3 mRNA and protein, expressed in (b) BRCA: breast invasive carcinoma, (c) COAD: colon adenocarcinoma, (d) LIHC,
(e) LUAD: lung adenocarcinoma, and (f) PRAD: prostate cancer higher than normal tissue. *P < 0.05, **P < 0.01, ***P < 0.001.

expression of IQGAP3, at different stages, especially between
the first and fourth stages. Interestingly, the expression level
of IQGAP3 increased as the patient’s tumor stage increased.

3.5. Gene Mutation Analysis Based on the cBioPortal
Database, regarding the IQGAP3 Gene. Using cBioPortal
based on TCGA database (10967 samples from 32 studies),
mutations in IQGAP3 were analyzed. As displayed in
Figure 5(a), in IQGAP3, the total frequency of change is
5%. In addition, the detailed mutation sites are shown in
Figure 5(b). In IQGAP3, 290 mutation sites (including 237

missense mutations, 30 truncation mutations, 17 splice
mutations, and 6 fusion mutations) were found, located
between amino acids 0-163, of which X524 _splice/R524L
had the highest mutation frequency. In addition,
Figure 5(c) shows changes in various cancer types. Among
the 32 cancer types, UCEC had the highest frequency of total
changes and mutations (>8%), and LIHC and CHOL had
the highest frequencies of amplification changes (>10%).

3.6. IQGAP3 CNVs in 33 Cancer Types Based on the GSCA
Database. As shown in Figure 6(a), overall, all tumors except
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FIGURE 3: Association between IQGAP3 expression and overall survival (OS). (a-h) The Kaplan-Meier analysis of the association between
IQGAP3 expression and OS. (i) Forest plot of OS association in 33 tumors using the univariate Cox hazard analysis.

KICH were predominantly amplified and predominantly
heterozygous. Among CESC, BRCA, LUAD, UVM, OV,
STAD, and LIHC, the heterozygous amplification rate
(>50%), the highest heterozygous amplification rate
(>62%) in LIHC, and the highest pure sum amplification
rate (>13%) were found in CHOL, but KICH had the highest
deletion heterozygous rate (>77%). In Supplementary
Table 2, the detailed ratios of CNV types in each cancer
were shown. In addition, the relationship between IQGAP3
mRNA expression and IQGAP3 CNV was statistically
significant in multiple tumors, including STAD, LCA,
BRCA, SARC, UCS, PAAD, LUSC, LIHC, KIRC, MESO,
ESCA, COAD, GBM, KIRP, ACC, LUAD, READ, HNSC,
UCEC, SKCM, THCA, LAML, CESC, TGCT, THYM, and
PRAD, for a total of 26 tumors, as shown in Figure 6, as
detailed in Supplementary Table 3. Prognostic importance
of IQGAP3 CNVs in pan-cancer was analyzed using the
GSCA database. The results showed that changes in
IQGAP3 CNV were statistically significant with OS in 7
tumors and PFS in 8 tumors. As shown in Supplementary
Figures 5A-G, wild-type IQGAP3 and deletion types had
higher overall survival than amplified types in KIRC, ACC,
UCEC, MESO, KIRP, and THYM tumors, with the
exception of UCS. However, there was no statistical
difference between wild type and deletion type. As shown
in Supplementary Figures 5H-O, in KIRP, ACC, THYM,

KIRC, UCEC, and THCA, wild-type IQGAP3 had better
progression-free survival than amplified type, whereas
LUSC was the opposite. Furthermore, the null-type
IQGAP3 outperformed the wild type in ACC and THCA.

3.7. The Methylation Profile of IQGAP3 and the Relationship
between IQGAP3 Expression and M6A Gene Coexpression.
Using GSCA methylation sections, we analyzed the differ-
ences in IQGAP3 methylation between normal and tumor
tissues, and the results are shown in Figure 7(a); in 7 tumors
of LUAD, BRCA, LIHC, UCSCC, COAD, KIRC, and PRAD,
there were statistical differences, and methylation levels in
tumors were lower than in normal tissues. Analysis of
IQGAP3 expression and tumor methylation levels revealed
that IQGAP3 mRNA expression was negatively correlated
with methylation in 28 tumors, as shown in Figure 7(b),
and detailed data are in Supplementary Table 4. Analysis
of IQGAP3 methylation levels with OS and DSS survival
rates showed that both KIRC and SKCM tumors were
associated with OS and DSS in their methylation levels,
and their hypermethylation levels had higher survival
times, and the KM survival curves are shown in
Figure 7(c). Additionally, we explored the relationship
between IQGAP3 and methylation at the mRNA level and
the coexpression of IQGAP3 and M6A-related genes. We
found that almost all M6A-related genes were positively



