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SUMMARY

Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or 

pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, 

implying that the default female state is virgin. However, we recently showed that loss of miR-

iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal 

ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic 

analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) 
to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly 

complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, 

virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx 

from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor 

of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ 
Dsx) specifies the virgin behavioral state.
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In brief

Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-

transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This 

genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in 

specific neurons determines the behavior of adult virgin flies.

INTRODUCTION

Females of diverse invertebrate and vertebrate species coordinate multiple behavioral 

programs with their reproductive state. Mature female virgins are receptive to male courtship 

and copulation, but following mating and/or pregnancy, they decrease sexual activity and 

modulate behaviors to generate and foster their children. Behavioral remodeling associated 

with the female reproductive state includes increased aggression and nest building in avians 

and mammals (Ogawa and Makino, 1984; Svare et al., 1982) and decreased male 

acceptance, increased egg-laying, and appetitive/metabolic changes in insects (Anholt et al., 

2020). The genetic and neurological control of this process has been intensively studied in 

fruit flies, where sexual activity induces the post-mating switch, a host of behavioral changes 

collectively known as post-mating responses (PMRs) (Anholt et al., 2020).

In Drosophila, as in other species, “virgin” is typically considered the default behavioral 

state, because factors that induce PMRs are transferred in seminal fluids during copulation. 

Among these, Sex Peptide (SP) is necessary and sufficient to drive most female post-mated 

behaviors (Kubli and Bopp, 2012). SP signals via uterine SP sensory neurons (SPSNs) (Feng 

et al., 2014; Häsemeyer et al., 2009; Yang et al., 2009). Some SPSN+ neurons contact 
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abdominal interneurons in the ventral nerve cord (VNC) that express myoinhibitory peptide 

(Jang et al., 2017), which input into a restricted population of ascending neurons (SP 

abdominal ganglion [SAG] neurons) that project to the posterior brain, including pC1 

neurons (Feng et al., 2014; Soller et al., 2006; Wang et al., 2020b). This outlines an 

ascending flow of information for how a seminal fluid peptide can alter female brain 

activity. The brain integrates this with auditory and visual cues to coordinate diverse 

behaviors mediated by distinct lineages of descending neurons and VNC populations that 

modulate specific behaviors according to internal state and external stimuli (Mezzera et al., 

2020; Wang et al., 2020a, 2020b, 2021).

Recently, we found that post-transcriptional suppression of the homeobox gene homothorax 
(hth) within the VNC is critical to implement the virgin behavioral state (Garaulet et al., 

2020). Of note, deletion of the Bithorax Complex (BX-C) locus mir-iab-4/8, point mutations 

of their binding sites in hth, or deletion of the hth neural-specific 3′ UTR extension bearing 

many of these microRNA (miRNA) sites all cause mutant female virgins to perform mated 

behaviors. Thus, the failure to integrate two post-transcriptional regulatory inputs at a single 

target gene prevents females from appropriately integrating their sexual internal state with 

external behaviors.

Our recognition of the transcription factor Hth as a target of regulatory circuits for virgin 

behavior implies that downstream loci may serve as a functional output for this process. 

Here, we used molecular genetic profiling to identify a critical requirement for Doublesex 

(Dsx) to implement the female virgin behavioral state. Dsx has been well studied with 

respect to differentiation of sexually dimorphic traits (Kopp, 2012), but its roles in post-

mitotic neurons are little known. We find that expression of Dsx in the VNC mediates virgin 

behavior, and that modulation of Dsx in only a few abdominal VNC neurons is sufficient to 

convert the suite of female virgin behaviors into mated conducts.

RESULTS

VNC-iab-8 domain transcriptomes of BX-C miRNA and hth-miRNA binding site mutants

The bidirectionally transcribed BX-C miRNA locus encodes distinct miRNAs, mir-iab-4 and 

mir-iab-8, which are expressed in adjacent Hox-like patterns along the embryonic anterior-

posterior axis. GFP sensors and in situ hybridization reveal these miRNAs are active in 

adjacent domains of the abdominal VNC from embryo to adult, with miR-iab-8 deployed in 

segments posterior to A7 (Bender, 2008; Garaulet et al., 2014; Gummalla et al., 2012; Tyler 

et al., 2008) Figure 1A, referred hereafter as the iab-8 domain). Expression of the BX-C Hox 

gene abd-A largely overlaps miR-iab-4 and demarcates the anterior miR-iab-8-5p activity 

domain (Figure 1B). In flies deleted for mir-iab-4/8 (trans-heterozygous Δ/C11 mutants), 

ectopic Hth proteins accumulate in both miRNA domains from larval stages (Figure 1C) to 

adult (Garaulet et al., 2014, 2020). Specific mutations of all miR-iab-4/8 binding sites in the 

3′ UTR of the homeodomain-encoding isoform of homothorax (hth[BSmut]) also derepress 

Hth protein (Figure 1C). Although genetic evidence indicates both miRNAs contribute to the 

Δmir-iab-4/8 phenotype in female virgins, ectopic Hth in hth[BSmut] is most overt within 

the miR-iab-8 domain (Figures 1C and 1H) and is sufficient to induce PMRs in virgin 

females (Garaulet et al., 2020).
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Based on this, we sought to collect transcriptome data from the female iab-8 VNC domain. 

Because we lack markers that permit positive selection of this region, we opted for manual 

separation. We analyzed larval VNC, which owing to its more extended morphology than 

adult VNC, was more amenable to microdissection. With practice, we could reproducibly 

sever the VNC at the A7 pair of nerves, posterior to the major domain of abd-A as assessed 

by post hoc immunostaining (Figure 1D), thus liberating the iab-8 region of the VNC 

(segments A8 and A9). We prepared triplicate RNA sequencing (RNA-seq) samples from 

this region from the three genotypes (Figure 1D; Figure S1).

Although both mutants were reproducibly distinct from Canton-S control, they exhibited 

limited overall changes in gene expression (Figure S1). We queried Δmir-iab-4/8 data with 

respect to different classes of conserved seed matches for miR-iab-8-5p (http://

www.targetscan.org/vert_72/). Among genes expressed at a minimum level (>1 RPKM), the 

strong majority bearing target sites were unchanged (Figure 1E; Figure S1), and only 

modestly more targets were upregulated than downregulated (at 1.5-fold change, 10 up and 6 

down; Figure 1E). Bulk tissue sequencing might underestimate target responses if they were 

heterogeneous on a cell-by-cell basis. For example, we did not observe significant changes 

in validated BX-C Hox gene targets Ubx and abd-A (Tyler et al., 2008) (Figure 1F), which 

detectably express ectopic, although sporadic, proteins within the iab-8 domain of BX-C 

miRNA mutants (Bender, 2008; Garaulet et al., 2014; Gummalla et al., 2012). In any case, 

because the effects of BX-C miRNA deletion on their targets in abdominal VNC were 

limited, it was notable that two of the highest and most significantly upregulated miR-

iab-8-5p targets were hth and extradenticle (exd) (Garaulet et al., 2014) (Figures 1E and 1G). 

