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Both acute and chronic stress profoundly affect hippocampally-dependent learning and

memory: moderate stress generally enhances, while chronic or extreme stress can impair,

neural and cognitive processes. Within the brain, stress elevates both norepinephrine and

glucocorticoids, and both affect several genomic and signaling cascades responsible

for modulating memory strength. Memories formed at times of stress can be extremely

strong, yet stress can also impair memory to the point of amnesia. Often overlooked in

consideration of the impact of stress on cognitive processes, and specifically memory,

is the important contribution of glia as a target for stress-induced changes. Astrocytes,

microglia, and oligodendrocytes all have unique contributions to learning and memory.

Furthermore, these three types of glia express receptors for both norepinephrine

and glucocorticoids and are hence immediate targets of stress hormone actions. It

is becoming increasingly clear that inflammatory cytokines and immunomodulatory

molecules released by glia during stress may promote many of the behavioral effects of

acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal

mechanisms working in concert with glia to affect stress-induced learning and memory

will be emphasized.
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INTRODUCTION

Over the past several years, consensus on the role of glia in cognitive function has shifted from
viewing them as primarily supportive of neuronal actions to recognizing them as critical players
in neural function and behaviors such as learning and memory (Fields et al., 2014) (Figure 1).
Astrocytes exert a variety of influences on neural processes critical for memory, including
regulation of extracellular K+ concentration, provision of metabolic support (i.e., glucose and/or
lactate) to neurons, and recycling of glutamate and GABA (Moraga-Amaro et al., 2014). Ramified
(previously known as “resting”) microglia can control synaptic plasticity through release of several
different cytokines that can modulate memory (Morris et al., 2013). An expanding field of research
demonstrates that other types of glia, such as oligodendrocytes, can also influence processes
underlying learning andmemory (Fields et al., 2014). Conversely, stress can have a profound impact
on glial structure and function (particularly astrocytes and microglia), which may affect the glial
contribution to learning and memory. The impact of stress and stress-associated molecules, such as
glucocorticoids (GCs) and norepinephrine (NE), on glial function has been the target of substantial
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FIGURE 1 | Depicts the relationship between stress hormone effects on astrocytes (pink) and oligodendrocytes (green) and how they can support and

enhance neuronal (orange) function to produce cognitive enhancing effects.

investigation (Jauregui-Huerta et al., 2010). Many of the effects
that glia exert on memory following stress may be mediated
through neuroinflammatory processes (Frank et al., 2012), and
the interaction between glia and stress hormones is likely to
be bidirectional: many neuroimmune molecules released by
glia, such as interleukin-1 (IL-1) and IL-6, can activate the
hypothalamic-pituitary-adrenal axis (HPA) (Dinan and Cryan,
2012).

This review focuses on the specifics of interactions between
stress hormones and glia, and the impact that these interactions
have on learning and memory primarily via actions in the
hippocampus.

STRESS AXIS OVERVIEW

The HPA axis is the canonical regulatory system for stress
hormones. Immediately following exposure to a stressor,
epinephrine is secreted from the adrenal medulla and triggers
a central stress response via stimulation of NE release from the
locus coeruleus (LC) to multiple areas of the brain, including the
hippocampus (Womble et al., 1980; Wong et al., 2012). NE in
the paraventricular nucleus (PVN) then prompts the release of
corticotropin releasing hormone (CRH). CRH and vasopressin

promote secretion of adrenocorticotropic hormone (ACTH)
from the anterior pituitary via pro-opiomelanocortin (Petrov
et al., 1993). ACTH initiates the synthesis of GCs for release
by the adrenal cortex. Whereas NE acts rapidly in the brain
following release from the LC, GCs do not typically reach the
brain for up to 10min (Barbaccia et al., 2001), at which point they
exert both signal transduction- and genomic-based effects in the
brain (Salehi et al., 2010); these include feedback signaling in the
hippocampus and other brain regions to negatively regulate the
HPA axis and hence limit the neural impact of stress (Liberzon
et al., 1999).