12

IQGAP3 expression

~

[\ ]

IQGAP3 expression

Cancer: ACC
0.041
5.6e-05
1
0.013
. 0.0035 .
0.02
T 1
b 0.74
W .
[ ]
°! [ ]
Ld
. . .
T (d
. o® %
° l
‘ o o0% N
*l e We °.
T T T T
Stage I Stage II Stage III Stage IV
Stage
Stage I [+] Stage 11T [+
Stage IT [+] Stage [V [+
(@
Cancer: BRCA
0.93
1
0.62 .
7.5
1
5.0 -
s
L N Y
o 2°
2.5 1 .
L[] 4 -
sl
0.0
Stage I Stage II Stage II1 Stage IV
Stage
Stage I [+] Stage III [+
Stage I [+] Stage IV o]
(®)

Ficure 4: Continued.

Disease Markers



Disease Markers

13

Cancer: ESCA

0.18
0.038
T 1
0.39
757 . 0.067 .
[} 1
S
»
%* 5.0 . .
g 0. _‘:: ° °
é o ° '; °
o o % S, CRERE
— .‘ o®
2.5+ i ®
N L]
L]
0.0 - T T T T
Stage I Stage II Stage III Stage IV
Stage
Stage I [+] Stage ITT [+
Stage IT [+] Stage IV [+
(©
Cancer: KICH
0.0047
4 . 0.0018 .
0.49
0.00076
T 1
31 . 0.53 .
g 091
g © . °
&
b
2]
[=M
<
o
=4
L}
14 .
L] L] N >
L]
L] L] ° L] . L] . L]
Stage I Stage 11 Stage 111 Stage IV
Stage
Stage I [} Stage III =]
Stage IT [+] Stage IV [+
(d)

Ficure 4: Continued.



14

Cancer: KIRC

0.16
0.0027
T 1
6] 0.037
1
5e-05
T 1
=
S
£ 44
g
[sg}
(=}
<
Y
=4
2 -
0 -
T T T T
Stage I Stage II Stage III Stage IV
Stage
Stage I [+] Stage 11T [+
Stage II F+] Stage IV [+
(e)
Cancer: KIRP
64 0.73
0.051
T 1
0.06
. 0.00074 .
5e-05
T 1
.S. 4 0.92
2 1
= :
8 R
[sg}
g .
5 5 ° (X
° .. [ 4
L]
.o
o ~
. L
=c ¢ °o'®
0 -
T T T T
Stage I Stage II Stage III Stage IV
Stage
Stage I [+] Stage 11T [+
Stage II [+] Stage IV [+
®

FiGure 4: Continued.

Disease Markers



Disease Markers

15

Cancer: THCA

0.015
4 2.8e-06
r 1
0.0058
. 0.00033 ,
3 0.42 .
k) 0.0041
¢
s
&
o 2
Ay
<
V)
g L]
14 °
0 -
T T T T
Stage I Stage IT Stage I1I Stage IV
Stage
Stage I Stage IIT
Stage II F+] Stage IV

(g)

FIGURE 4: Relationship between IQGAP3 expression and tumor stage (a) adrenocortical carcinoma (ACC), (b) breast invasive carcinoma
(BRCA), (c) esophageal carcinoma (ESCA), (d) kidney chromophobe (KICH), (e) kidney renal clear cell carcinoma (KIRC), (f) kidney
renal papillary cell carcinoma (KIRP), and (g) thyroid carcinoma (THCA).

correlated with IQGAP3, among which transmethylase-
related genes (DNMT3B, DNMT1, and DNMT3A), NOP2,
and NSUN2 were highly positively correlated in almost all
tumors, as shown in Figure 7(d).

