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Abstract: A hybrid technique is proposed to enhance the localization performance of a time difference
of arrival (TDOA) deployed in non-line-of-sight (NLOS) suburban scenario. The idea was to use
Machine Learning framework on the dataset, produced by the ray tracing simulation, and the Channel
Impulse Response estimation from the real signal received by each sensor. Conventional localization
techniques mitigate errors trying to avoid NLOS measurements in processing emitter position,
while the proposed method uses the multipath fingerprint information produced by ray tracing
(RT) simulation together with calibration emitters to refine a Machine Learning engine, which gives
an extra layer of information to improve the emitter position estimation. The ray-tracing fingerprints
perform the target localization embedding all the reflection and diffraction in the propagation scenario.
A validation campaign was performed and showed the feasibility of the proposed method, provided
that the buildings can be appropriately included in the scenario description.

Keywords: wireless positioning; cooperative positioning; machine learning; hybrid positioning;
multipath exploitation; time difference of arrival localization; ray tracing fingerprints

1. Introduction

We propose an approach to enhance TDOA localization Systems in urban scenario binding
together a ray-tracing propagation tool to extract the multipath fingerprint and a machine learning
framework to improve the precision even in NLOS situation. Contrary to similar approaches [1],
where the NLOS measurements are not used in the position estimation, we build a multipath
exploitation scheme that uses ray tracing and machine learning to give an extra layer of information
using the buildings and obstacles in the environment. Despite the limitation of the primary
results, in some scenarios, where the obstacles do not change their position, the channel impulse
response estimation can be improved by repeatedly averaging the delays and power of the
multipath components.

The localization of an electromagnetic source using a set of geographic spatially separated sensors
is an essential problem in radar, sonar, and global positioning systems and mobile communications.
The position of a target of interest can be determined by utilizing its emitted signal measured at an array
of spatially separated receivers, also known as “observers” or sensors, with a priori known locations.

Among several parameters that can be measured from the received signal, time of arrival (TOA),
time difference of arrival (TDOA), received signal strength (RSS), and direction of arrival (DOA), of the
emitted signal, are the most commonly used for source localization. TOAs, TDOAs, and RSSs provide
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the distance information between the source and sensors, while DOAs are the source bearings relative
to the receivers [2].

The emitter position can be estimated using the range between the source and observer taken
from the TOAs, TDOAs, and RSS measurements. However, the distance and position have a nonlinear
relationship. Another drawback effect in range-based systems is the multipath propagation caused
by the obstacles in the scenario, where a non-line-of-sight (NLOS) ray can cause large positive biases
in the estimated distance. The main algorithms to perform position estimation are the nonlinear
least squares (NLS) and maximum likelihood (ML), which try to use the nonlinear relationships
between the source and measurements. There are also linear least squares (LLS), weighted linear least
squares (WLLS), and subspace approaches, which are based on the linearization in the range-difference
function. It is also possible to try to model the positioning as an unconstrained optimization problem,
using expressions for the mean and variance of the error as cost functions [3].

The NLOS propagation takes place when there are obstructions (e.g., walls, vegetation, buildings,
and mountains) between the transmitter (TX) and the receiver (RX). The conventional TDOA methods
try to take into account only line-of-sight (LOS) measurements and discard the NLOS paths in the
position estimation. Multipath is an intrinsic urban channel impulse characteristic that is difficult to
eliminate. In practical outdoor scenarios, the availability of positions to deploy sensors are scarce.

Multipath is typically perceived as a limitation but is possible to exploit interaction effects for
localization of the RF emitter using a single sensor. There are various approaches [4] for tracking and
vehicle position finding where multipath exploitation is performed to locate the target, again using the
image-based approach to identify the sensor position end extract the location with LOS and NLOS
calculation. In [5], the multipath information is used together with the image theory to locate either
an emitter or a target, showing the feasibility to perform location finding using only one sensor.
When considering electromagnetic sensors, the performance of the system not only depends on the
localization algorithms or any other techniques since it is also disturbed by the multipath where the
NLOS rays affect the time measurements.

This approach is relevant to enhance radio-frequency localization performance in an urban
environment because it uses NLOS and geographic database as an extra layer of information, which can
be fused in the position estimation engine. The idea was to apply such a method when the emitter is
in a severe multipath situation, which would give a refinement in the position estimation done for
RF sensor systems. There is always a trade-off between the performance desired and the available
resources to deploy the number of sensors needed. For this reason, it is essential to improve the
performance of available sensors even in NLOS condition, trying to extract as much information as
possible from the deployed environment.

1.1. Review of Passive Emitter Localization Techniques

There is extensive literature on localizing 3D emitter based on measurements collected at
sensors which are spatially distributed. The sensor measurements TOA, TDOA, FDOA, and DOA are
considered in this case. On the other hand, more complicated and hybrid sensors make the localization
approach more effective. Among the single sensor approaches, hybrid or mixed sensors have been
considered and show good results for emitter position estimation. One of them is DOA combined with
RSS [6,7]. Compared with DOA, RSS localization is less accurate. The combined approach in this paper
improves the localization accuracy. TDOA and DOA measurements are considered in [8,9] and also
investigated in two dimensional (2D) space. The hybrid sensor’s result is two-fold. Some recent work
on hybrid localization for TDOA and DOA is illustrated in [10] and TDOA and TOA are combined
and described under 3D configuration in [11,12].