IMPORTANCE OF STRESS TO LEARNING
AND MEMORY

Acute stress can facilitate formation of highly salient and long-
lasting memories, which in extreme cases may form the basis
of post-traumatic stress disorder (Oitzl and de Kloet, 1992;
Sandi and Rose, 1994a,b, 1997; Roozendaal et al., 1996; Sandi
et al., 1997; Oitzl et al., 2001; Lupien et al., 2002a,b; Cahill and
Alkire, 2003; Cahill et al., 2003). Increases in NE and GCs, either
independently or to a greater extent together, act to increase
integration of input from several regions [e.g., basal lateral
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amygdala (BLA), LC, cortex, PVN] whose outputs directly or
indirectly converge on the hippocampus (de Kloet et al., 2005).
Released early in the stress response, NE actions in the BLA
are particularly important for enhanced memory consolidation
following exposure to acute stress (Ferry and McGaugh, 1999;
Hatfield and McGaugh, 1999; LaLumiere et al., 2003; Lalumiere
and McGaugh, 2005). BLA lesions attenuate the procognitive
effects of NE (Liang and McGaugh, 1983; Liang et al.,
1990; Roozendaal and McGaugh, 1996), and administration of
adrenergic antagonists, particularly β-adrenergic receptor (AR)
antagonists to the amygdala (i) produces similar attenuation
of stress enhanced memory and (ii) prevents GC-mediated
increases in hippocampal-dependent learning (Liang et al., 1986;
Quirarte et al., 1997; Roozendaal et al., 1999). Compared to the
actions of NE in the BLA, direct effects of NE in the hippocampus
are not as clear, although infusions of NE to the hippocampus
can improve contextual fear learning (Yang and Liang, 2014).
Again these effects appear to be dependent on β-AR activation,
as propranolol administration prior to or following training
diminished contextual fear performance (Stuchlik et al., 2009;
Kabitzke et al., 2011).

The effects of elevated GCs on learning and memory are
more complicated and time/dose sensitive than those of NE. Both
mineralocorticoid (MRs) and glucocorticoid receptors (GRs) are
present throughout the brain, and the hippocampus has the
highest level of receptor co-localization (Sarrieau et al., 1984;
Reul and de Kloet, 1985, 1986; Van Eekelen et al., 1988; Herman
et al., 1989; Decavel and Van den Pol, 1990; Funder, 1994;
Cullinan, 2000; Reul et al., 2000a,b; Barbaccia et al., 2001);
consistent with this, GCs are potent modulators of hippocampal
memory processes. Stress-mediated rises in GC levels following
learning can improve memory formation, but proximate to recall
GCs may impair memory retrieval (Oitzl and de Kloet, 1992;
Kirschbaum et al., 1996; Sandi and Rose, 1997; Oitzl et al.,
2001; Roozendaal, 2002; Joëls, 2006). GCs can also mask the
mnemonic effects of NE when administered prior to NE (Borrell
et al., 1984; Joels and de Kloet, 1989; Roozendaal, 2003; Richter-
Levin, 2004). The effects of GCs on memory processing vary not
only with the temporal relationship of increases in GCs to the
event being remembered, but also according to the level of GC
increase. The impact of GCs on the hippocampus (particularly
CA1) follows an inverted-U-shaped dose-response curve (Joëls,
2006; Polman et al., 2013). Removal of GCs by adrenalectomy
results in impaired consolidation, an effect that can be rescued
by administering moderate doses of GCs (Joëls, 2006; Spanswick
et al., 2011), so that low levels of GCs appear to mediate
not only procognitive effects of moderate stress but also the
formation of memories under baseline, non-stressed conditions.
Moderate, physiological increases in GCs can improve cognitive
processes, but very high elevations in GCs acutely impair
hippocampal function (Salehi et al., 2010). Similarly, very high
and/or prolonged GC exposure markedly impairs subsequent
hippocampal function with results including cognitive deficits,
hippocampal atrophy, metabolic dysfunction, and central insulin
resistance (Sapolsky et al., 1985; Sapolsky, 1996; Willi et al., 2002;
Joëls et al., 2004; Stranahan et al., 2008; Karatsoreos et al., 2010;
Yun et al., 2010; Ye et al., 2011; Reagan, 2012).