Consistent with detection of ectopic Hth protein, the iab-8 region of hth [BSmut] VNC also 

derepressed hth but did not upregulate exd, whose levels were changed only in Δmir-iab-4/8 
(Figure 1G; Figure S1).

Hth and Exd are heterodimeric TALE-homeodomain proteins that act as Hox gene cofactors 

but also have independent functions. Hth is a spatially patterned nuclear factor, and in the 

VNC, the anterior boundary of iab-4 activity is normally coincident with the loss of Hth 

(Figure 1C) (Garaulet et al., 2020). Exd is expressed more broadly but remains cytoplasmic 

in the absence of Hth, which serves as its nuclear escort (Pai et al., 1998; Rieckhof et al., 

1997). Because of this, nuclear Exd is very sparse in wild-type abdominal VNC segments. In 

contrast, BX-C miRNA mutants broadly exhibit ectopic nuclear Exd within both iab-4 and 

iab-8 domains (Figure 1H) (Garaulet et al., 2014). If this required joint release of both genes 

from miRNA control, we might expect a different pattern of abdominal Exd in hth[BSmut]. 
However, the nuclear intensity of ectopic Exd colocalized to that of Hth and was similar 

between the two mutants, despite the fact that exd RNA increased only in mir[Δ/C11] and 

not hth[BSmut] mutant VNC (Figures 1G and 1H). We quantified the iab-8 domains of the 

three genotypes of overtly Exd+ nuclei and observed comparable, strong increases in both 

mir[Δ/C11] and hth [BSmut] mutants (Figure 1I). This suggests that even though Exd is a 

prominent miR-iab-4/8 target (Figure 1E) (Garaulet et al., 2014), it is not limiting for 

derepressed Hth to exert phenotypic or regulatory effects in these mutants.

Given the restricted effects of BX-C miRNA loss on direct targets in the iab-8 VNC, we 

examined features of presumably indirect expression changes. If derepressed Hth was 
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responsible for some of these effects, they might be associated with overlapping responses 

between miRNA deletion and hth[BSmut] VNC. Intriguingly, we observe substantial 

overlaps between their up- and downregulated gene sets, with relatively few genes exhibiting 

discordant behavior (Figure 2A; Table S1). Co-regulated loci included neuronal receptors, 

channels, and peptide hormones (Figure S2). Taken together, these data were consistent with 

the notion that deregulated Hth may drive aberrant gene expression downstream of BX-C 

miRNA loss.

Spatial complementarity of Hth and Dsx is disrupted by loss of miRNA regulation

Among genes co-regulated by BX-C miRNA loss and deletion of their binding sites from 

hth, we were particularly intrigued by doublesex (dsx), which was ~2-fold lower in both 

mutants (Figures 2A and 2B). This transcription factor is widely studied for its central role 

in sex determination locus, and its vertebrate homolog DMRT1 similarly controls sex-

specific differentiation (Kopp, 2012). However, less is known about its functions in post-

mitotic neurons. We were intrigued by the highly spatially complementary pattern of Dsx 

and Hth proteins in the nervous system. In the VNC, Dsx protein is restricted to the posterior 

abdominal ganglion and abuts the domain of Hth, located more anteriorly (Figure 2C); very 

few neurons co-express these proteins (Figure S3). The reciprocal pattern of Dsx and Hth 

also extends to the brain. Although Dsx accumulates more sparsely in this setting, only 

rarely is Dsx colocalized with Hth, even among closely apposed cells (Figure S3).

Immunostaining of BX-C miRNA mutants revealed a decrease in Dsx+ neurons in the 

abdominal ganglion of both miRNA and hth[BSmut] mutants, which was most visually 

evident in their dorsal regions (Figure 2D). We quantified all Dsx+ neurons throughout the 

volume of the VNC and observed ~150 fewer Dsx+ neurons in both mutant conditions 

(Figure 2E), but the difference was greater in the dorsal half (Figure 2E). We recently 

showed that repression of hth by BX-C miRNAs that is relevant for female PMRs occurs in 

specific abdominal VNC neurons, marked by VT-7068, VT-454, and VT-50405 Gal4 drivers 

(i.e., Vienna Tiles [VT]-switch lines) (Feng et al., 2014; Garaulet et al., 2020). Because the 

numbers of neurons labeled by these drivers (~80–300) were not substantially affected in 

miRNA mutants (Figure 2F), loss of Dsx reactivity in mutants was not due to loss of 

abdominal neurons that mediate the post-mating switch per se.

The regulatory intersection of VT-7068 and VT-50405 (as a split-Gal4 combination) labels a 

handful of neurons in the entire CNS of female flies, with typically four “SAG-1” abdominal 

neurons found in the iab-8 domain (Figure S4)(Feng et al., 2014). These project to the 

central brain (Figure S4) and constitute a minimal set of VNC cells whose enforced 

activation can partially induce virgin behaviors in mated females (Feng et al., 2014). We 

employed these abdominal SAG-1 neurons for quantitative analysis of Hth and Dsx, taking 

great care to stain wild-type and mutant VNC in the same wells and to image them in 

parallel using identical settings (see STAR Methods). We reliably observed elevated Hth in 

identified SAG-1 neurons, in both miRNA deletion and hth[BSmut] mutants, concomitant 

with downregulation of Dsx (Figures 2G and 2H). Dsx exhibits a moderately bimodal 

distribution in wild-type SAG-1 neurons (Figures 2G and 2H). However, deletion of BX-C 

miRNAs eliminates most of the Dsx-high class, and total levels of Dsx are significantly 
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lower in both mir-iab-4/8 and hth[BSmut] mutants (Figure 2G). Therefore, loss of miRNA-

mediated regulation of Hth results in its derepression in abdominal VNC neurons, which in 

turn is associated with decreased Dsx.

To understand if the decrease in abdominal Dsx protein was promoted by elevated Hth, we 

misexpressed hth in SAG-1 neurons and analyzed Dsx in abdominal SAG-1 nuclei. This 

reduced Dsx slightly, although the difference with wild-type was not significant (Figure S4). 

Conversely, ectopic Dsx decreased Hth moderately (Figure S4). However, these experiments 

are difficult to interpret due to high levels of overexpressed Hth or Dsx, which are likely 

non-physiological (Figure S4). Therefore, we utilized a different approach to deplete hth in 

mir-iab-4/8 mutants. In SAG-1>hth-RNAi; mir[Δ/C11] virgins, Dsx levels and distribution 

were restored to wild-type values (Figures 2G and 2H). Thus, the decrease in Dsx proteins in 

mutants requires elevation of endogenous Hth. In other words, there is a double-negative 

relationship extending from the miRNA to Hth to Dsx.