In [13], multipath information ia used together with the image theory to locate either an emitter
or a target, showing the feasibility to perform location using only one sensor. In electromagnetic
localization systems the performance is disturbed by the multipath rays, where the non-line-of-sight
rays affect the time measurements.
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The emitter localization can also be performed using only one sensor, as explained in [14],
where there is an algorithm that estimates the time-of-arrival (TOA) and makes a so-called
“wall association” for assigning the reflected ray with some defined wall to deal with sensing and
through-the-wall (TTW) radar inside buildings. Another passive location approach, described by
O’connor et al. [15], also uses multipath characteristics of the scenario to locate the emitter, using the
time of arrival of the NLOS rays, introducing a clustering procedure to match the real measurements
with the simulated one.

Doğançay [16] introduced a new pseudo-linear estimator for 3D Target Motion Analysis
(TMA). The authors presented the 3D pseudo-linear estimator, which is derived as a small noise
approximation to the maximum likelihood estimator and contains the 2D pseudo-linear estimator
for the XY-coordinates of the target motion parameters, and a Z-coordinate least squares estimator is
proposed. In addition to that particular angle, measurement is invoked to implement the weighted
instrumental variable and also maintain a strong correlation between the matrices in the case of
considerable measurement noise. The target localization problem is proposed by the difference
between the 2D and 3D angle localization using a pseudo-linear location estimator. MLE does not
have the closed form solution and is computationally more intensive and complicated when used for
large-scale monitoring.

Several algorithms were tested by Qi et al. [17] to identify the NLOS to improve the localization.
First, an algorithm performs a test ratio based on the cumulative distribution of the received signal
envelopes with a predefined bound, and other approaches observe the level crossing rate and the
average fade duration. The Cramer–Rao bound (CRB) has been analyzed for several geolocation
schemes in the presence of the NLOS, showing that the Fisher Information Matrix (FIM) of a hybrid
scheme using the RSS and the TDOA can be acquired by the superposition of the FIM from
both schemes.

A new positioning novel framework presented in [18] showed how to estimate the passive source
localization accurately using joint sensor measurements that are AOA and TDOA, with different
independent sensors being collocated at the reference positions of arrays. The bearing and time delay
estimation is considered, and the signal gain information can also be used when the acoustic sensor
array networks measure source signals. This paper explores the potential performance improvement
of localization using joint sensor measurements, but the problem is relatively low localization accuracy
due to the high estimation of measurement error.

An optimal TDOA sensor-pair placement is discussed in [19] where two categories of sensor
pairing methods are illustrated, namely centralized and decentralized, and the optimal sensor
geometries are derived for both stationary and movable cases. In the case of moving sensors,
the geometries plan is investigated using Extended Kalman Filter (EKF). Additionally, communication
constraints and sensor motion are extended for optimal sensor path planning problem. This paper only
studies the single step trajectory optimization. This case is not suitable for all areas (e.g., large- and
small-scale area monitoring).

A new two-step algorithm was proposed by He et al. [20]. In the first step, the positioning
algorithm combines Taylor Series method Semidefinite Programming (SDP) to achieve the global
convergence and estimation accuracy. In the second step, a constrained least squares method provides
the benefit of low complexity and fast convergence for maintaining the system performance. Besides,
a new receiver selection method is invoked to reselect the sensor for path planning and to improve the
estimation accuracy.

A localization approach was presented by Tran et al. [21], where a relaxation-based technique
using the algorithms local neighborhood multilateration and convex optimization. The network
scenario is divided into overlapping regions, improving localization accuracy by using a set of beacons
and extrapolating unknown node locations from the beacon locations. In [22], an extension of this
approach using statistical learning theory is applied to the location, based on the Support Vector
Machine (SVM).
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In all the mentioned studies, it is common to use the Euclidean geometrical properties to perform
location finding, using the topology implicit in sets of sensor readings and locations can be exploited
to using signal-based function spaces that are useful for the prediction of unknown emitter locations.

1.2. Research Contributions

The main contributions of our research work are to improve the TDOA location system in NLOS
situation using channel impulse estimation in time-domain and ray tracing simulations, building
a multipath exploitation framework that tries to include suite-specific reflection as an extra layer
of information.

Much of the previous literature deals with the NLOS as outliers in the location algorithm.
To overcome this problem and to enhance the system efficiency, we propose a novel algorithm that
uses long-term measurements to extract the information about reflection points in the scenario and
build a classification framework using the machine learning approach. In our proposed work, we first
calculate the time differences several times using an improved cross-correlation approach and a WLS
algorithm to estimate the emitter position. The proposed method was applied to test the improvement
in localization precision performance in NLOS situation.

This paper is structured as follows. Section 2 discusses the problem formulation, including the
signal data model and the Channel Impulse Response estimation. An experimental setup, showing the
application of the proposed localization method and including the results of the simulation setup is
discussed in Section 3. Finally, Section 4 summarizes the principal aspects of this paper and presents
possible research direction using the proposed methodology.

2. Problem Formulation

This section presents the data-model for localization of an RF source using a set of sensors in
an outdoor scenario, where the TDOA systems have the advantage of AoA because they can use
a single antenna per sensor. On the other hand, they need to use a high capacity data-link to connect
the stations to keep the synchronization reference among them; thus, the TDOA data model can be
described in a unified framework based on the derivation of [3]. In our case, we assume that there is
a clock synchronization in all the observers deployed.