Astrocytes are the most widely studied glial cell-type with
regard to both memory processes and the effects of stress. It
has been known for decades that chronic stress is associated
with a decrease in hippocampal and prefrontal cortex volume
(Fuchs and Flügge, 2003). More recent studies have shown
that much of the brain volume reduction caused by chronic
stress is accounted for by a large decrease in astrocytes, rather
than neurons (Rajkowska and Miguel-Hidalgo, 2007). Similar
outcomes of stress, and of elevated GCs in particular, have been
observed in animal models: short-term stress increasing astrocyte
volume (as measured by GFAP immunoreactivity), while chronic
stress decreases astrocyte volume (Lambert et al., 2000; Jauregui-
Huerta et al., 2010).

GLUCOCORTICOID-SPECIFIC
ASTROCYTIC ACTIONS: STRESS AND
MEMORY

Astrocytes can influence memory in a variety of ways including
(i) control of glutamate reuptake, synthesis and metabolism, (ii)
regulation of calcium dynamics, (iii) large-scale coordination
of neural activity via release of gliotransmitters, (iv) regulation
of blood flow and hence glucose supply, and (v) provision of
lactate as a metabolic substrate for neurons (Sahlender et al.,
2014). Both GRs and MRs are expressed by astrocytes, and
GCs have potent effects on astrocytic function (Jauregui-Huerta
et al., 2010). Hence, it follows that GC-mediated modulation of
astrocyte activity would influence cognitive processes. Here, we
will focus on the known impact of GCs on memory processes
mediated by astrocytes.

Astrocytes play a key role in regulating glutamate metabolism
and activity. Following neural release of glutamate into synapses,
astrocytes can remove glutamate through glial-specific glutamate
transporters and convert glutamate into glutamine. Glutamine
can then be used as an energy substrate in astrocytes or
exported to neurons, where it can be re-converted into glutamate
(Schousboe et al., 1993). Many of the long-term effects of
chronically elevated GCs have been linked to excitotoxicity;
GC-mediated dysfunction in astrocytes may prevent optimal
glutamate clearance and therefore promote excitotoxicity (Popoli
et al., 2012). Moreover, GC-induced dysfunction of astrocytes
may also affect calcium metabolism and regulation, which will
also impair glutamate regulation and thus increase the risk of
excitotoxicity. Indeed, an important candidate mechanism for
transduction of mnemonic regulation by astrocytes is calcium
signaling. Regulation of calcium release and sequestration is also
affected by GCs and stress. In both neurons and astrocytes,
GCs control calcium homeostasis and signaling (Simard et al.,
1999; Chameau et al., 2007; Suwanjang et al., 2013). Activated
GRs can increase mitochondrial buffering capacity, leading to
a reduction in cytosolic calcium (Psarra and Sekeris, 2009),
and GCs can increase astrocytic calcium waves (Simard et al.,
1999). These effects feed back into regulation of glutamate,
discussed above: astrocytic calcium signaling controls release
of glutamate (Volterra and Meldolesi, 2005). Calcium influx
in astrocytes promotes release of gliotransmitters, which can
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include amino and nucleic acids, ATP, growth factors, glutamate,
and/or peptides (Parpura et al., 2010, 2011). Gliotransmitters
have been associated with regulation of the multipartite synapse,
where they regulate neural excitability and can hence modulate
memory processing (Hassanpoor et al., 2014). Inhibition of
gliotransmitter release by blocking Cx-43 hemichannels (which
release gliotransmitters) in astrocytes prevents the formation of
long-term fear memories (Stehberg et al., 2012).