3.8. The Relationship between IQGAP3 Expression and Pan-
Cancer Immunotherapy and Immune Microenvironment.
First, we explored IQGAP3 expression and coexpression of
immune activation, immune suppression, genes encoding
MHC, chemokine receptor proteins, and chemokine. As
shown in Figures 8(a)-8(e), IQGAP3 expression was statisti-
cally significantly correlated with various immune-related
genes. Because TMB and MSI are intrinsically associated
with immunosuppressive susceptibility, we investigated the
correlation of IQGAP3 expression with TMB and MSI in
33 tumors and showed a correlation with TMB in 22 tumors,
including BLCA, ACC, KIRC, THCA, SARC, HNSC, LUAD,
ESCA, LGG, COAD, PRAD, UCEC, MESO, CHOL, PAAD,
BRCA, READ, LUSC, THYM SKCM, KICH, and STAD,
except for THYM; other tumors are associated with IQGAP3
which showed a significant positive correlation, as shown in
Figure 8(f). In addition, the association between IQGAP3
and MSI was also found in 12 tumors, including LUSC,
BLCA, PRAD, CESC, GBM, STAD, LUAD, ACC, ESCA,
SARC, UCEC, and DLBC, as shown in Figure 8(g). MSI is
usually caused by MMR, so we further explored the coex-
pression relationship between IQGAP3 mRNA and MMR
key genes (MSH2, PMS2, EPCAM, MLHI1, and MSHS).
We found that IQGAP3 mRNA was significantly positively
correlated with MMR signal in almost all tumors, as shown

in Figure 8(h), because MSI and TMB are intrinsically linked
with immune checkpoint inhibitor susceptibility. The
expression of IQGAP3 is related to TMB and MSI of many
tumors, further indicating that IQGAP3 may affect tumor
growth and development through immunity. Immune
microenvironment has important function in tumor
development. Therefore, it is critical to investigate further
the pan-cancer relationship of IQGAP3 expression with
between TME. The ESTIMATE algorithm was used to
calculate stromal cell and immune scores for 33 cancers. In
addition to THCA and KIRC, the immune scores and
stromal scores of other tumors were negatively correlated
with IQGAP3 mRNA. The four cancers with high correla-
tion coeflicients between immune scores and stromal scores
are shown in Figures 9(a) and 9(b). Additional statistically
significant tumor stromal and immune scores are shown in
Supplementary Figure 6 and Supplementary Figure 7.

3.9. Exploring IQGAP3 mRNA Expression Level and Immune
Cell Infiltration Based on the TIMER2 Database. To further
understand the role of IQGPA3 in tumor immunity, we
explored the relationship between IQGAP3 mRNA expres-
sion levels with immune cell infiltration through the
TIMER2 database. As shown in Figure 10(a), the expression
level of IQGAP3 was positively correlated with CD4 Th2
cells and myeloid-derived suppressor cells (MDSCs) in
almost all tumors. Table 1 shows specific correlation data
for IQGAP3 and these two cells. The four tumors with
higher correlation coefficients were CD4 Th2 cells and
MDSC cells, as shown in Figures 10(b) and 10(c).
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F1GURE 6: GSCA-based CNV profiling of IQGAP3 in pan-cancer. (a) Deletion/amplification of IQGAP3 heterozygous/homozygous CNVs
in various cancer types. (b) Correlation of CNV and IQGAP3 mRNA expression in various cancers. (c) Survival differences between CNV

and wild-type groups in pan-cancer type groups.

3.10. Enrichment Analysis of IQGAP3-Related Genes. To fur-
ther investigate the molecular mechanism of the IQGAP3
gene in tumorigenesis, we screened 49 experimentally vali-
dated IQGAP3-binding proteins based on the String data-
base, as shown in Figure 11(a). To obtain 100 genes related
to IQGAP3 expression from TCGA, the GEPIA2 tool was
used. Coexpression analysis revealed that KIF11, KIF18B,
KIF23, and MKI67 were positively associated with the
expression of IQGAP3 in all cancer types presented in the
heatmap. We combined two datasets screened from the
String database and GEPIA2 database for GO and KEGG
enrichment analysis. The GO enrichment analysis of
Figure 11(c) shows that IQGAP3-related genomes and
major biological processes involved in mitosis and cytoskel-
eton formation, mainly through small GTPase binding, pro-
tein serine/threonine kinase activity, calmodulin binding,
and microtubule motility activity, exert molecular function.
The KEGG enrichment analysis is shown in Figure 11(d)
that IQGAP3 is associated with cell cycle-related pathways,
cellular senescence-related pathways, and p53 signaling
pathways and affects tumor immunity through immune-
related pathways FcyR-mediated phagocytosis and T cell
receptor signaling pathways. Taken together, IQGAP3 likely
affects tumor initiation and progression by affecting cell
cycle, cellular senescence, and immune-related pathways.