2.1. Data Model for TDOA Localization

Assuming that each sensor records the signal, a sample is sent for the “reference station”,
which performs signal processing with the signal received; the time differences are the lags in the peak
in the cross-correlation function of the complex base-band (CBB) signal received. It is possible to use
the term “range-difference” of arrival (RDOA) instead of “time-difference” between the emitter and
the sensors, by multiplying the TDOA by the electromagnetic propagation speed.

From the geometric interpretation, a hyperbola is a set of points, such that the absolute range
difference between the two fixed points, known as foci, is constant. If we assume the points with
a constant range difference between two fixed observers as hyperbola in the 2-D space, then the
location of the target lies in the intersection of the lines.

The scenario is characterized by an emitter at the point xe, ye, ze and l sensors deployed at the
points xl , yl , zl ; the target sends a signal at the unknown time t0, and the lth sensor receives it at time
tl , l = 1, 2, . . . , L with L ≥ 3. There are L(L − 1)/2 distinct TDOAs from all possible sensor pairs,
denoted by: tk,l = (tk − to) = tk − tl , k, l = 1, 2, . . . , L, with k > l. However, there are only (L− 1)
non-redundant TDOAs.

Assuming only the (L− 1) non-redundant TDOAs for source localization [23] and considering
the first sensor as reference, they are ti,1, l = 2, 3, . . . , L. The range difference can be deduced using the
TDOAs as:

rTDOA,l = dl,1 + nTDOA,l , l = 2, 3, . . . , L (1)
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where
dl,1 = dl − d1 (2)

and nTDOA,l is the range difference error in Rtdoa,l , which is proportional to the disturbance in tl,1.
Figure 1 shows the steps to extract a time-difference from the complex baseband signal received
by two sensors. The small error in the time difference measurements affects the position estimation
precision, as can be seen in Figure 2. The noise in range measurements affects the location performance.

Figure 1. TDOA Estimation based on the Complex Baseband (CBB) signals arriving at Sensors 1 and 2.

Figure 2. Location error caused by multipath situation in TDOA measurements.

Using TDOA model in matrix form, we have:

rTDOA = fTDOA(x) + nTDOA, (3)

where
rTDOA = [rTDOA,2rTDOA,3....rTDOA,L]

T (4)

nTDOA = [nTDOA,2nTDOA,3....nTDOA,L]
T (5)
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and

fTDOA(x) = dl =



√
(x− x2)2 + (y− y2)2 − (z− z2)2 −

√
(x− x1)2 − (y− y1)2 − (z− z1)2√

(x− x3)2 + (y− y3)2 − (z− z3)2 −
√
(x− x1)2 + (y− y1)2 − (z− z1)2

.

.

.√
(x− xL)2 + (y− yL)2 − (z− zL)2 −

√
(x− x1)2 + (y− y1)2 − (z− z1)2


(6)

The estimation of source localization position using TDOA measurements is therefore to find x
given the rTDOA, assuming that nTDOA is zero-mean and Gaussian noise in the range measurements
with Probability Density Function (PDF), for rTDOA, denoted by p{rTDOA}with the following structure:

p(rTDOA) =
1

(2π)(L−1)/2|CTDOA|1/2
e
(
− 1

2 (rTDOA−d)TC−1
TDOA(rTDOA−d)

)
, (7)

where CTDOA is the covariance matrix for rTDOA.
It is also possible to use rTDOA ∼ N(d1, CTDOA). Since all TDOAs are determined with respect to

the first sensor, nTDOA, l = 2, 3, . . . , L are correlated. As a result, CTDOA is not a diagonal matrix [23].
When the time difference of arrival (denoted here by τ) measured at two or more widely dispersed
sensors are used to locate emitters, the methodology presented by Poisel [24] yields the position
estimation in closed form using TDOA measurements. The TDOA signal models and their basic
positioning principles can be generalized as:

r = f(x) + n, (8)

where r is the measurement vector, x is the source position to be determined, f (x) is a known nonlinear
function in x, and n is an additive zero-mean noise vector.

2.2. Source Localization Algorithms

The algorithms for source localization can use a nonlinear or a linear approach. In general,
the nonlinear methodology [25,26] solves Equation (1) to find x by minimizing a cost function based
on the error estimation with least squares (LS) or the weighted least squares (WLS) formulation:

enonlinear = r− f (x̃). (9)

x̃ = [x̃ỹ]T is the optimization variable for x, which corresponds to the ML estimator. As described
in [3], it is possible to convert Equation (9) into a set of linear equation in x, as:

b = Ax + q, (10)

where b and A are available and q is the noise vector. Then, the error is:

enonlinear = b− Ax̃ (11)

Applying the LS or WLS techniques on Equation (11) results in the LLS [27,28], WLLS [29,30]
and subspace [31,32] estimators.

In the linear approach, the basic idea is to “linearize” the nonlinear expression of position
estimation into a set of linear equations, assuming that the disturbances caused by the measurement
errors are small and with zero-mean. The linearization can use three approaches: LLS, WLLS,
and subspace estimators. The LLS approach attempts to reorganize Equation (11) into linear equations
in x; the position is then obtained using the conventional LS technique. The estimation is done using
the TDOA structure from Equations (5) and (6) as:
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rTDOA,l +
√
(x− x1)2 + (y− y1)2 =

√
(x− x1)2 + (y− y1)2n2

TDOA,l , l = 2, 3, . . . , L. (12)

rTDOA,l +
√
(x− x1)2 + (y− y1)2 + (z− z1)2 =

√
(x− x1)2 + (y− y1)2 + (z− z1)2 + n2

TDOA,l with l = 2, 3, ..., L. (13)

The noise is modeled as the modified component:

mTDOA,l = n2
TDOA,l + 2nTDOA,l

√
(x− x1)2 + (y− y1)2 + (z− z1)2. (14)

In short, the matrix structure for TDOA localization is:

A = 2


x1 − x2 y1 − y2 z1 − z2 −rTDOA,2
x1 − x3 y1 − y3 z1 − z3 −rTDOA,3

...
...