Stress can affect a variety of growth factors involved in
learning and memory. For example, nerve growth factor
(NGF) and fibroblast growth factor (FGF) are both increased
following exposure to GCs or stress (Mocchetti et al., 1996;
Molteni et al., 2001; Gubba et al., 2004; Chang et al.,
2005; Kirby et al., 2013; Hashikawa et al., 2015). FGF in
particular is critical for homeostatic regulation of astrocytes,
and changes in FGF are largely responsible for the transition
of astrocytes from a nonreactive to a reactive state (Kang et al.,
2014a,b). These findings are intriguing because NE signaling
can increase astrocyte reactivity (Griffith and Sutin, 1996);
thus suppression of astrocyte reactivity by GC-induced release
of FGF may moderate increased overall astrocyte reactivity
following prolonged sympathetic activation. NGF has many
roles, not limited to effects on glia; these include increasing
both survival and differentiation of newly-maturing neurons
and supporting hippocampal-dependent memory processes and
cholinergic signaling (Chao, 2003; Mufson et al., 2003; Capsoni
and Cattaneo, 2006; Schindowski et al., 2008; Aboulkassim et al.,
2011).

GRs in the nucleus act as a transcription factor. Because
different cell types have unique transcriptomes, it is worth
discussing how GRs specifically influence gene transcription
in astrocytes. In mature astrocytes GCs have been found to
regulate a specific subset of genes that differs from that regulated
in neurons. Early work demonstrated that transcription of
glutamine synthetase and glial fibrillary acidic protein, both
astrocyte-specific, is under GC-mediated control (Nichols et al.,
1990; Laping et al., 1994), suggesting that both metabolic
function and morphology of astrocytes can be influenced by
GCs at the level of mRNA. Of the numerous genes affected by
GCs in hippocampal astrocytes, some stand out as playing a
prominent role in cognition and are under differential control
by GCs based on dose/duration of exposure (Carter et al.,
2013). Acute exposure to GCs, at doses sufficient to activate
GRs, results in significantly increased astrocytic mRNA levels
of adenosine 2b receptor, FK506 binding protein (FKBP5),
pyruvate dehydrogenase kinase 4, and serum/glucocorticoid-
inducible kinase-1 (Sgk1), while significantly decreasing early
growth response protein 2 (Egr2) and wingless-related MMTV
integration site 7a (Wnt7a). In contrast, chronic exposure to GCs
produced effects that in some cases are opposite of the acute
effects. Chronic GCs decrease hippocampal RNA expression of
growth associated protein 43 (Gap43), histone deacetylase 7
(Hdac7), and synapsin II. Additionally, chronically elevated GCs
decrease adenosine receptor 2b and Sgk1, while the effects of
acute vs. chronic are the same for FKBP5 and Wnt7a. Similar
effects were observed in the cortex, demonstrating that acute and
chronic exposure to GCs have different effects on astrocytic gene

expression (Carter et al., 2012, 2013) including that of several
genes whose products are important in memory processing:
in general, these changes are consistent with enhancement of
memory processing after acute elevation in GCs but impairment
after chronic GC elevation. Moreover, prolonged elevations in
GCs can lead to a reduced number of astrocytes (Unemura
et al., 2012). Given the data discussed in this review showing the
importance of astrocytes in mediating neural processes critical
for memory, it is likely that changes in gene expression and a
reduction in astrocyte quantity and function following prolonged
stress and GC exposure may underlie some of the cognitive
deficits observed following long-term stress.

As noted, many of the astrocytic genes changed by GCs have
products that are involved in memory processing. FKBP5 is
particularly interesting as it can control stress reactivity (Schmidt
et al., 2015). FKBP5 is a chaperone protein required to shuttle
GRs to the nucleus (Binder, 2009). It has also been heavily
implicated in early life stress programming, epigenetic regulation
of stress responding (Klengel et al., 2013), and susceptibility
to chronic stress later in life (Hartmann et al., 2012; Guidotti
et al., 2013; Radley et al., 2013). Patients with PTSD have
decreased FKBP5 expression, and successful cognitive-behavioral
therapy in PTSD patients increases FKBP5 expression and
hippocampal volume (Levy-Gigi et al., 2013). It is unclear,
however, whether many of these effects of FKBP5 are mediated
through glia or neurons. Sgk1 has an ever-growing body of
evidence to indicate that it is integral to GC effects to enhance
cognition, which includes actions to activate CREB and increase
AMPAR and NMDAR receptors at the plasma membrane
(Strutz-Seebohm et al., 2005; Yang et al., 2006; Lee et al., 2007;
Tai et al., 2009; Lang et al., 2010). Currently, it is unclear as
to whether the pro-cognitive activities of Sgk1 are mediated
by neurons or astrocytes. Future research should examine the
specific role of Sgk1 in astrocyte function given the robust
increase in astrocytic Sgk1 following both acute and chronic GCs
(Carter et al., 2013).

