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ABSTRACT: Small-molecule inhibitors of the mycobacterial transcriptional repressor EthR have previously been shown to act
as boosters of the second-line antituberculosis drug ethionamide. Fragment-based drug discovery approaches have been used in
the past to make highly potent EthR inhibitors with ethionamide boosting activity both in vitro and ex vivo. Herein, we report the
development of fragment-sized EthR ligands with nanomolar minimum effective concentration values for boosting the
ethionamide activity in Mycobacterium tuberculosis whole-cell assays.

■ INTRODUCTION

Twenty years after the World Health Organization declared
tuberculosis (TB) disease to be a global health emergency,
limited progress has been made on curbing, let alone
eradicating, the TB epidemic.1 It has been estimated that one
in three people worldwide harbors the Mycobacterium tuber-
culosis bacillus,2 and over 1.5 million people die from TB each
year.1 The first-line antibiotics isoniazid, pyrazinamide, etham-
butol, and rifampicin used for the treatment of active drug-
susceptible TB3 are complemented by a cohort of second-line
drugs such as ethionamide and prothionamide, which are
prescribed in cases where there is evidence for multidrug-
resistant TB infection. In an attempt to combat the global TB
epidemic, there has been extensive research into the develop-
ment of novel vaccines4 and chemotherapeutics5−7 against TB.
In spite of these efforts, a reliable vaccine against the infection

has not yet been introduced to the market, and the desperate
need for antibiotics with novel mechanisms of action remains.
While there has been a concerted effort to develop new

strategies to target TB directly, an alternative strategy involves
boosting the effect of existing second-line antituberculars such
as ethionamide.8

Ethionamide and isoniazid are pro-drugs, which in their
activated form as nicotinamide adenine dinucleotide (NAD)
adducts are potent inhibitors of InhA, the 2-trans-enoyl
reductase enzyme belonging to the type II fatty acid synthase
system of M. tuberculosis (Figure 1).9−11 While activation of
isoniazid in M. tuberculosis depends on KatG,9,12 the flavin-

Received: February 3, 2017
Accepted: March 17, 2017
Published: March 17, 2017

Articles

pubs.acs.org/acschemicalbiology

© 2017 American Chemical Society 1390 DOI: 10.1021/acschembio.7b00091
ACS Chem. Biol. 2017, 12, 1390−1396

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/acschemicalbiology
http://dx.doi.org/10.1021/acschembio.7b00091
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


dependent monooxygenase enzyme EthA, whose expression is
controlled by the transcriptional repressor EthR,13 is respon-
sible for the activation of ethionamide.14,15 It has been
previously shown that small-molecule ligands, which abolish
the DNA-binding ability and hence the transcriptional repressor
function of EthR, can exhibit ethionamide boosting activity
both in vitro and ex vivo.8,16,17 Boosting the effect of
ethionamide by coadministration with EthR inhibitors is an
attractive therapeutic strategy because the reduction of the
required daily dose of this second line antibiotic is expected to
decrease the toxicity-related side effects and improve patient
compliance with the drug.
Fragment-based approaches have previously been explored

for the design and synthesis of potent ethionamide
boosters.18−20 We previously carried out a fragment screen
against EthR and used a fragment-linking strategy for the design
and synthesis of a disulfide-linked EthR ligand capable of
boosting ethionamide activity (screened at a concentration of 1
μM).19 Recently we reported a fragment merging approach
toward the development of small-molecule inhibitors of M.
tuberculosis EthR, which gave us access to molecular probes,
potent at inhibiting the interaction between EthR and its DNA
operator in vitro but nevertheless unable to boost ethionamide
activity in cellular assays.20

In contrast to our merged EthR ligands, an interesting
observation was made that fragment 1 (Figure 2) was found to
be capable of boosting ethionamide activity against M.
tuberculosis.19 The biological activity of 1 could at least in
part be due to its small size, which allows it to permeate more

effectively through the mycobacterial envelope and/or host cell
membrane. Small molecules are also thought to contribute to
the sterilizing activity due to their ability to diffuse into caseum
within lesions and thus have the potential to shorten the
duration of TB treatment.21 In this Article we describe the
design, synthesis, and biological evaluation of a set of fragment-
sized, highly ligand-efficient derivatives of fragment 1, which
exhibit low nanomolar ethionamide boosting ability in a
previously described macrophage assay.8,16−18