...
...

x1 − xL y1 − yL z1 − zL −rTDOA,L

 (15)

θ =
[

x− x1 y− y1 z− z1 R1,
]T

(16)

q = [mTDOA,2, mTDOA,3, . . . , mTDOA,L]
T , (17)

and

b =


rTDOA,2 −(x1 − x2)

2 −(y1 − y2)
2 −(z1 − z2)

2

rTDOA,3 −(x1 − x3)
2 −(y1 − y3)

2 −(z1 − z3)
2

...
...

...
...

rTDOA,L −(x1 − xL)
2 −(y1 − yL)

2 −(z1 − zL)
2

 . (18)

The data model for estimating a position of a radio-frequency emitter using TDOA with either
nonlinear or linear approach provides good results if the errors are small and the noise can be modeled
as a Gaussian distribution with zero-mean. The literature [24] shows that the estimation performance
of the ML and constrained WLLS methods can achieve the CRLB.

2.3. Effect of NLOS in TDOA Estimation

The computation of the time difference between the signals received by the sensors is schematically
shown in Figure 3. The complex baseband signal recorded at Sensor 1 and 2 are cross-correlated
and oversampled using Farrow filters, as described by Kolb et al. [33], to increase the spatial
resolution. Finally, a time delay is obtained with the “lag” index of the peak in Complex Ambiguity
Function (CAF).

The generalized cross-correlation function in phase (GCC-PHAT) is performed and a peak
detection operation is applied to find the maximum and give τ21, τ31, τ41. With the three time differences
extracted by the cross-correlation operation, either the linear or nonlinear method is performed to
estimate the position.

The point now is to model the effect of multipath in the estimator. One possibility is to include
the multipath in the signal data model and the CRB, as presented in [34], as an “extra error” in
the estimation. As a nonlinear operation, the imprecision caused by the multipath will give some
“bias” in the position estimation, but, in a real scenario, the multipath effect is a highly non-linear
operation, where the channel impulse response will be time-variant with rays showing up and
disappearing during the time-frame of the measurements. Therefore, the NLOS error modeled here is
considered a “small” random variation in time differences. This approach is feasible only when the
specular components (SC) are well defined and more significant than the Dense Multipath Components
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(DMC) [35]. For this reason, the framework developed in this paper is suitable for suburban and
campus-like outdoor scenarios, where the buildings are spaced and low, typically with five floors.

enonlinear = enoise + eNLOS, (19)

Figure 3. TDOA processing in Sensor 1 and 2.

This section has formulated the data model to support the problem of estimating a radio-frequency
emitter in an NLOS scenario. The TDOA discussed in this paper is, therefore, a standard system
but with extra noise in the estimation performance that leads to a wrong position. As can be seen in
Figure 4, the TDOA system performance is affected by the buildings, affecting the position estimation,
the situation can also schematic presented in Figure 5, where the multipath presents an additional
error in measurements.

Figure 4. Error caused by NLOS situation in TDOA systems.
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Figure 5. The error produced in TDOA location by multipath.

3. Proposed Method

This section describes the method proposed to enhance a TDOA localization system when the
emitter is in NLOS position, which is a typical situation of the outdoor channel characteristics and
cannot be avoided. Some methods deal with multipath assuming that they are outliers, but this
approach is not feasible in a typical suburban scenario.

The main blocks in the method proposed are presented in Figure 6 and are further discussed in this
section. First, a TDOA system is deployed in an NLOS scenario, and the multipath effects corrupt the
time-differences extracted from the complex baseband signals that arrived in each sensor. In parallel,
with the sensor position information and the scenario obstacles, several ray-tracing simulations were
performed to extract a spatial fingerprint of the channel impulse response in each point. The output of
the ray-tracing simulation feeds a dataset of that defines a multipath fingerprint where the coordinates
act as “abels”, and the rays multipath information acts as “features”. A machine learning framework
is performed using the calibration points multipath information to “reinforce” the machine learning
engine. Finally, the TDOA localization position estimation is enhanced with the proposed framework.

The idea is to bind the ray-tracing simulation and machine learning to perform a multipath
pattern matching between the simulated channel impulse components and the signal recorded by the
sensors to enhance the performance of the localization system in a typical suburban scenario.

The inputs for the localization problem are the sensor position, which is usually known; the signal
received; and the scenario description. Using this information, we tried to improve the performance
by adding a multipath fingerprint of the NLOS patterns. As described in Section 2, when the scenario
is suburban or campus-like, the SC are usually stronger than the DMC. In this case, the NLOS
components give a small “bias” in the position estimation of the TDOA System, adding an extra error
in the time differences. It might be possible, under these circumstances, to make a hybrid approach
using ray-tracing simulations, channel impulse response estimation, and machine learning to enhance
the TDOA localization performance.