4. Discussion

This study is the first multiomics analysis to explore the rela-
tion between IQGAP3 and pan-cancer. First, we analyzed
the expression of IQGAP3 transcript levels in tumors using
data from TCGA through the TMER2 database. Since some

tumors of TCGA lack normal samples, we combined the
normal samples in GTEx to further verify their expression
levels. Second, we validated these transcriptomic results
using proteomics based on the HPA database. Third, the sig-
nificance of IQGAP3 in tumor prognosis was investigated
through TCGA database and validated it using the GEO
database and analyzed the relationship between IQGAP3
with clinically characteristic tumor TNM staging. Fourth,
for the significance of IQGAP3 in CNV, mutation, and other
omics, methylation was also determined based on multiple
databases. Fifth, the link of IQGAP3 with immune cells,
immune microenvironment, and immunotherapy at the
multiomics level was analyzed through multiple databases.
Finally, we explored the potential pathways of IQGAP3
and functions in tumors through the enrichment analysis.
Ultimately, we conclude that IQGAP3 is an effective prog-
nostic biomarker for pan-cancer immune-related therapy.
Notably, these valid bioinformatic analyses and repeated val-
idation based on multiomics and multiple databases will
ensure the reliability of the results.

Our study showed that IQGAP3 was highly expressed in
29 cancers. IHC analysis confirmed this result at the protein
level. Previously, IQGAP3 has been found to be highly
expressed in breast cancer [10], colorectal cancer [12], gas-
tric cancer [26], ovarian cancer [27], liver cancer [28], and
pancreatic cancer [29]. These studies are consistent with
our results and confirm the reliability of our results.

For further assess tumor prognostic value of IQGAP3,
the Kaplan-Meier survival analysis and Cox regression anal-
ysis was conducted using TCGA data. Our results showed
that high IQGAP3 expression was associated with tumor
OS, DSS, DFI, or PFL. High IQGAP3 expression was
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FIGURE 7: Methylation of IQGAP3 in pan-cancer. (a) Methylation differences of IQGAP3 between tumor and normal tissues. (b) Correlation
of methylation with IQGAP3 mRNA expression. (c) Survival difference between IQGAP3 hypermethylation and hypomethylation in KIRC
and SKCM. (d) Relationship between M6A-related genes and IQGAP3 mRNA.

associated with a shorter survival time, which could serve as
a poor prognostic factor for tumors. Xu et al. showed that
elevated IQGAP3 in urine is a poor prognostic factor for
bladder cancer [30]. Oue et al. showed that high expression
of IQGAP3 in gastric cancer is a poor prognostic factor
[31]. In breast cancer, Hua et al. have confirmed that high
expression of IQGAP3 is a poor prognostic factor [32].
These studies all further illustrate the accuracy of our find-
ings. In addition, we found that in certain cancers, IQGAP3
expression was associated with tumor stage, especially
between stages 1 and 4. The main tumors included were
KICH, KIRP, ESCA, ACC, BRCA, THCA, and KIRC.
Clearly, these results indicated that to determine the prog-
nosis of various cancers, IQGAP3 could be used as a
biomarker.

As a widely studied epigenetic modification, DNA
methylation together with histone modifications functions
critically in gene expression regulation and chromatin con-
formation. We further explored the levels of IQGAP3 meth-
ylation in normal and tumor tissues and found that IQGAP3
methylation levels were decreased and statistically significant
in 7 tumors. IQGAP3 mRNA expression levels were nega-
tively correlated with IQGAP3 methylation in almost all
tumors. Methylation and survival analysis showed better
OS in SKCM and KIRC with hypermethylation levels.
Therefore, IQGAP3 may affect the survival of SKCM and
KIRC by inhibiting the IQGAP3 DNA methylation level.
Internal RNA modifications are as well critical to tumors
in addition to DNA methylation. Next, we studied the
methylation of IQGAP3 mRNA and found that IQGAP3
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Ficure 8: The relationship between IQGAP3 and immune-related genes including (encoding MHC, immune activation, immune
suppression, chemokine, and chemokine receptor proteins), TMB, MSI, and MMR based on TCGA database. Heatmap showing
that IQGAP3 is associated with (a) MHC-related genes, (b) immune activation-related genes, (c) immunosuppression-related genes,
(d) chemokines, (e) chemokine receptor proteins, and (h) MMR correlation between genes. Correlation of IQGAP3 with (f) TMB
and (g) MSL
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FIGURE 9: Relationship of IQGAP3 to the immune microenvironment. The correlation of IQGAP3 with (a) immune score and (b) stromal

score in different cancers was statistically significant.