A further mechanism by which astrocytes may contribute to
learning and memory is via metabolism of glucose leading to
export of lactate, which will both regulate cerebral blood flow and
potentially provide metabolic support to active neurons (Iadecola
and Nedergaard, 2007). Some data suggest that acquisition
of long-term fear memories may require astrocytically-derived
lactate (Suzuki et al., 2011). Intriguingly, it is unknown as to what
extent stress-induced molecules such as GCs can affect efficacy of
lactate export from astrocytes. Astrocytes form a functional unit
with neurons and blood vessels, which has been referred to as
the neurovascular unit (Iadecola and Nedergaard, 2007). Many
neuroinflammatory molecules that are released during stress
are known to affect the neurovascular unit, and can increase
“leakiness” of the blood-brain barrier (Kröll et al., 2009). In the
amygdala, GCs produced by chronic stress can impair efficacy of
the neurovascular unit by preventing vasodilation in response to
neural activity (Longden et al., 2014). It is currently unknown
whether neurovascular units in other brain regions respond
similarly/differently to that of the amygdala, but such effects are
likely to markedly impact cognitive processing. As a side note,
such effects are also important to consider when interpreting
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fMRI or PET studies in which patients may be stressed, which
is likely to be the case in the majority of such studies.

Overall, GCs exert a variety of effects on astrocytic function,
from acute effects via calcium dynamics and release of
gliotransmitters to transcription-mediated events, neurovascular
control, and regulation of glutamate metabolism and glucose
flux.

ASTROCYTE-SPECIFIC NORADRENERGIC
ACTIVITIES

Using rodents and chicks, respectively, Dr. Leif Hertz’s and
Dr. Marie Gibbs’ groups have elucidated many roles for
noradrenergic signaling in regulating astrocyte function and
metabolism (Huang and Hertz, 1995; Hertz et al., 2007, 2010;
Gibbs and Bowser, 2010). While most of this work has been
aimed at unraveling cognitive aspects of astrocytic function
under baseline conditions, these data can likely be extended
to permit speculation on the impact of LC activation and
subsequent NE release on cognitive function during stress.

Noradrenergic cell bodies are primarily located within the
LC and project throughout the cerebral cortex, limbic system,
and cerebellum (Swanson and Hartman, 1975), with prefrontal
cortical and hippocampal regions receiving large amounts of
noradrenergic innervation (Gibbs et al., 2010). A simplified
primary function of LC-activation during stress may be to
“boost brain power” and direct cognitive processes toward
enhanced attention, improved vigilance, and a shift in memory
processing toward retrieval of information relevant to the stressor
(O’Donnell et al., 2012). NEmay promote some of these cognitive
effects via astrocytic release of glutamate, lactate production and
transport to active neurons, and an increase in both glycogen
metabolism and gliotransmitter release (O’Donnell et al., 2012;
Moraga-Amaro et al., 2014): overall, one major effect is to
increase glucose metabolism to meet the demands of cognitive
processing. Hippocampal memory processes are well-established
to be limited by glucose availability, and the procognitive effects
of exogenous glucose administration have been suggested to be
via glia rather than neurons (McNay and Gold, 2002).

NE acts via G-protein coupled receptors; α- and β- type 1 and
2 adrenergic receptors (ARs). Astrocytes primarily express β1, α1,
and α2 (Hertz et al., 1984, 2010; Deecher et al., 1993). Like GCs,
NE regulate astrocytic calcium signaling (Gibbs and Bowser,
2010): administration of the α1 agonist phenylephrine increases
intracellular Ca2+, and similarly stimulation of the LC increases
intracellular astrocytic Ca2+ via an α1-dependent mechanism
(O’Donnell et al., 2012). Because NE activation during stress
precedes GC activation, it is possible that the reduction
in intracellular calcium and increased mitochondrial calcium
buffering induced by GCs acts to control increases in intracellular
Ca2+ caused by NE signaling to prevent overexcitation and/or
apoptotic events.