The method is schematic, as presented in Figures 7 and 8. First, the ray tracing performs several
simulations of the outdoor scenario, and the output of the simulation is a description of the paths
from each component of the signal that connects the emitter position to the receiver point. A multipath
fingerprint database is associated with each point of the simulation domain to a specific channel
impulse response; this procedure is done for each of the deployed TDOA sensors. The second step is
to estimate the CIR to extract the multipath information (α1, τi) from the receiver signal in each sensor
position. Finally, a neural-network based on a machine-learning engine performs the estimation of
the emitter position, enhancing the TDOA performance in the outdoor NLOS situations. Depending
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on the precision of the obstacles description and the material properties included in the simulation,
the ray tracing gives a reasonable representation of the specular components that characterize the
transmitter–receiver relationship.

Figure 6. Main steps of the proposed method.

Figure 7. Multipath fingerprint database using ray-tracing simulation.
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Figure 8. Channel impulse estimation in each TDOA sensor.

For each possible point for the emitter in the simulation, the amplitude and delays for the
multipath components in each TDOA sensor are given by:

S1 =
M
∑

i=1
αix(t− ti), S2 =

M
∑

i=1
αix(t− ti)

S3 =
M
∑

i=1
αix(t− ti), S4 =

M
∑

i=1
αix(t− ti).

(20)

This multipath fingerprint dataset makes the association of each point of the simulation domain to
a specific multipath pattern related to each deployed TDOA sensor. The next step is to take the signal
received by each sensor and make the Channel Impulse Response (CIR), where the information (α1, τi)
extracted from the Complex Baseband (CBB) received signal is associated with a defined position in
the scenario.

The matching procedure between the estimated CIR, and the multipath dataset is performed
using a neural-network based on a machine-learning engine. The estimation of the position of the
emitter is used to add a new layer in the localization performance of the deployed system, enhancing
the TDOA performance in the outdoor scenario even in NLOS situation.

The multipath dataset is performed using a neural-network-based with a machine learning engine.
The emitter position estimation is used to add a new layer in the localization performance of the
deployed system, enhancing the TDOA performance in the outdoor scenario even in NLOS situation.

The matching procedure and the specific details for the ray-tracing simulation, the channel
impulse estimation and the machine learning in the method are explained in the following sections.

3.1. Multipath Dataset Using Ray Tracing

Ray tracing is an electromagnetic simulation tool for modeling signal propagation. Assuming
the geometric optics approximation, we can trace the ray propagation paths in a defined scenario,
following Degli-Esposti [36]. The term “ray tracing” fingerprint is usually associated with the
“radio maps” of Received Signal Strength (RSS) in a coverage prediction. However, this approach
needs to take into account the output power of the emitter to perform the position estimation [37].
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The RT simulation provides the "site-specific” channel impulse response; thus, as soon as the
position of each sensor is defined, it is possible to obtain the multipath information of each point of the
scenario. The specular component paths, including all reflection and diffraction points, are available at
the end of the ray-tracing simulation. Depending on the desired number of ray interactions, image
theory allows identifying the reflection points and the virtual nodes, thus all possible rays in the
simulation domain can be estimated.

The spatial characterization of the path-loss is based on the premise that there is a one-to-one
relationship between the signals received at the base stations and the emitter location [3].
The fingerprint can be extracted from the received signals and serves as a unique identifier of the
emitter location that is reduced to a pattern recognition problem, where the location is determined by
matching the extracted fingerprint to the fingerprint database.

The Figure 8 shows the multipath fingerprints produced by ray trace simulation from Sensor
Position 1. As shown in the figure, the output of the simulation describes each path from each point in
a grid that is defined in the scenario, not only the amplitude and the delay (αi, τi) but also the reflection
points and the angular information of each ray. The ray tracing output also gives information about
the multipath components propagation mechanisms, reflection, diffraction or scattering.

Following the approach of Fuschini et al. [38], the ray-tracing scenario can be decomposed into
walls, edges, and the “view tree”, which represent the emitter–sensor interactions, and are the basis for
the visibility matrix where each interaction is considered as a layer in a multilayer scheme. Therefore,
the RT gives the information about each ray path, describing the edges and walls touched by the rays
in the emitter-sensor path. The Figure 9 shows how the three simulation structure is related with the
obstacles walls and edges, the rays path are defined by interaction layers, given a complete description
of the NLOS components that connect the emitter with the sensor position.

Figure 9. Schematic representation of walls and edges in ray-tracing simulation.

With the output file of ray tracing, it is possible to search for the given positions where the
reflectors bounce off the rays before arriving at the sensors. This works similarly to extracting the
“field of vision” in an optics ray.

The ray tracing can be combined with the multipath fingerprints from the scenario by using
ray-tracing simulation because the effects of the buildings and obstacles are also included in the
simulation. However, the performance is highly dependable on the details given in the scenario
setup. In practical outdoor implementations, the buildings are represented by simpler structures,
where window and door details are extracted out from the simulation. For a suburban outdoor scenario
with simple buildings, the ray trace gives reasonable information about the main specular components
in the propagation channel.
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The NLOS situation is an inherent part of the channel characteristics and cannot be avoided;
therefore, the methods that extract the NLOS TDOA measurements by assuming NLOS are outliers
are not feasible in a typical suburban scenario. The localization problem starts with the sensor
position, which is usually known; the signal received; and the scenario description or characterization.
With this information, we improve the TDOA performance by adding a multipath fingerprint using
the NLOS patterns.