Dsx is highly dose sensitive for female virgin behavior

dsx is necessary for male courtship (McRobert and Tompkins, 1985), as well as to specify 

the female circuitry necessary for the post-mating switch (Rezával et al., 2012; Rideout et 

al., 2010; Robinett et al., 2010). However, despite the fact that dsx-expressing neurons are 

required for female reproductive behaviors, the function of Dsx in female behavior has 

received comparably little attention.

We initially examined loss-of-function alleles of dsx. Null mutants display inter-sex 

cuticular features, including male and female elements on their genitalia and sex combs 

(Nothiger et al., 2009), but dsx heterozygotes develop normal genitalia and normal numbers 

and appearance of sex combs on male forelegs (Figure S5). Thus, a single copy of dsx is 

sufficient for gross anatomy.

We then examined female behavior. The two most commonly monitored aspects of the post-

mating switch are egg-laying and receptivity. Female virgins are highly receptive to male 

courtship and lay few eggs in the first few days after eclosion (Figures 3A and 3B). 

Following copulation, females become refractory to further copulation attempts for several 

days and increase egglaying substantially (Anholt et al., 2020) (Figures 3A and 3B). 

Surprisingly, dsx heterozygosity compromises both behaviors: egg-laying is increased and 

receptivity is decreased compared with wild-type virgins. Importantly, both readouts were 

similarly affected in independent dsx alleles, compared with their control siblings (Figures 

3A and 3B). Together, these slight but genetically robust differences in egg-laying and 

receptivity seemed to indicate a partial transition to the mated state in pre-inseminated 

virgins, triggered by dsx heterozygosity. To confirm this hypothesis, we tested two 

additional behaviors associated with female internal states. Vaginal plates opening are 

mostly performed by receptive virgins and very rarely are observed in the early days after 

copulation (Wang et al., 2021) (Figure 3C). Conversely, mated females reject actively 

courting males by extruding their ovipositor (Mezzera et al., 2020; Wang et al., 2020a)

(Figure 3D). For both of these performances, independent dsx heterozygotes also differ from 

canonical wild-type virgins. Together, dsx heterozygosity attenuates virgin behaviors while 
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enhancing mated-specific PMRs, suggesting subjective induction of the post-mated state 

(Figures 3A–3D).

Given that female virgin performance depends on dsx dosage, we wondered if PMRs in 

wild-type females could be triggered by a dsx decrease as a putative effect of mating. We 

analyzed Dsx staining in abdominal SAG-1 neurons, but Dsx levels were similar between 

virgins and females 24 h post-insemination (Figure 3E). Although this does not preclude that 

other neuronal lineages might experience Dsx fluctuation, it suggests Dsx is not an active 

component of the switch.

Expression of Dsx in restricted abdominal neurons is required for virgin behavior

With knowledge that virgin behavior is highly sensitive to dsx dosage, we next interrogated 

where and when Dsx is required in the nervous system for female responses. We used a dsx-
RNAi stock published by Bruce Baker’s lab (dsx-RNAi[BB]) Robinett et al., 2010) and an 

independent TRiP-JF line (dsx-RNAi[JF]). Although the dsx-RNAi[BB] stock actually 

contains two transgene copies, it was documented to induce only weak dsx knockdown at 

25°C (Robinett et al., 2010); dsx-RNAi[JF] has not been directly assessed for Dsx 

suppression. We compared their efficacies when activated at 25°C using SAG-1-Gal4, which 

allowed us to quantify Dsx alteration in defined abdominal SAG-1 cells. We found that dsx-
RNAi[BB] induced mild but significant reduction of Dsx protein, within the range observed 

in the miRNA and hth[BSmut] mutants, while dsx-RNAi[JF] caused stronger depletion 

(Figures 3E and 3F, compare with Figures 2G and 2H). Consistent with this hierarchy, dsx-
RNAi[JF], but not dsx-RNAi [BB], could reduce male sex comb bristles at 25°C (Figure 

S5). Nevertheless, dsx-RNAi[JF] induced only a mild cuticular defect by comparison with 

the viable trans-allelic combination of dsx [1]/[9], which yields full loss of differentiated 

male sex combs (Figure S5), as well as general inter-sex features. Thus, we have inducible 

genetic reagents that reproduce mild suppression of Dsx protein and function, within a range 

relevant to disruption of Dsx levels seen in BX-C miRNA and hth[BSmut] mutants.

We then used egg-laying and receptivity as readouts to screen a potential shift to a subjective 

post-mated state. Upon induction of either dsx-RNAi transgene with pan-neuronal elav-
Gal4, both transgenes reliably increased the egg-laying capacity of young virgins (Figure 

3G), in line with the results obtained for dsx heterozygotes. Similarly, receptivity was 

significantly compromised (Figure 3H). We additionally tested fertility and climbing in these 

genetic combinations to rule out general, non-specific effects of dsx depletion, undesired 

side effects of RNAi machinery activation, or possibly off-targeting. Both male and female 

fertility and locomotion in knockdowns were indistinguishable from controls, emphasizing 

the specificity of dsx function for virgin behaviors, as well as its dose sensitivity compared 

with cuticular structures, which remain unperturbed under similar dsx depletion (Figure S5).

Restricting dsx knockdown to specific VT-switch lineages, using VT-7068 and VT-50405 
Gal4 lines, induced similar effects in both egg-laying and receptivity (Figures 3G and 3H). 

The effects with dsx-RNAi[JF] were stronger than with dsx-RNAi[BB], further highlighting 

the sensitivity of virgin behaviors to dsx dosage. Moreover, when dsx-RNAi was limited to 

the intersection of these drivers, the sparser SAG-1 lineage, both RNAi lines induced 

aberrant egg-laying in young virgins, and dsx-RNAi[JF] also substantially compromised 
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virgin receptivity (Figures 4A and 4B). These phenotypes were in line with those observed 

in mir-iab-4/8 and hth[BSmut] mutants (Garaulet et al., 2020) (Figures 4A and 4B), 

suggesting that Dsx decrease may be causal to behavioral defects found in the absence of hth 
regulation by miR-iab-4/8. To investigate if depletion of dsx affected neuronal 

differentiation, we analyzed dendritic (VNC) and axonal (brain) patterns of SAG-1 

abdominal neurons in wild-type and both knockdowns. We did not observe any gross 

anatomical defects upon dsx depletion (Figure S5). Altogether, our experiments indicate that 

virgin behaviors and PMRs are specifically sensitive to Dsx levels. We note that the split-

Gal4 system may confer enhanced activity over the individual VT-switch lines. But the fact 

that the knockdown occurs in very restricted neurons, including the four ascending neurons 

(Figure 3E), and is only a partial knockdown supports a strong requirement for Dsx in these 

cells for female behavior.