and M6A-related genes are positively correlated in many
tumors. These studies indicate that IQGAP3 may affect
the occurrence and development of cancer through
methylation.

IQGAP3 was previously reported to be associated with
antigen-presenting immune cells [33]. We therefore per-
formed coexpression analysis for assessing the relationship
of IQGAP3 expression with immune-related genes and
immune activation; the analyzed genes encode MHC, che-
mokine, chemokine receptor proteins, and immune suppres-
sion. It has been found that almost all immune-related genes
were coexpressed with IQGAP3. Since MMR deficiency,
high MSI and high TMB are crucial for the screening of
dominant populations in tumor immunotherapy [34].
IQGAP3 has been shown to be a master regulator of tissue
homeostasis and repair [35] The study found that 22 tumors
were associated with the presence of TMB, and except for
THYM, other tumors were positively associated with
IQGAP3. In addition, a correlation between IQGAP3 and
MSI was also found in 12 tumors. The coexpression relation-
ship between IQGAP3 mRNA and MMR key genes
EPCAM, PMS2, MSH6, MSH2, and MLH1 showed that
IQGAP3 mRNA was significantly positively correlated with
MMR signal in almost all tumors. This result indicates that
IQGAP3 can be used as a new indicator to screen immuno-
therapy advantaged groups. Since tumor purity is closely
related to immunotherapy in the tumor microenvironment
[36], we explored the immune score and stromal score in
the tumor microenvironment. It was found that high expres-
sion of IQGAP3 was associated with lower immune and

stromal scores. Therefore, we speculate that IQGAP3 may
further affect tumor progression by affecting the tumor
immune microenvironment. It has been reported that
IQGAP3 can be used as a potential antigen for PRAD
mRNA vaccine development and is associated with immu-
nity [33]. In addition, activated T cells upregulated IQGAP3
through PI3Kd [37]. To further understand the role of
IQGAP3 in tumor immunity, we evaluated the correlation
between IQGAP3 expression and various immune cells. It
was found that IQGAP3 is associated with a variety of tumor
immune cells, especially CD4 Th2 cells and MDSCs cells in
almost all tumors; however, the relationship with the
immune infiltration of CD4 Th1 cells is not obvious. In can-
cer, the balance of helper T cells tends to shift from Th1 to
Th2 dominance, and a shift in the Th1/Th2 balance has been
reported in a variety of tumors, including lung cancer [38],
breast cancer [39], cervical cancer [40], and colorectal cancer
[41]. MDSCs are a heterogeneous group of bone marrow-
derived cells that are precursors of dendritic cells (DCs),
granulocytes, or macrophages. They have the ability to sig-
nificantly suppress immune cell responses and are heavily
recruited in tumors. MDSCs are a heterogeneous group of
bone marrow-derived cells that are precursors of dendritic
cells (DCs), granulocytes, or macrophages. They could
greatly inhibit immune cell responses and are heavily
recruited in tumors [42]. It has been reported that MDSCs
promote angiogenesis, tumor invasion, and metastasis and
thus affect tumor development [43]. Therefore, IQGAP3 is
likely to lead to immunosuppression and immune escape
by stimulating Th2 cells and MDSCs.
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FIGURE 10: Relationship between immune cells (CD4+ Th2 and MDSCs) and IQGAP3 mRNA expression in pan-cancer based on the
TIMER2 database. (a) Heatmap of IQGAP3 mRNA versus CD4+ Th2 and MDSCs infiltration, in pan-cancer. (b) Several tumors with
high correlation.