3.2. Channel Impulse Response Estimation

In signal processing theory, there are several well-established methods to recover the multipath
components [39], namely, the amplitude and the time delay, from the received signal. There are
two approaches to CIR extraction depending on whether the sensors know or do not know the type of
the emitted signal: blind estimation and the estimation of a known signal.

The practical TDOA localization systems for outdoor scenario use an up-sampling procedure
with “farrow filters” to improve the range resolution Kolb et al. [33] but the traditional Generalized
Cross-Correlation algorithm (GCC) has lower resolution in time and cannot give the TDOA of closest
delayed multipath signals.

Assuming that the emitted signal is known, it is necessary to estimate at least the five most robust
specular components, extracted from the received signal; the resolution achieved in the CIR estimation
is directly dependent of the signal bandwidth and the sampling frequency used. The CIR estimation
techniques can be grouped into correlation-based methods, deconvolution methods, maximum
likelihood (ML)-based methods, subspace-based methods, and blind signal separation methods.

The multipath channel can be modeled as:

h(t) =
M

∑
m=1

αmδ(t− τm). (21)

where M represents the number of paths, and αm and τm are the complex attenuation and propagation
delays of the mth path, respectively. It is also assumed that τ1 < τ2 < . . . < τm <, thus τ1 represents
the delay of the first received ray, as follows:

x(t) =
M

∑
m=1

αms(t− τm) + ν(t). (22)

Taking s(t) as the transmitted signal, with bandwidth of B, center frequency of fc, and duration
of T0, ν(t) is assumed to be white Gaussian noise with zero-mean uncorrelated with s(t). It is also
possible to use the deconvolution to estimate the CIR, based on “inverse filters”, where the receiver
signal x(t) can be represented by a convolution between the transmitted signal and the CIR:

x(t) = s(t)⊗ h(t) + ν(t). (23)

Alternatively, in the frequency domain:

X( f ) = S( f )H( f ) + V( f ). (24)

The CIR can be estimated using:

h(t) = i f f t {X( f )/S( f )} . (25)

This operation can also be done in the frequency domain, using the signal model in vector format:

X = SH + V. (26)
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To estimate the CIR using this approach is the process to recover the H, which reproduces the
multipath rays composition characteristic of the channel because each of the non-zero elements in the
matrix is the amplitude of the ray and a defined time delay position. Applying the covariance matrix
of Y, we have:

Ry = EYYH = URAUHH + σ2
ν I. (27)

where RA = EAAH . We can extract the parameters, (αi, τi), that define each ray using MUSIC
(MUltiple SIgnal Classification) signal processing to find the biggest eigenvalues of RY.

Based on the orthogonality between signal and noise subspace, this approach can handle closed
spaced multipath components. This method is used in the localization procedure to extract the channel
parameters to make it possible to localize the emitter. Splitting the signal into the signal subspace and
the noise subspace, following the approach of Fleury et al. [40], the pseudo-spectrum using MUSIC is:

SMUSIC =
1

|Pu (τ)|2
. (28)

The three approaches introduced here can be seen in Figure 10, where subspace technique gave
the best result, regarding the ability to discriminate closed spaced multipath rays.

Zhu et al. [41] showed that further resolution could be achieved using the sparse recovery
framework and union spaces. In this study, we dealt with an outdoor suburban scenario, where the
MUSIC in time-domain was used to estimate the five most robust specular components from the CIR
in each sensor.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

10
1

nSec

Estimated Channel Impulse Response 

N
or

m
al

iz
ed

 E
st

im
at

io
n 

(d
B

u)

 

 

IFFT ToA Estimation

Subspace MUSIC ToA Estimation

Correlation ToA Estimation

Figure 10. Performance in estimation of (αi, τi) for CIR.

For the suburban scenario considered in this study, the five specular components were estimated
using the MUSIC in time-domain.

3.3. Localization Using NLOS Ray-Tracing Fingerprints

In this scenario, besides the TDOA sensors, we also have the reference (Nr) and anchors points
Nt to help the estimation of the emitter position, which are labeled as an “unknown point” Nu.
The known positions from anchors nodes are Ti with i ∈ 1, . . . , Nt, and from the reference nodes are Rj
with j ∈ 1 . . . , Nr. Finally, the emitter positions are the unknown nodes that are estimated and defined
by Uk with k ∈ 1, . . . , Nu, as shown in Figure 11. Performing the CIR estimation from the reference
points gives a set of calibration values to correct the ray-tracing dataset.

A fingerprinting approach normally takes a off-line calculation where the multipath information
is collected by using the reference node signal, rj, at the jth reference node position, Rj, for every
j ∈ 1, . . . , Nr. With this information, the next step is to find a model that can better describe the
relationship among the reference node position, the ray-tracing simulations, and the estimate CIR.
This operation acts as a refinement in the dataset obtained by ray tracing and is considered in the
machine-learning framework as a “reinforcement” learning procedure.
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In a vector format, the model maps the CIR and ray-tracing fingerprints, as Rj ≈ f (rj); the model
uses as many measurements and reference point as needed to achieve a certain precision level,
until a there is a feasible model in vector format f (.)

Figure 11. TDOA location scenario in NLOS.