NE also has effects on astrocytic metabolism, and effects
of both α-receptor and β-receptor signaling on astrocytic
metabolism have been documented (Subbarao and Hertz, 1990,
1991; Hutchinson et al., 2007, 2008; Gibbs et al., 2008). Activation

of α2 receptors on astrocytes can both promote glycogen storage
and increase astrocytic glycogen breakdown (Hertz et al., 2007).
Astrocytic β-receptor-mediated glycogenolysis is more effective
than α-receptor mediated glycogenolysis (Subbarao and Hertz,
1990). Astrocytic glycogenolysis is critical for glutamate cycling,
as well as providing lactate that may be especially important
as a rapidly-utilizable energy source during cognitive demand.
Both α1- and α2 adrenergic signaling in astrocytes can increase
oxidative metabolism including lactate production (Subbarao
and Hertz, 1991). NE can also increase glutamine uptake in
astrocytes, which is another important energy metabolite in
astrocytes (Huang and Hertz, 1995). Because energy provision is
a rate-limiting step in neural activity, the several actions of NE to
increase metabolic support for both astrocytes and neurons are
likely key to producing increased strength of memories formed at
times of moderate stress (Osborne et al., 2015). The specificity of
NE receptor subtypes found on astrocytes offers a potential target
for therapies aimed at specifically modulating glial responses to
stress, including treatments for stress-related disorders.

MICROGLIAL IMPACTS ON COGNITION

No longer regarded as solely an immune cell of the brain, several
studies show that microglia are also involved in regulating neural
activity (Thomas, 1992; Ilschner et al., 1996; Kettenmann, 2007),
primarily through release of neuroimmune molecules such as
cytokines that modulate surrounding neurons and astrocytes
(Figure 2). Chronic unpredictable stress (CUS) promotes an
increase in microglial proliferation and activation in a variety
of brain regions including the hippocampus; however, following
5 weeks of CUS exposure microglial activity declines below
baseline (Kreisel et al., 2014). Treatment with a variety of
microglia-activating molecules such as endotoxin, macrophage
colony-stimulating factor, or granulocyte-macrophage colony
stimulating factor can prevent CUS-induced depressive behaviors
(Kreisel et al., 2014), suggesting that microglia may be key
regulators of adaptation to chronic stress.

Interleukin-1β (IL-1β) is perhaps the best-characterized
cytokine released in response to stress. Following chronic mild
stress, mice have impaired memory on both object location
and object recognition memory. Cognitive impairments are
accompanied by increased plasma IL-1β, plasma tumor necrosis
factor-alpha, and IL-6 (Li et al., 2008). After chronic mild
resident-defeat stress, a subset of rats that develop pro-depressive
behaviors shows increased brain IL-β expression, and inhibition
of brain IL-1β signaling prevents the pro-depressive symptoms
(Wood et al., 2015). Independent of stress, studies have reported
that IL-1β can impair memory, have no effect on memory, or
enhance memory (Ross et al., 2003; Goshen et al., 2007; Huang
and Sheng, 2010; Ben Menachem-Zidon et al., 2011; Bitzer-
Quintero and González-Burgos, 2012; Pascual et al., 2012; Arisi,
2014; Jones et al., 2015), indicating that further work is needed.