Having identified a minimal set of neurons where dsx is necessary for egg-laying and 

receptivity, we sought the timing of Dsx activity to regulate these behaviors. Our RNA-seq 

analysis demonstrates differential expression of dsx in miRNA and hth[BSmut] mutants in 

late third instar larvae, prior to the establishment of the adult circuitry controlling PMRs. We 

temporally restricted dsx knockdown by including temperature-sensitive Gal80 (tub-Gal80ts) 

in SAG-1>dsx-RNAi[JF] flies and switching them from the restrictive (18°C) to permissive 

(29°C) temperatures and vice versa right after at eclosion (Figure 4C). These temperature 

shifts allowed us to discern between developmental or adult functions of Dsx in SAG-1 

neurons in relation to virgin behaviors and PMRs. Monitoring egg-laying and receptivity, we 

found that adult knockdown induced subtle but statistically significant differences in these 

two behaviors. Nonetheless, the effects of developmental knockdown were dramatic for 

virgin performance: while the studied behaviors were unaffected by this temperature 

regimen in controls (little egg-laying and full receptivity), experimental individuals laid eggs 

profusely and remained completely refractory to male courtship (Figures 4D and 4E).

Our previous work showed that disruption of miR-iab-4/8 regulation of hth in the VNC 

suppresses virgin behaviors and induces a switch to a subjective mated state (Garaulet et al., 

2020). Does depletion of Dsx similarly cause a broad switch in the behavioral output of 

virgin females toward a subjective mated state? In our Anal tests, we extended our analyses 

to other behaviors, comparing SAG-1>dsx-RNAi with wild-type virgin and mated females, 

as well as with mir-iab-4/8 and hth[BSmut] mutant virgins. By analyzing other virgin 

behaviors that are defective in mutants (e.g., opening of vaginal plates), as well as mated 

behaviors that are ectopically gained by mutant virgins (e.g., ovipositor extrusion), we gain 

greater confidence that depletion of dsx reflects a switch in behavioral state. Indeed, these 

analyses demonstrate that SAG-1>dsx-RNAi females qualitatively fail to coordinate virgin 

status with virgin behavioral programs and instead act as mated animals (Figures 4A, 4B, 4F, 

and 4G). For most readouts using SAG-1 > dsx-RNAi[JF], the effects observed were also 

quantitatively comparable with mir-iab-4/8 deletion and hth[BSmut] mutants. Although we 

do not imply that SAG-1 is the only lineage affected in these mutants, these data reveal that 

Dsx function in these specific cells is pertinent for normal behavior. In summary, a double-

negative regulatory axis within the CNS is critical for virgin females to appropriately 

coordinate their external behaviors with their internal state (Figure 4H).
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DISCUSSION

We recently established how miRNA mediated suppression of the transcription factor Hth to 

safeguard the virgin female behavioral state (Garaulet et al., 2020). Using engineered alleles 

and spatio-temporal hth manipulations, we demonstrated a developmental requirement for 

post-transcriptional regulation of Hth within the abdominal ganglion of the CNS for female 

behavior. However, Hth was not required in otherwise wild-type VT-switch neurons for 

execution of virgin behaviors, implying that expression of Hth in the abdominal VNC must 

normally be prevented. This involves integration of two mechanisms: a high density of BX-

C miRNA binding sites (miR-iab-4/8) within the hth-HD 3′ UTR, as well as neural-specific 

3′ UTR elongation, which unveils many of these sites only on neural hth isoforms.

Here, we extend this regulatory axis by showing that loss of BX-C miRNAs, acting through 

derepressed Hth, leads to downregulation of the Dsx in the abdominal VNC. Dsx is well-

known as a master sex determination transcription factor (Kopp, 2012), and it shows 

localized expression in specific CNS domains. However, although the activity of Dsx-

expressing neurons per se has been implicated in the switch in females (Feng et al., 2014; 

Häsemeyer et al., 2009; Yang et al., 2009), the functions of Dsx in post-mitotic neurons are 

less well defined. Our work reveals that Dsx itself is a central component in specifying 

virgin behavior, because its restricted suppression in as few as four (SAG-1+) neurons is 

sufficient to induce post-mated behaviors. It remains to be better defined how SAG-1 

neurons are affected by depletion of Dsx. We did not see overt differentiation defects, but we 

cannot rule out an effect of masculinization. Otherwise, our recent work suggests an activity 

defect in a general population of switch neurons in the miRNA mutant (Garaulet et al., 

2020), but more direct analysis of dsx-depleted SAG-1 neurons awaits.

Altogether, in contrast with highly branched regulatory networks that are bioinformatically 

inferred to lie downstream of individual miRNAs, we reveal a linear, double-negative 

regulatory cascade comprising miRNAs and two transcription factors (Figure 4H). These 

findings provide impetus to assess possible direct regulation of Dsx by Hth, as well as to 

elucidate Dsx targets that are relevant to female behavioral control. Overall, we expand a 

genetic hierarchy that is essential for females to couple the virgin internal state with 

appropriate behaviors.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Eric Lai (laie@mskcc.org, tel: 

212-639-5578).

Materials availability—Transgenic flies generated in this study are available from the 

corresponding authors on request.

Data and code availability—The original behavior data for Figures 1, 3, 4, and S5 in the 

paper are available from the corresponding authors. The raw RNA-seq data reported in this 
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study were deposited in the NCBI Gene Expression Omnibus under accession GEO: 

GSE166562.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study used male and female flies of wild-type and genetically engineered strains of 

Drosophila melanogaster. Virgin and mated parameters refer to assays of female behavioral 

performances.

Fly strains and maintenance—Larval and adult flies were raised on cornmeal/molasses 

media recipe: 83.8% water, 0.6% agar, 4.6% cornmeal, 2.3% dried yeast, 7.8% molasses 

solids, 0.3% propionic acid, 0.1% tegosept, 0.5% ethanol. They were kept at 25°C (unless 

mentioned otherwise), 55% humidity and under 12h:12h LD cycles.