In addition, enrichment analysis indicated that IQGAP3  way and Fc gamma R-mediated phagocytosis. The pathway
would affect the etiology or pathogenesis of cancer through  affects immune infiltration of the tumor microenvironment
cell cycle-related pathways, cellular senescence-related path-  and thus affects tumor development. As previously reported,
ways, and P53 apoptosis-related pathways, as well as  Wu et al. identified IQGAP3 as a gene that affects cytoskel-
immune responses through T cell receptor signaling path-  etal changes in lung cancer [44]. Leone et al. believed that
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TaBLE 1: The relationship between IQGAP3 mRNA and immune cell infiltration.

MDSC T cell CD4+ Th2

rho adj.P rho adj.P
ACC (n=179) 0.688 0.688
BLCA (n = 408) 0.465 0.483
BRCA (n=1100) 0.495 0.638
BRCA-basal (n=191) 0.167 0.079 0.181 0.053
BRCA-Her2 (n =82) 0.248 0.098 0.348 *
BRCA-LumA (n = 568) 0.393 0.467
BRCA-LumB (1 =219) 0.406 0.409
CESC (1 = 306) 0.139 0.063 0.043 0.673
CHOL (n = 36) 0.572 - 0.386 0.065
COAD (n = 458) 0.226 0.205 -
DLBC (n = 48) 0.197 0.389 0.481 -
ESCA (n=185) 0.071 0.541 0.220 *
GBM (n=153) 0.355 0.124 0.291
HNSC (n = 522) 0.217 0.410
HNSC-HPV- (n =422) 0.324 0.417
HNSC-HPV+ (n=98) 0.035 0.883 0.306 *
KICH (n = 66) 0.491 0.616
KIRC (n = 533) 0.143 - 0.320
KIRP (1 =290) 0.492 0.306
LGG (n=516) 0.485 0.553
LIHC (n=371) 0.498 0.435
LUAD (n=515) 0.596 0.461
LUSC (n=501) 0.307 0.066 0.295
MESO (n=87) 0.609 0.673
OV (n=303) 0.260 0.356
PAAD (n=179) 0.606 0.279 -
PCPG (n=181) 0.424 0.333
PRAD (n = 498) 0.349 0.400
READ (n = 166) 0.274 ** 0.459
SARC (n = 260) 0.445 0.580
SKCM (n =471) 0.420 0.320
SKCM-metastasis (1 = 368) 0.438 o 0.274 e
SKCM-primary (n = 103) 0.409 0.516
STAD (n = 415) 0.409 0.292
TGCT (n = 150) 0.075 0.569 0.487
THCA (n=509) 0.018 0.841 0.308
THYM (n = 120) 0.325 - 0.567
UCEC (n = 545) 0.541 0.266 *
UCS (n=57) 0.236 0.196 0.235 0.197
UVM (n = 80) 0.537 0.454

IQGAP3 is required for normal cell cycle progression and ~ BET inhibitors through its negative regulation of IQGAP3
genome stability [45]. Chen et al. found that RAS mediates [46]. The above studies further supported that IQGAP3
the inhibition of lymphoma migration and prognosis by =~ was highly involved in cancer development and had the
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FiGURE 11: IQGAP3-related gene enrichment analysis. (a) Available experimentally determined IQGAP3-binding proteins were obtained
n TCGA project were also obtained based on GEPIA2. The expression
correlation between IQGAP3 and selected target genes (including MKI67, KIF23, KIF8B, and KIF11) was verified by TIMER2, and a
heatmap was drawn. (¢) The GO pathway analysis based on IQGAP3 binding and interacting genes. (d) The KEGG pathway analysis

based on the String tool. (b) The top 100 IQGAP3-related genes i

based on IQGAP3 binding and interacting genes.

potential to be a prognostic biomarker for various cancer
types. However, the role of IQGAP3 in more tumors still
needs further experiments to verify.

5. Conclusions

In conclusion, the current pan-cancer analysis of IQGAP3
revealed that IQGAP3 was differentially expressed in tumor
and normal tissues as well as the correlation of IQGAP3
expression with pathological stage, gene mutation, clinical
prognosis, and DNA methylation. Furthermore, IQGAP3
expression is associated with MSI, TMB, and immune cell
infiltration in different cancer types. Its effects on tumor
immunity also vary by tumor type. The current discovery
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elucidated the function of IQGAP3 in cancer development
and tumorigenesis and contributed to a more personalized

immunotherapy in the future.
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