Other microglial-released cytokines and immune molecules,
such as IL-6 and TNF-α, can affect memory (Tonelli and
Postolache, 2005; Nelson et al., 2013; Williamson and Bilbo,
2013; Arisi, 2014; Grinan-Ferre et al., 2015; Smith et al., 2015).
In general, effects of cytokines are highly dependent on timing,
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FIGURE 2 | Microglia can become activated by factors such as LPS or chronic stress, where they become desensitized to the anti-inflammatory

effects of glucocorticoids. Activated microglia can release pro-inflammatory cytokines, which at high concentrations can have negative effects on cognitive

processes.

dose, and duration; but the potentially confounding effects of
inflammation can make interpretation difficult and are a major
contributing factor to every major neurological disease (Bibi
et al., 2014; Daulatzai, 2014; Legido and Katsetos, 2014; Nisticò
et al., 2014; Stuart and Baune, 2014; Patterson, 2015; Walker
and Lue, 2015). Chronic stress, poor diets, and acute traumatic
stress can all induce elevated cytokine release, negatively affecting
learning outcomes (Boitard et al., 2014; Hsu et al., 2015; Jones
et al., 2015; Yazir et al., 2015).

Important to discuss, as a component of microglial effects
following stress, is the kynurenine pathway (KP). Following
chronic stress, tryptophan can be directed toward the KP
(Miura et al., 2008), primarily driven by cytokine induction
of indoleamine 2,3,-dioxygenase (IDO). In astrocytes, the KP
increases production of the NMDA receptor agonist kynurenic
acid; in microglia, the KP increases production of the NMDA
receptor agonist quinolinic acid (Jo et al., 2015). Given the key
role of NMDA receptors in hippocampal memory processing, it is
not surprising that recent data suggests that activation of the KP
can affect memory processes, and thus may be a novel pathway
with importance for stress-related memory dysfunction (Heisler
and O’Connor, 2015; Varga et al., 2015).

MICROGLIA AND GLUCOCORTICOIDS

GCs have well-established anti-inflammatory effects that
decrease microglial activation. GCs provide master control over
several inflammatory and anti-inflammatory factors (Figure 3).
Microglia express both MRs and GRs (Sierra et al., 2008), and
GCs can suppress central inflammation through microglia
(Goujon et al., 1996; Kawai and Akira, 2010). GC administration
to microglial cultures suppresses nitric oxide release by blocking
the expression of inducible nitric oxide synthase, which likely

leads to a reduction in microglial-mediated cell death (Drew
and Chavis, 2000). In mice lacking functional GRs on microglia,
lipopolysaccharide treatment (LPS; a treatment that produces
“active” microglia) can increase neuroinflammation and neural
toxicity relative to wildtype mice treated with LPS (Carrillo-de
Sauvage et al., 2013). In other studies, GR antagonism attenuated
the effects of LPS-induced microglial activation including CA1
pyramidal cell loss, JNK and p38 activation and decreased
Akt and CREB phosphorylation (Espinosa-Oliva et al., 2011);
taken together, these findings strongly support a role for GCs in
modulating microglia function, but suggest that the impact of
GCs may—as with e.g., astrocytes—be critically dependent on
dosage and timing.

Chronic stressors can attenuate or prevent the anti-
inflammatory effects of GR activation on microglia. Microglia
can readily become sensitized to GC over-secretion to the
point where GCs no longer prevent pro-inflammatory microglial
activity, but rather promote it, as is the case in neurodegenerative
disease and obesity (Munhoz et al., 2006; Frank et al., 2012;
Dey et al., 2014). Understanding of the links between diet-
induced obesity, cognitive dysfunction, and neurodegenerative
disease continues to expand and now encompasses a greater
role for microglia in these events. Sustained GC release and
impaired HPA negative feedback are hallmarks of obesity and
Type 2 Diabetes (Bruehl et al., 2009; de Guia et al., 2014;
Paredes and Ribeiro, 2014; Martocchia et al., 2015), cognitive
dysfunction (McEwen and Sapolsky, 1995; Dumas et al., 2010)
and Alzheimer’s disease (Notarianni, 2013). These pathological
conditions are also characterized by increased cytokine release,
inflammation, and microglial activation (Xiang et al., 2006;
Rodriguez et al., 2010; Buckman et al., 2014; Erion et al., 2014;
Hwang et al., 2014; Heneka et al., 2015; Kälin et al., 2015; Lee
et al., 2015; Ramos-Rodriguez et al., 2015).
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MICROGLIA AND NOREPINEPHRINE