Drosophila lines used in this study—mir[Δ] (Bender, 2008), mir [C11] and 

hth[BSmut] (Garaulet et al., 2020), Canton-S (gift of Karla Kaun), VT-lines and SAG-1 split 

Gal4 line (Feng et al., 2014), UAS-hth-RNAi (Vienna Drosophila RNAi Center), 2xUAS-
dsx-RNAi[BB] (Robinett et al., 2010), tub-GFP-mir-iab-4 and -iab-8 sensors (Tyler et al., 

2008). The following lines were obtained from Bloomington Drosophila Stock Center: elav-
Gal4 [C-155] (BDSC #458), UAS-mCD8-GFP (BDSC #5137), UAS-Red-Stinger (BDSC 

#8547), tubGal80ts (BDSC #7108), UAS-dsx-RNAi [JF] (BDSC #26716), dsx[1] (BDSC 

#1679), dsx[9] (BDSC #44223), UAS-dsxF (BDSC #44223).

All the lines used in this study have been backcrossed at least 8 generations to the Canton-S 
wild-type strain.

METHOD DETAILS

RNA extraction and sequencing—Female larvae were dissected on ice for a maximum 

of 30 minutes (30-40 larvae). The posterior third of larvae was removed with forceps, the 

remaining was turned inside down. Using 2mm curved blade spring scissors (Fine Science 

Tools #15000-04), VNC were severed at the level of the A7 pair of nerves, and immediately 

placed into TRIzol (Thermo Fisher Scientific #15596018). After dissections, samples in 

TRIzol were stored at −80°C. Each biological replicate pooled severed VNCs of 120-150 

larvae, dissected in 4-5 periods of 30 min. 3 replicates were generated per genotype. RNA 

extraction was performed with TRIzol.

500 ng of total RNA per dissected VNC sample was used for TruSeq stranded mRNA library 

preparation (Illumina) by the Integrated Genomics Operation (IGO) core at MSKCC. 

Libraries were sequenced on Illumina HiSeq-1000 sequencer with PE-100 mode. The raw 

sequence data are available from GEO accession number: GEO: GSE.166562.

Bioinformatic analysis—RNA-seq data were aligned to the Drosophila melanogaster 
reference genome (Version r6.21) using HISAT2 software with standard parameters (Kim et 

al., 2015). We used featureCounts in the Rsubread package to compute features and read 

numbers for each bam file (Liao et al., 2019). The read counts per gene were then 

normalized to obtain RPKM values using edgeR package from R Bioconductor (Robinson et 

al., 2010) and extracting transcript length from Biomart (Durinck et al., 2005). Fold changes 
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between samples were calculated using edgeR applying no filter. Genes targeted by miR-

iab-8-5p were identified using conserved TargetScanFly predictions (Agarwal et al., 2018).

Immunohistochemistry, imaging, and image quantification analysis—Larval and 

adult CNS were dissected in cold PBS and fixed for 1h in 4% paraformaldehyde + 0.1% 

Triton. Primary and secondary antibodies were incubated for > 36h at 4°C in wash buffer 

(PBS +1% BSA) and mounted in Vectashield (Vector Labs). Antibodies used were mouse 

anti-abd-A (gift of Ian Duncan), rabbit and guinea pig anti-Hth (Salvany et al., 2009), rat 

anti-Dsx (Sanders and Arbeitman, 2008) and Alexa- 488, –555, –647 conjugated goat and/or 

donkey antibodies from Thermo Fisher Scientific.

Imaging was performed in a Leica TCS SP5 confocal microscope. Each VNC was typically 

scanned in 55 planes (Z step ~2 μm). When image quantification or comparison was 

performed (Figures 2 and 3), all different genotypes used were dissected at the same time, 

fixed and incubated together in the same well. To identify the genotype of each VNC while 

mounting, different parts of the head (eyes, proboscis, antennae, etc.) were left attached or 

removed from the VNC during dissection. Then, the same number of VNCs from different 

genotypes were arranged in a known fashion per slide, to avoid differences in the 

quantification due to the mounting process. Laser power and offset were maintained 

identically for all the samples being compared. Gain was slightly adjusted to an internal 

control in each case.

Image quantification analysis was performed using FIJI (Schindelin et al., 2012). To obtain 

the values of Dsx intensity, each nuclei was identified on the GFP channel, its Dsx/Hth 

signal measured, and individually normalized by subtracting the background signal of a 

similar area in the cytoplasmic region of the same cell. All adult VNC images are 0-24 hr 

old females.

Behavioral assays—We collected virgin males and females after eclosion and kept them 

isolated in vials at 25°C, 55% humidity and 12h:12h LD cycles until utilized for behavior 

assays. All tests were performed at ZT 7-11 and at least at four different occasions. Vaginal 

plate opening, ovipositor extrusions and receptivity were assayed at day 3 after eclosion in 

custom 18-multiplex mating arenas (chamber size: 10 mm diameter). From eclosion to day 

3, individual male and female virgins were kept isolated in vials. At day 3, single males and 

females were placed in a half of each arena and allowed to acclimate for 5 min before the 

assay. Then, they were allowed to interact and recorded for 10 minutes. Ovipositor 

extrusions and vaginal plates openings were analyzed during the first 4 minutes after 

courtship initiation or until mating. Counts of either behavior were normalized to time (min). 

Receptivity was calculated as the cumulative proportion of animals mated at 10 min. Egg-

laying was calculated as the number of eggs laid in the first 3 days after eclosion (for virgins 

of all genotypes), and during the first 24h after copulation (for mated females).

For mated behaviors, virgin females were kept isolated in individual vials. At day 3, they 

were allowed to mate to CS males, and immediately separated from males after copulation. 

Then, they were placed individually in single vials. Egg-laying in mated females is the 

number of eggs laid per female during the first 24h after mating. At 24h after mating, mated 
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females were assayed for vaginal plate opening, ovipositor extrusions and receptivity with 

fresh males, following the protocol detailed above.

For temperature shifts, flies carrying tub-Gal80ts were placed at either restrictive (18°C) or 

permissive (29°C) temperature during development, and shifted to the new temperature 

immediately after eclosion. 55% humidity and 12h:12h LD cycles were maintained.

Negative geotaxis was estimated in male flies as the average time required to climb a height 

of 9 cm inside a fly vial. Flies were house kept in vials in groups of as many as 5 flies right 

after eclosion. After 3-5 days, wings were manually clipped under CO2 flow, and returned to 

the vial for additional 48h. Then, they were transferred to an experimental vial with no food 

and recorded for 2-3 minutes after 3 taps. Each fly was monitored for three trials.