Fragment 1 was originally identified in a fluorescence-based
thermal shift screening campaign of our 1250-member
fragment library against EthR.19 The presence of fragment 1
at a concentration of 1 μM was shown to reduce the minimum
inhibitory concentration (MIC) of ethionamide from 15 μM to
approximately 2 μM under the conditions of the resazurin
reduction microplate assay used.19 An X-ray crystal structure of
fragment 1 bound to EthR (Figure 2) was obtained that
provided a good starting point for the design of a small focused
library of compounds containing hydrogen-bond donor or
acceptor groups at appropriate positions within the scaffold of
compound 1. The distances between the primary amide of
Asn176 and position X of 1, and between the hydroxyl oxygen
atom of Thr149 and position Y of 1, are shown in Figure 2. The
substitution of the carbon atoms of 1 at positions X and Y for
hydrogen-bond donor or acceptor functional groups, designed
to interact with residues Asn176 and Thr149, is an attractive
strategy for developing a structure−activity relationship (SAR)
around the ethionamide booster compound 1 (Table 1).

Figure 1. Mechanisms of activation of isoniazid (INH) and ethionamide (ETH) and inhibition of InhA by the INH-NAD and ETH-NAD adducts.

Figure 2. X-ray crystal structure of fragment 1 bound to EthR with a 2:1 stoichiometry (PDB code 5F1J), with subdivision of the EthR binding
cavity into four distinct subpockets (I, II, III, and IV). The distances between the carbon atoms marked X and Y and residues Asn176 and Thr149 are
indicated.
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By analogy to the starting fragment 1, derivatives 2−10 were
intended to form polar interactions with the amide of Asn179
(via their carbonyl or sulfonamide oxygen atoms). In addition,
the urea 3, the amide 4, and the sulfonamide urea 6 were
designed to hydrogen-bond to Asn176 via their N−H
functionality. The sp3 oxygen atom of carbamate 2 was
envisaged to act as a weak hydrogen-bond acceptor from
Asn176. Finally, the furan/tetrahydrofuran oxygen atoms of
amides 7−10, were designed to form weak hydrogen-bonding
interactions with the hydroxyl group of Thr149. Compounds
1−8, however, showed no improvements in activity when
tested for binding to EthR by isothermal titration calorimetry
(KD values between 6 and 22 μM were measured for derivatives
1−8).
The ability of compounds 1−10 to boost ethionamide

activity (in the presence of 1/10 of the MIC of ethionamide) in
M. tuberculosis culture grown on 7H9/ADC/Tw media was
tested (Table 1). Interestingly, the starting fragment 1 showed
the highest ethionamide boosting ability (minimum effective
concentration (MEC) = 3.0 ± 1.8 μM; i.e., ligand 1 needed to
be present at a concentration of 3 ± 1.8 μM to render
ethionamide present at 1/10 of its MIC bactericidal against M.
tuberculosis). The carbamate 2 was the only other compound in
this series, which showed ethionamide boosting activity in this

whole-cell assay (MEC = 19 ± 7.5 μM), while compounds 3−
10 were shown to be less active (MEC > 50 μM). Thus, the
SAR strategy of introducing hydrogen-bond donor or acceptor
functionality in the scaffold of fragment 1 did not afford EthR
inhibitors with improved ethionamide boosting ability. The
increased polarity and higher number of hydrogen-bond donor
and acceptor atoms of molecules 3−10 are likely to be
detrimental to the permeability of the inhibitors across the
mycobacterial cell envelope and the host cell membrane.
The KD values measured by ITC and the relative ability of

the ligands to boost ethionamide in cellular assays do not
correlate well. The lack of ethionamide boosting ability of
compounds 3−8, which have KD values measured by ITC
comparable to those of the active ethionamide boosters 1 and
2, could be due to the low permeability of these compounds
across the mycobacterial envelope or host cell membrane.
However, a different mode of binding for compound 2 in the
cavity of EthR cannot be excluded as this point, which could
also explain why this compound was found to be active while
3−8 were not.
The X-ray crystal structures of compounds 3−10 bound to

EthR have been solved to resolutions in the range between 1.7
and 2.0 Å. It was unfortunately not possible to obtain suitable
crystals of EthR in complex with compound 2. The X-ray
crystal structure of 3 bound to EthR is of particular interest
since three molecules of this ligand were found to bind to a
single EthR monomer (Figure 3a). The two molecules of 3,

which bind inside subpockets II and IV, respectively,
recapitulate the binding modes of fragment 1. There is
evidence for the formation of a hydrogen-bond between the
urea N−H of 3 bound to subpocket II and Asn176 (Figure 3a).
The third molecule of 3 binds at the very entrance of the EthR
binding cavity (subpocket I).
In contrast to this, the close analogue of urea 3, the amide 4,

was shown to bind to EthR only in a 1:1 stoichiometry
nevertheless taking advantage of the hydrogen bonding
opportunities with both Asn179 and Asn176 within subpocket
II (Figure 3b). The markedly different stoichiometry of binding

Table 1. Exploration of SAR around Fragment 1:
Dissociation Constants (KD) Determined by ITC (n = 1)

aMEC = minimum effective concentration. Results are mean ±
standard deviation of two independent replicates.