NE has several effects on microglia that may contribute to
cognitive deficits following stress (Figure 4). Generally, NE is
capable of subduing inflammatory response genes in microglia
and astrocytes (Hetier et al., 1991; Feinstein et al., 2002; Tynan
et al., 2012), such as the major histocompatibility complex
(Frohman et al., 1988), IL-1β (Ballestas and Benveniste, 1997),
and TNF-α (Ballestas and Benveniste, 1997; Tynan et al., 2012)
via β-AR activation. While in a “resting” phase, microglia
predominately express β2 and β1 ARs (Tanaka et al., 2002),
but this can change to α2 expression following inflammatory
activation (i.e., during stress). Bath application of NE to brain

slices results in microglial process retraction and potential
reversal of stress-induced inflammation (Mori et al., 2002).
NE can also attenuate microglial process extension mediated
by the gliotransmitter ATP (Gyoneva and Traynelis, 2013);
conversely, loss of NE decreases microglial migration to sites
of inflammation (Heneka et al., 2010), confirming a key role
for NE in microglial regulation. NE administration to cultured
rat microglial cells decreases mRNA expression of several pro-
inflammatory cytokines including IL-6 and TNF-α (Mori et al.,
2002). Although under normal, non-pathological conditions
these pro-inflammatory factors can have important procognitive
roles, in disease or chronic stress states their effects can become
pathogenic and lead to impaired cognitive function and cell

FIGURE 3 | Acute glucocorticoid exposure can return activated microglia to resting states.

FIGURE 4 | Acute norepinephrine exposure can decrease release of cytokines by microglia via inhibition of ERK/p38 signaling.
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death. Therefore, NE may decrease pathogenic microglial action
following stress (Heneka et al., 2010). Taken together with
findings of GCs on inhibitingmicroglial activation, it is intriguing
that both NE and GCs can suppress microglial activation amidst
a milieu of pro-inflammatory stimuli (e.g., pro-inflammatory
cytokines, increased BBB permeability, and immune cell influx
into the brain) that occur following stress. These findings may
suggest that NE andGCs, via glia, act in part as anti-inflammatory
stimuli that prevent pathogenic inflammatory activity in the
brain following stress; the impaired response to these hormones
seen after chronic and/or very high stressmay include diminished
ability to protect against brain inflammation, with deleterious
consequences.

OLIGODENDROCYTES AND STRESS

While most attention in this field has been given to the impact of
astrocytes and microglia on cognitive function, there is evidence
that oligodendrocytes are also affected by stress and could
modulate learning and memory. Oligodendrocytes’ list of known
functions extends beyond axon myelination, and now includes
direct modulation of neuronal function (de Hoz and Simons,
2015).

Although stress and/or GC administration almost
ubiquitously decreases neurogenesis (Anacker et al., 2013;
Lehmann et al., 2013; Schoenfeld and Gould, 2013; Anacker,
2014; Chetty et al., 2014), stress has the opposite effect on
oligodendrogenesis (Chetty et al., 2014). As with neurons,
corticosterone increases activation of SGK1 in oligodendrocytes
and subsequently induces abnormal morphological changes in
arborization via NDRG1 and catenin signaling (Miyata et al.,
2011). This increased arborization has been linked to increased
depression-like behavior in stressed mice (Miyata et al., 2015).

Other research suggests that GCs provide important survival
signals that can aid oligodendrocyte and oligodendrocyte
precursor survival against cytokine toxicity (Melcangi et al.,
2000; Mann et al., 2008). Further investigation into the role
oligodendrocytes play in cognition is required, both at baseline
and after stress, but early evidence supports a vital function for
this cell type in cognitive responses to stress.

CONCLUSION

Glia are increasingly recognized as critical regulators of
cognitive processes; understanding of the multiple cell types
involved in behavioral regulation and the molecular processes
involved continues to expand. Glia are quickly becoming
pharmacologically-relevant cellular targets for treatments of a
variety of psychiatric disorders (Koyama, 2015) and offer a
potential opportunity to regulate neural and cognitive responses
to stress including treatment of stress-induced behavioral
disorders. Such approaches are likely to take advantage of
the potentially increased specificity offered by modulation
mechanisms unique to glia rather than also affecting neurons.
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