Fertility was measured as the proportion of flies giving rise to viable progeny. Individual 

males and females were crossed to 3 flies of the opposite sex in single vials. Progeny was 

screened in these vials one week after.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was evaluated using Fisher’s exact test for receptivity (Figures 3 and 

4) and fertility (Figure S5); Mann-Whitney non parametric test for egg-laying (Figures 3 and 

4), ovipositor extrusions (Figures 3 and 4), vaginal plates openings (Figures 3 and 4), 

fluorescence intensity (Figures 2 and 3; Figure S4), number of nuclei (Figure 1), number of 

sex combs (Figure S5), and climbing (Figure S5); and unpaired t test with Welch’s 

correction for differential gene expression analysis (Figures 1 and 2) and number of neurons 

(Figure 2). Ns = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Error bars in Figures 1, 2, 3, 4, and S5 represent SEM. All n values are displayed on the 

figures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Welcome Bender, Barry Dickson, Natalia Azpiazu, Carlos Ribeiro, Carolina Rezaval, Stephen Goodwin, 
Karla Kaun, Michelle Arbeitman, Richard Mann, Ian Duncan, and the Bloomington Drosophila Stock Center for fly 
strains, plasmids, and antibodies used in this study. We thank Ernesto Sánchez-Herrero and Paloma Martín for help 
and support. Work in E.C.L.’s group was supported by the NIH (R01-GM083300 and R01-NS083833) and MSK 
Core grant P30-CA008748.

REFERENCES

Agarwal V, Subtelny AO, Thiru P, Ulitsky I, and Bartel DP (2018). Predicting microRNA targeting 
efficacy in Drosophila. Genome Biol. 19, 152. [PubMed: 30286781] 

Anholt RRH, O’Grady P, Wolfner MF, and Harbison ST (2020). Evolution of Reproductive Behavior. 
Genetics 214, 49–73. [PubMed: 31907301] 

Bender W (2008). MicroRNAs in the Drosophila bithorax complex. Genes Dev. 22, 14–19. [PubMed: 
18172161] 

Casares F, and Mann RS (1998). Control of antennal versus leg development in Drosophila. Nature 
392, 723–726. [PubMed: 9565034] 

Garaulet et al. Page 12

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, and Huber W (2005). BioMart 
and Bioconductor: a powerful link between biological databases and microarray data analysis. 
Bioinformatics 21, 3439–3440. [PubMed: 16082012] 

Feng K, Palfreyman MT, Häsemeyer M, Talsma A, and Dickson BJ (2014). Ascending SAG neurons 
control sexual receptivity of Drosophila females. Neuron 83, 135–148. [PubMed: 24991958] 

Garaulet DL, Castellanos MC, Bejarano F, Sanfilippo P, Tyler DM, Allan DW, Sánchez-Herrero E, and 
Lai EC (2014). Homeotic function of Drosophila Bithorax-complex miRNAs mediates fertility by 
restricting multiple Hox genes and TALE cofactors in the CNS. Dev. Cell 29, 635–648. [PubMed: 
24909902] 

Garaulet DL, Zhang B, Wei L, Li E, and Lai EC (2020). miRNAs and Neural Alternative 
Polyadenylation Specify the Virgin Behavioral State. Dev. Cell 54, 410–423.e4. [PubMed: 
32579967] 

Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards KA, Karch F, and 
Bender W (2012). abd-A regulation by the iab-8 noncoding RNA. PLoS Genet. 8, e1002720. 
[PubMed: 22654672] 

Häsemeyer M, Yapici N, Heberlein U, and Dickson BJ (2009). Sensory neurons in the Drosophila 
genital tract regulate female reproductive behavior. Neuron 61, 511–518. [PubMed: 19249272] 

Jang YH, Chae HS, and Kim YJ (2017). Female-specific myoinhibitory peptide neurons regulate 
mating receptivity in Drosophila melanogaster. Nat. Commun 8, 1630. [PubMed: 29158481] 

Kim D, Langmead B, and Salzberg SL (2015). HISAT: a fast spliced aligner with low memory 
requirements. Nat. Methods 12, 357–360. [PubMed: 25751142] 

Kopp A (2012). Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 
28, 175–184. [PubMed: 22425532] 

Kubli E, and Bopp D (2012). Sexual behavior: how Sex Peptide flips the postmating switch of female 
flies. Curr. Biol 22, R520–R522. [PubMed: 22789998] 

Liao Y, Smyth GK, and Shi W (2019). The R package Rsubread is easier, faster, cheaper and better for 
alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47. [PubMed: 
30783653] 

McRobert SP, and Tompkins L (1985). The effect of transformer, doublesex and intersex mutations on 
the sexual behavior of Drosophila melanogaster. Genetics 111, 89–96. [PubMed: 3928434] 

Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, and Vasconcelos ML (2020). Ovipositor 
Extrusion Promotes the Transition from Courtship to Copulation and Signals Female Acceptance 
in Drosophila melanogaster. Curr. Biol 30, 3736–3748.e5. [PubMed: 32795437] 

Nothiger R, Leuthold M, Andersen N, Gerschwiler P, Grüter A, Keller W, Leist C, Roost M, and 
Schmid H (2009). Genetic and developmental analysis of the sex-determining gene ‘double sex’ 
(dsx) of Drosophila melanogaster. Genet. Res 50, 113–123.

Ogawa S, and Makino J (1984). Aggressive behavior in inbred strains of mice during pregnancy. 
Behav. Neural Biol 40, 195–204. [PubMed: 6539590] 

Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, Bessarab DA, Salzberg A, and Sun YH (1998). The 
Homothorax homeoprotein activates the nuclear localization of another homeoprotein, 
extradenticle, and suppresses eye development in Drosophila. Genes Dev. 12, 435–446. [PubMed: 
9450936] 

Rezával C, Pavlou HJ, Dornan AJ, Chan YB, Kravitz EA, and Goodwin SF (2012). Neural circuitry 
underlying Drosophila female postmating behavioral responses. Curr. Biol 22, 1155–1165. 
[PubMed: 22658598] 

Rideout EJ, Dornan AJ, Neville MC, Eadie S, and Goodwin SF (2010). Control of sexual 
differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat. Neurosci 13, 
458–466. [PubMed: 20305646] 

Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, and Mann RS (1997). Nuclear translocation of 
extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. 
Cell 91, 171–183. [PubMed: 9346235] 

Robinett CC, Vaughan AG, Knapp JM, and Baker BS (2010). Sex and the single cell. II. There is a 
time and place for sex. PLoS Biol. 8, e1000365. [PubMed: 20454565] 

Garaulet et al. Page 13

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Robinson MD, McCarthy DJ, and Smyth GK (2010). edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140. [PubMed: 
19910308] 

Salvany L, Aldaz S, Corsetti E, and Azpiazu N (2009). A new role for hth in the early pre-blastodermic 
divisions in Drosophila. Cell Cycle 8, 2748–2755. [PubMed: 19652544] 

Sanders LE, and Arbeitman MN (2008). Doublesex establishes sexual dimorphism in the Drosophila 
central nervous system in an isoform-dependent manner by directing cell number. Dev. Biol 320, 
378–390. [PubMed: 18599032] 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. 
Nat. Methods 9, 676–682. [PubMed: 22743772] 