Figure 3. (a) X-ray crystal structure of urea 3 (PDB code 5IOY)
bound to EthR. Three units of ligand 3 soak inside the binding cavity
of the protein, filling subpockets I, II, and IV. (b) X-ray crystal
structure of amide 4 (PDB code 5IOZ) bound to subpocket II of
EthR.
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of compounds 1, 3, and 4 to EthR does not result in a
significant difference in the dissociation constants (KD by ITC)
of these two compounds (Table 1).
From a crystallographic perspective the sulfonamide group of

derivative 5 is a suitable isostere for the amide functionality of
the starting fragment 1. Unlike 1, ligand 5 only binds to EthR in
a 1:1 stoichiometry (Figure 4a); however, it closely

recapitulates the binding mode of 1 inside subpocket II. Both
oxygen atoms of the sulfonamide group of 5 are stabilized by
polar interactions with the side chain of Asn179 (Figure 4a).
The sulfonamide urea 6 was found to bind to EthR in an

identical position to its close derivative 5 with the two oxygen
atoms of 6 interacting with Asn179 (Figure 4b). There is also
evidence for the displacement of the sulfonamide urea N−H of
6 relative to the corresponding methylene carbon atom of 5,
presumably in order to optimize the available polar interaction
with Asn176 (Figure 4).
The electron density in the X-ray crystal structures of 7 and 8

bound to EthR is less well-defined, and for this reason the
figures showing the binding modes of these ligands to the
protein are given in the Supporting Information (Figures S6
and S7, respectively).
Compounds 9 and 10 were also found to bind singly to

subpocket II of EthR (Figure 5a), recapitulating the binding
mode of the original fragment 1 in this subpocket. While the
urea N−H functionalities of both 9 and 10 seem to be
stabilized by polar interactions with the side chain of Asn176,
the evidence for hydrogen-bonding between the furan/
tetrahydrofuran oxygen atoms of 9 and 10, respectively, with
Thr149 is less convincing.
Since amide 1 and carbamate 2 were the only two

compounds capable of boosting ethionamide activity in M.
tuberculosis culture, further SAR was carried out around these
two molecules. A range of compounds were designed by
varying the hydrocarbon group attached to the carbonyl atom
of pyrrolidine amide 1. Removing the ethylene linker bridging
the pyrrolidine amide and the cyclopentyl ring of 1 resulted in
loss of ethionamide boosting activity of compound 11 (MEC >
50 μM, see Table 2). Reintroducing a methylene linker in

amide 12 (MEC = 19 ± 7.5 μM) restored some of the boosting
effect. Increasing the ring size of 1 from cyclopentyl to
cyclohexyl resulted in an approximately 4-fold increase in
potency (compound 13, MEC = 0.8 ± 0.5 μM). The best
ethionamide boosting was achieved by using a propylene linker
and a cyclohexyl ring (compound 14, MEC = 0.4 ± 0.2 μM),
which gave approximately 7-fold improvement in MEC on the
starting fragment 1. Addition of an extra methylene unit to the
flexible linker of 14 caused a 4-fold drop in the potency of
ligand 15 (MEC = 1.6 ± 0.8 μM). The cyclohexyl ring of 15
proved essential, and its removal resulted in loss of activity
(compounds 18 and 19, MEC > 50 μM). Finally, introducing a
methylene linker between the pyrrolidine amide and the
adamantyl group of the inactive amide 16 (MEC > 50 μM)
caused an over 30-fold increase in ethionamide boosting ability
of compound 17 (MEC = 1.6 ± 0.8 μM).
Table 3 shows SAR around carbamate 2. Substitution of the