3.4. Machine Learning in Multipath Fingerprint

As described by Alsheikh et al. [42], machine learning is an interdisciplinary field of applied
mathematics, which relies on developing a hypothesis of creating the model (as opposed to
an algorithm in computer science or methods or formula in mathematics) and tries to improve it
by fitting more data into the model over time. The idea is to use the multipath information to predict
geolocation of the emitter; regression is one of the choices for prediction, because it is a class of
supervised algorithms [43] that attempts to establish a continuous relationship between a set of
dependent variables (geolocation coordinates) and set of other independent variables (multipath
fingerprints, αi, τi).

The dataset produced by ray tracing and the refinement procedure is schematically shown in
Figure 12. First, the ray tracing feeds a dataset that is “parsed” to label each point to a specific
CIR; then, a model parameter is extracted from the dataset to generalize the multipath patterns
classification. To refine the dataset produced by ray tracing, a channel impulse estimation using
MUSIC in time-domain is performed to extract the five strongest specular components from the
CBB signal collected from a set of calibration points. The Figure 13 show the schema of the Neural
Network used, where the input layer are the CIR estimation of each sensor and the emitter position
coordinates are the output. This multipath “fingerprints” are used to adjust the model parameters.
Finally, a CIR estimation is done using the signal from the emitter, and the position is estimated.
The Figure 14 shows the machine learning reinforcement procedure based on RT simulation and multi
path fingerprints.

There are some central aspects of using ray tracing and real measurements encapsulated
in the machine-learning engine. First, we tried to use learning classification to approximate the
position estimation as a target function for optimization; (semi-)supervised machine learning makes
an approximation to find a target function ( f ). This function should be able to map input variables (X)
that are the multipath components (αi, τi) to an output variable (Y) that is the emitter position.

Y = f (X) = f (X(αi, τi)). (29)
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Another consideration in machine learning is to target function from the training data to check how
well the model generalizes to new data input. That is why generalization is necessary: the collected
data work as a sample, and are incomplete and noisy.

The idea is to make a fingerprint that improves continuously with an anchor emitter that performs
a recursive averaging and recalculation of the multipath fingerprint patterns. The hypothesis is
developed based on the knowledge of the relationship between dependent and independent variables
in TDOA including NLOS identification. We used a set of tools as a machine learning framework to
develop and test the application:

• Jupyter Notebook version 5.1.0 (http://jupyter.org);
• Python version 3.6.3 (https://www.python.org);
• Python numpy version 1.13.3 (http://www.numpy.org);
• Tensorflow version 1.4.0 (http://tensorflow.org); and
• CentOS version 7.4.1708 (https://www.centos.org) in Google cloud (http://cloud.google.com).

At this point, the approximation, not only in the scenario description but also in the in
multipath information from ray tracing can play an essential role in the machine-learning framework.
Thus, the ray description should be good enough to establish the model, but cannot be so precise as to
lose the generalization features, which could happen because we try to describe the learning of the
target function from training data as inductive learning.

Figure 12. Machine learning ray-tracing dataset refinement.
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Figure 13. Neural network for position estimation.
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Figure 14. Machine learning framework based on RT simulation.

These effects are well-known in the literature as over- and under-fitting of the dataset, and are
the two biggest causes for poor performance of machine-learning algorithms [44]. The task of a good
machine-learning model is to generalize well from the training data to any data from the problem
domain. The multipath based on ray-tracing dataset should present some typical channel characteristic.
If the multipath description is good enough, the supervised machine learning algorithms can try to
find the best approximation to the unknown underlying mapping function for the output variables
given the input variables.

The machine learning and kernel methods can work as supervised, unsupervised or
semi-supervised learning frameworks. In our approach, the ray tracing gives the initial dataset for
the ML and the CIR estimation of the reference or anchor nodes multipath works as a “reinforcement”
or supervised learning. The hybrid approach uses real measurements and simulations to build the
dataset, which can be classified as semi-supervised learning.

The problem tackled was predicting the emitter position of the point, i.e., its X, Y and Z
coordinates, using linear regression when the delay and amplitude of the five multipath rays were
given. The network had ten inputs, i.e., five rays. Neural networks, linear regression, and random
forest algorithm were used to achieve the result, and the random forest proved to be the best one.

One of the problems in the proposed model was the points that have less than five paths. It was
necessary to assign them with 0 s to given same length input to the network, thus biases were huge
and weights were low, which caused such an imbalance that the neural network’s mean squared error
loss was high. Then, a set of hyper-parameters was used to tune the linear regression [45], giving
better results.

The method implemented uses the ray-tracing fingerprints to enhance the position estimation
performance continuously, using known anchor emitters and the multipath fingerprint patterns.
The hypothesis is developed based on the knowledge of the relationship between dependent and
independent variables in TDOA including NLOS identification. In our formulation, we use the
five strongest rays that arrive at each point of the simulation domain. The proposed algorithm is
summarized in Table 1.

In short, the proposed method combines CIR estimation, ray-tracing simulation, and machine
learning to match the amplitude and delay information to a defined position. If one only uses the
amplitude or the received power information, also available in ray tracing, the method is similar to
RSSI [3]. The fingerprints produced by five rays in four different receivers add more dimensions
in the matching procedure, where the amplitude and the delays for the CIR estimated perform
a multidimensional search to discover the position of the emitter.
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Table 1. Pseudo-code for machine learning NN fingerprints.

Algorithm: TDOA with RT Fingerprints.

1: Begin:
2: From a deployed TDOA System:

· Record the signal, extract the CBB;
· Extract a “windows” in time domain of the CBB signal;
· Using the sample, extract TDOA vector [τ21, τ31, τ41];
· Estimate the emitter position.