Soller M, Haussmann IU, Hollmann M, Choffat Y, White K, Kubli E, and Schäfer MA (2006). Sex-
peptide-regulated female sexual behavior requires a subset of ascending ventral nerve cord 
neurons. Curr. Biol 16, 1771–1782. [PubMed: 16979554] 

Svare B, Mann MA, Broida J, and Michael SD (1982). Maternal aggression exhibited by 
hypophysectomized parturient mice. Horm. Behav 16, 455–461. [PubMed: 6891694] 

Tyler DM, Okamura K, Chung WJ, Hagen JW, Berezikov E, Hannon GJ, and Lai EC (2008). 
Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of 
microRNA loci. Genes Dev. 22, 26–36. [PubMed: 18172163] 

Wang F, Wang K, Forknall N, Parekh R, and Dickson BJ (2020a). Circuit and Behavioral Mechanisms 
of Sexual Rejection by Drosophila Females. Curr. Biol 30, 3749–3760.e3. [PubMed: 32795445] 

Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, and Dickson BJ (2020b). Neural 
circuitry linking mating and egg laying in Drosophila females. Nature 579, 101–105. [PubMed: 
32103180] 

Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, and Dickson BJ (2021). Neural circuit 
mechanisms of sexual receptivity in Drosophila females. Nature 589, 577–581. [PubMed: 
33239786] 

Yang CH, Rumpf S Xiang Y, Gordon MD, Song W, Jan LY, and Jan YN (2009). Control of the 
postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 61, 519–
526. [PubMed: 19249273] 

Garaulet et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• RNA-seq analysis reveals genes downstream of miR-iab-4/8/homothorax 
regulon

• miR-iab-4/8 regulation of homothorax determines Doublesex levels in 

Drosophila female CNS

• Developmental control of miR/Hth/Dsx circuit regulates female behavior
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Figure 1. Cytological and transcriptomic analysis of a key miRNA/target regulon in the larval 
ventral nerve cord (VNC)
All stainings depict third instar larval VNC.

(A) The Bithorax Complex (BX-C) miRNA locus yields mir-iab-4 and mir-iab-8 from 

opposite strands. Their activity is associated with repression of ubiquitously transcribed tub-

GFP-miRNA sensors, revealing distinct domains in abdominal segments, whose registers are 

marked by segmental marker Leukokinin (Lk; red).This places miR-iab-4-5p activity in 

segments A2–A7 and miR-iab-8-5p in A8–A9. A portion of the Lk staining is shown to the 

left of each image to reference the segment locations.
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(B) The posterior limit of abd-A (A7a/p) corresponds to the miR-iab-4/miR-iab-8 border.

(C) Homothorax (Hth) is largely absent throughout the abdominal VNC in wild-type flies 

but is derepressed in mir-iab-4/8 and hth[BSmut] mutants, most overt within the iab-8 

domain.

(D) Validation of dissection strategy to prospectively isolate A8–A9 VNC domain (iab-8 

region) for transcriptomics. Stainings show two pieces of an individual VNC, which were 

imaged separately for this montage.

(E) Volcano plot of transcripts >1 reads per kilobase of transcript, per million mapped reads 

(RPKM) showing that TALE cofactors hth and exd are among the most significantly 

derepressed miR-iab-8-5p targets in the BX-C miRNA mutant VNC; most other direct 

targets were unaffected. Black horizontal line demarcates the 0.05 cutoff for p value; dotted 

vertical lines indicate the 1.5 cutoff for fold change.

(F and G) Comparison of BX-C Hox genes and TALE cofactors expression in wild-type, 

miRNA mutant, and hth[BSmut] iab-8 domain VNCs. exd is derepressed in the miRNA 

mutant, but not in hth[BSmut].
(H) Single-plane confocal images demonstrating nuclear colocalization of Hth and Exd in 

the iab-8 domain of mir-iab-4/8 and hth[BSmut] VNCs.

(I) Quantification of ectopic nuclear Exd cells in the iab-8 domain of VNCs of the indicated 

genotypes.

Statistical significance was evaluated using unpaired t test with Welch’s correction (F and G) 

and Mann-Whitney non-parametric test (I). Three biological replicates per genotype were 

used for transcriptome analysis shown in (E)–(G). *p < 0.05, ***p < 0.001, ****p < 0.0001; 

ns, not significant. Error bars, SEM. Scale bars, 25 μm (A–D); 40 μm (H). A, anterior; p, 

posterior.
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Figure 2. A double-negative gene-regulatory circuit: BX-C miRNAs prevent Hth from excluding 
Dsx in the VNC
(A) Transcriptome analysis reveals substantial similarity in the larval iab-8 domain of the 

BX-C miRNA and hth[BSmut] mutants, compared with Canton-S (three biological 

replicates per genotype). Only genes > 1 RPKM and p < 0.05 are plotted. Dotted gray lines 

indicate fold change = 1.5.

(B) A notable downregulated transcript in both mutants is the sex-specific differentiation 

factor doublesex (dsx).

(C) Hth and Dsx proteins are spatially complementary in the adult VNC.
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(D) Derepression of Hth in BX-C miRNA mutant (mir[Δ/C11]) and hth[BSmut] 
compromises accumulation of Dsx in abdominal segments of adult VNCs, especially in 

dorsal planes as shown here.

(E) Quantification of Dsx+ nuclei in wild-type, BX-C miRNA mutant, and hth[BSmut] 
VNC; total VNC and dorsal half are shown. The number of Dsx+ neurons is compromised 

in the mutant conditions.

(F) Conversely, the number of other identified abdominal subpopulations that mediate PMRs 

(VT-switch lines) are not affected by miRNA deletion.

(G) Quantification of Hth and Dsx protein levels in individual abdominal neurons relevant to 

the female post-mating switch (abdominal SAG-1 neurons). Depression of Hth correlates 

with reduction of Dsx within identified neurons.

(H) Representative GFP-labeled SAG-1 neurons from higher (Q3) and lower (Q1) quartiles 

of Dsx, as quantified in (G), with corresponding Dsx and Hth levels. The nuclear levels of 

each factor (Int) were calculated by subtracting the signals in cytoplasm (marked in green) 

from the corresponding nucleus (dotted line) for each antigen; samples were co-stained and 

imaged in parallel within the linear range.

t test with Welch’s correction (B, E, and F); Mann-Whitney non-parametric test (G). *p < 

0.05, ***p < 0.001, ****p < 0.0001; ns, not significant. Error bars, SEM. Scale bars, 60 μm 

(C); 30 μm (D); 2 μm (H).
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Figure 3. Endogenous Dsx is essential for females to interpret the virgin behavioral state
(A–D) Comparison of female behaviors in wild-type virgins, mated females, and doublesex 
heterozygotes, illustrating a partial transition to the mated state in the latter.