pyrrolidine ring of 2 for a six- or seven-member ring
(carbamates 20 and 21, respectively) resulted in loss of
ethionamide boosting ability, while decreasing the size of the
pyrrolidine ring had the opposite effect in compounds 26
(MEC = 6.3 ± 3.6 μM) and 27 (MEC = 13 ± 7.2 μM).
Decreasing the ring size of the cyclopentyl ring of 2 to
cyclopropyl or cyclobutyl in compounds 23 (MEC = 3.1 ± 1.8
μM) and 24 (MEC = 3.1 ± 1.8 μM), respectively, appeared
beneficial in improving the ethionamide boosting of these
compounds. The optimal length of the flexible linker for the
carbamate series was shown to consist of three carbon atoms
(carbamate 28, MEC = 0.4 ± 0.2 μM). Addition of a fourth
methylene group to the flexible linker resulted in a roughly 16-
fold decrease in the potency of ligand 29 (MEC = 6.3 ± 3.6
μM). Boc-pyrrolidine 30 (MEC > 50 μM) was shown to be
inactive in M. tuberculosis culture.
The SAR exploration around molecules 1 and 2 led to the

identification of ligands 14 and 28, respectively, which have
MEC = 400 nM for the 10-fold boosting of ethionamide, and
therefore represent a roughly 7-fold improvement upon the
starting fragment 1 (MEC = 3 ± 1.8 μM).
Finally, the ability of a selection of the molecules from Tables

1−3 to boost ethionamide activity in M. tuberculosis infected

Figure 4. X-ray crystal structures of (a) compound 5 (PDB code
5J3L) and (b) compound 6 bound to subpocket II of EthR. Relevant
interatomic distances are indicated.

Figure 5. X-ray crystal structures of (a) compound 9 (PDB code
5J1U) and (b) compound 10 (PDB code 5IP6) bound to subpocket II
of EthR.
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murine macrophages in a previously described and well-
established assay was tested.16,17 Experimental data from the
macrophage assay are shown in Figure 6. In summary,
compounds 1, 22, 23, and 25 exhibit significant boosting of
ethionamide in the macrophage assay. In addition to an
ethionamide boosting effect, compounds 1, 22, and 25 have an
intrinsic bactericidal activity against M. tuberculosis at
concentrations higher than 1 μM. The most potent derivatives
of compounds 1 and 2, inhibitors 14 and 28, were also tested in
the macrophage assay and were shown to exhibit EC50 = 40 and

50 nM, respectively, in the presence of 1/10 of the MIC of
ethionamide. Nevertheless, compounds 14 and 28 also
exhibited a significant intrinsic bactericidal effect in the absence
of ethionamide with IC50 ≈ 1 μM. Compounds 3−10 from
Table 1 were also tested in the macrophage assay; however,
they did not boost ethionamide activity in M. tuberculosis
infected macrophages to the same degree as boosters 1, 14, 22,
25, and 28. This agrees with the observation that compounds
3−10 were also less effective at boosting ethionamide in M.

Table 2. Exploration of SAR around Fragment 1 by Varying the Hydrocarbon Group Attached to the Carbonyl Carbon Atom of
the Pyrrolidine Amide

aMEC = minimum effective concentration. Results are shown as mean ± standard deviation of two independent replicates.

Table 3. Exploration of SAR around Carbamate 2

aMEC = minimum effective concentration. Results are shown as mean ± standard deviation of two independent replicates.
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tuberculosis culture grown on 7H9/ADC/Tw media (MECs >
50 μM, Table 1).

■ CONCLUSION

We have shown that ligand 1, identified previously in a
fragment screen against EthR,19 exhibits an exceptionally strong
ethionamide boosting effect in whole-cell M. tuberculosis assays.
SAR aimed at introducing hydrogen bond donor or acceptor
functionality in the scaffold of 1 did not lead to improvement of
the boosting effect but was nevertheless instrumental in
identifying carbamate 2 as a second ligand exhibiting an
ethionamide boosting effect in whole-cell M. tuberculosis assays.
Subsequent SAR around 1 and 2 led to the identification of

the potent ethionamide boosters, the amide 14 (MEC = 0.4 ±
0.2 μM) and the carbamate 28 (MEC = 0.4 ± 0.2 μM), which
represent approximately 7-fold improvement in boosting the
effect of ethionamide in M. tuberculosis culture compared to the
starting fragment 1 (MEC = 3 ± 1.8 μM). Compounds 14 and
28 also exhibited low nanomolar EC50 (40 and 50 nM,
respectively) activity in our macrophage assay in the presence
of ethionamide at 1/10 of its MIC. Nevertheless, compounds
14 and 28 also showed a significant intrinsic bactericidal effect
in the absence of ethionamide with IC50 ≈ 1 μM. The strong
bactericidal effect of compounds 14 and 28 in the presence of
ethionamide at 1/10 of its MIC for the macrophage experiment
is presumably a combination of the antitubercular activity
intrinsic to these compounds on their own and an ethionamide
boosting effect.
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