(E) Analysis of Dsx levels in abdominal SAG-1 neurons pre- and 24 h post-insemination and 

in virgins using independent dsx-RNAi transgenes. dsx-RNAi[JF] has a stronger effect on 

Dsx in SAG-1 neurons.

(F) Representative GFP-labeled abdominal SAG-1 neurons from average Dsx levels are 

shown, with corresponding Dsx and Hth staining. The dotted line corresponds to the nucleus 

of each neuron.

(G and H) Pan-neuronal knockdown of dsx results in increased egg-laying and decreased 

receptivity by female virgins. Restricted knockdown using VT-switch lines and dsx-
RNAi[JF] transgene also induces virgin egg-laying and reduces receptivity.

Mann-Whitney non-parametric test (A, C–E, and G); Fisher’s exact test (B and H). *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant. Error bars, SEM. Scale 

bar, 2 μm (F). Eggs were collected over 3 days for all virgin genotypes and over the first 24 

h after copulation in mated flies (A and G). M, mated females; V, virgin females.
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Figure 4. SAG-1 neurons specifically require Dsx for a suite of female virgin behaviors
(A and B) Suppression of Dsx within the SAG-1 lineage enhances egg-laying and 

compromises virgin receptivity, similar to whole-animal mir-iab-4/8 deletion and 

hth[BSmut] mutants. dsx-RNAi[JF] has a stronger effect.

(C) Strategy for temporal depletion of dsx. EL, egg-laying; Rec., receptivity.

(D and E) Analysis of egg-laying (D) and receptivity (E) in flies with developmental or adult 

knockdown of dsx, highlighting the developmental role of dsx for virgin adult behaviors.
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(F and G) Modulation of Dsx levels also decreases vaginal plates opening (F) and induces 

ovipositor extrusions (G), comparable with mir-iab-4/8 deletion and hth [BSmut] mutants.

(H) Model for the genetic and spatial control of female virgin behavior in the VNC. Upper 

left, larval VNC illustrates the protein domains of Hth (in thoracic segments and A1) and 

Dsx (in A2–A9), and RNA domains of mir-iab-4 (A2–A7) and mir-iab-8 (A8–A9). 

Restricted neural populations that govern the female post-mating switch are distributed 

within A2–A9 (VT-switch neurons), including four SAG-1 neurons within the mir-iab-8 
domain. In wild-type abdominal VNC, the activity of mir-iab-4/8 binding sites on hth-30 

UTR, or depleted of dsx within VT-switch neurons (and in as few as those of highly 

restricted SAG-1 neurons) exhibit a switch from virgin to post-mated behaviors.

Mann-Whitney non-parametric test (A, F, and G); Fisher’s exact test (B and E). *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant. Error bars, SEM. Eggs were 

collected over 3 days for all virgin genotypes and over the first 24 h after copulation in 

mated flies. V, virgin; M, mated.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-Hth (1:500) Salvany et al., 2009 N/A

guinea pig anti-Hth (1:500) Salvany et al., 2009 N/A

Mouse anti-Abd-A (1:500) Gift of Ian Duncan Department of Biology. Washington 
University in St. Louis

Rat anti-Dsx Sanders and Arbeitman, 2008 RRID: AB_2569439

Donkey anti-rabbit Alexa fluor 488 Thermo Fisher Scientific Cat# A32790; RRID: AB_2762833

Goat anti-rabbit Alexa fluor 647 Thermo Fisher Scientific Cat# A32733; RRID: AB_2633282

Donkey anti-mouse Alexa fluor 594 Thermo Fisher Scientific Cat# A32744; RRID: AB_2762826

Donkey anti-mouse Alexa fluor 647 Thermo Fisher Scientific Cat# A32787; RRID: AB_2762830

Goat anti-guinea pig Alexa fluor 488 Thermo Fisher Scientific Cat# A-11073; RRID: AB_2534117

Donkey anti-rat Alexa fluor 594 Thermo Fisher Scientific Cat# A-21209; RRID: AB_2535795

Chemicals, peptides, and recombinant proteins

Gel Loading Buffer II Invitrogen AM8547

AccuPrime Pfx DNA Polymerase Thermo Fisher 12344024

Trizol reagent Life Technologies 15596018

Oligo d(T)25 Magnetic Beads New England Biolabs S1419S

Millennium RNA Markers Thermo Fisher AM7150

Amersham Megaprime DNA Labeling System Cytiva RPN1606

VECTASHIELD_ Vibrance Antifade Mounting 
Medium without DAPI

Vector Laboratories H-1700-2

VECTASHIELD_ Antifade Mounting Medium 
with DAPI

Vector Laboratories H-1500-10

Experimental models: Organisms/Strains

mir[C11] Garaulet et al., 2020, Eric Lai lab. N/A

mir[Δ] Bender, 2008, Gift of Welcome Bender, 
Harvard University

N/A

Canton-S Gift of Karla Kaun, Department of 
Neuroscience, Brown University.

N/A

VT-lines and SAG-1 split Gal4 line Feng et al., 2014, Gift of Barry Dickson, 
Janelia Farm Research Campus.

N/A

tub-GFP-sensors for miR-iab-4 and miR-iab-8 Tyler et al., 2008, Eric Lai lab N/A

hth[BSmut] Garaulet et al., 2020, Eric Lai lab. N/A

2xUAS-dsx-RNAi[BB] Robinett et al., 2010 N/A

UAS-hth-RNAi Vienna Drosophila RNAi Center 100630

tubGal80 ts Bloomington Drosophila Stock Center 7108

elav-Gal4[C-155] Bloomington Drosophila Stock Center 458

UAS-mCD8-GFP Bloomington Drosophila Stock Center 5137

UAS-Red-Stinger Bloomington Drosophila Stock Center 8547

UAS-dsx-RNAi[JF] Bloomington Drosophila Stock Center 26716
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REAGENT or RESOURCE SOURCE IDENTIFIER

dsx[1] Bloomington Drosophila Stock Center 1679

dsx[9] Bloomington Drosophila Stock Center 44223

UAS-dsxF Bloomington Drosophila Stock Center 44223

UAS-hth Gift of Richard S. Mann, Columbia 
University. Casares and Mann, 1998

N/A

Deposited data

VNC RNA-seq data This study. NCBI GEO: GSE166562

Software and algorithms

Prism 7 for Mac OS X GraphPad https://www.graphpad.com

Fiji ImageJ 2.0.0-rc-68/1.52e N/A https://imagej.nih.gov/ij

Rstudio Version 1.2.1335 Rstudio https://www.rstudio.com/

IGV_2.6.3 Broad Institute http://software.broadinstitute.org/
software/igv/
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