3: Perform Ray Tracing Simulation of the Scenario with:
· TDOA Sensor Positions,
· Emitter position vector x,
· Buildings descriptions.

4: With RT output collect Amplitude (αi) and Delay (τi)
5: Build a Neural Network (NN) with:

· 40 Input: 5 (αi, τi) for each TDOA Sensor;
· 8 Neurons in the hidden layer;
· weights and hyper-parameter for “Supervised Learning”.
· 3 Outputs: Emitter Position [Xe, Ye, Ze]T .

6: Refine the NN:
· Record from the Calibration;
· Perform CIR estimation to extract (αi, τi) from calibration;
· Perform hyper-parameters refinement;
· Adjust the dataset of Machine Learning Engine.

7: Perform the CIR of the emitter:
· Refine the NN adjustments from calibration.

8: Perform the Position Estimation
Apply K-nearest neighbor(KNN) method and NN refined.

9 Repeat the algorithm from step 4
with a new integration windows
untill the end of the recording signal.

10: Perform the joint position estimation
with P(µTDOA, σTDOA)∩ P(µRT , σRT).

4. Experimental Setup

A validation procedure to test the method was performed using real measurements in an outdoor
scenario, where a TDOA localization system with four sensors was deployed on the campus of the
Technical University of Ilmenau. A UAV acting as an emitter was placed first in LOS situation and then
was moved to an NLOS position. The UAV precise coordinates were recorded using a GPS tracker to
work as a “ground truth” to check the error in estimation. The scenario setup, with the sensor position,
the emitter tracks, and the building information was simulated using ray tracing.

The scenario with the location performance of TDOA in NLOS is displayed in Figures 11 and 15.
In Figure 15, some of the calibration and reference points are displayed in blue circles, the real
emitter position is displayed using concentric yellow circles, and the TDOA sensors are indicated with
diamonds marks. Figure 11 presents the emitter position in perspective as well as the NLOS situation
and the real scenario prepared for ray-tracing simulation.
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Figure 15. Location error caused by multipath situation in TDOA location.

To build the simulation dataset, first the ray-tracing output was used to load neural network with
eight neurons, and then several recorded signals from a known position called “calibration” points
were feed into the NN using the CIR estimation and the known ray-tracing fingerprint to refine the
dataset. A machine-learning engine was fed the weighting and performed the refinement in the NN
using directly the estimated and measured CIR in RT.

A new dataset for machine learning framework was built with the anchor multipath estimation,
giving a more precise characterization of the radio channel. Then, the CIR estimated from the target
with up to five rays (delay and power) was used to search in the fingerprint database the position of
the emitter.

The complex baseband signal recorded by each sensor was processed off-line using MUSIC in
the time domain [3] to extract the Channel Impulse Response (CIR) of the calibration points. Finally,
the machine-learning engine was fed the ray-tracing dataset, and the hyper-parameters were refined
using the α, τ patterns from the CIR of the calibration points. Figure 16 shows the CBB signal from the
UAV in a calibration point received by Sensor 1.

Figure 16. Complex base band signal measured from UAV.
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The signal transmitted by the UAV was a video-link with the central frequency of 2.4 GHz,
with 4 MHz of bandwidth and 20 dB mW (EIRP). The signal was detected, filtered, and down-converted,
with the Complex Base Band (CBB) recorded at each sensor node using 1 MHz bandwidth, sampled
at 1.25 MHz. A Farrow filter was applied to up-sample the CBB signal, increasing the precision in
localization, as described in [33].

The UAV was positioned in an NLOS situation, where there were buildings causing reflection
(multipath), giving a disturbance in TDOA measurements.

4.1. Multipath Fingerprint Dataset Preprocessing

The raw dataset produced showed strong nonlinearity, and some operations into the raw database
were needed to improve the precision. Results from first tries in the classification procedure have not
shown further improvement compared to the standard position estimation. Actually, in some cases,
the error was even more significant.

The simulation domain has a lot of outlier information regarding possible target position. In this
sense, the emitter inside buildings was extracted out from the raw dataset; later analysis revealed that
adapting the raw data (delays and power) obtained from simulation to machine learning framework
needed to be improved because it gave poor results on training and low accuracy as compared to the
expected one. It was necessary to split the simulation domain into slices and normalize the values
of the power and delays. Figure 17 shows the multipath pattern loaded in machine learning engine
produced by ray-trace simulation.

Figure 17. Ray-tracing fingerprints dataset.

As shown in Figure 18, the values of τi gives the path delay, the values, αi, the field strength of
the ith path the signal received. The parameters wx, wy, and wz are weights of delay in the hypothesis,
and FSWx, FSWy, and FSWz are weights of field strength parameter in the direction of X, Y and Z
axes, respectively. The last three parameters, kx, ky, and kz, are intercepts of liner hypothesis in the
directions of X, Y, and Z, respectively. In total, the are nine parameters to tune.
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Figure 18. RT simulation output.
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Following the steps are given by Abadi et al. [46], the selected raw dataset needed to be labeled,
formatted, cleaned and sampled. The labeling was done by taking the data and organizing the
amplitude and delay patterns to each point in the simulation domain. The data cleaning procedure
was the operation to check if some data need to be removed or fixed, which often happens when some
points have no ray information from the simulation. These points need to be removed or zero padded.
The sampling was done to make the dataset representative for some problem; in the case of ray-tracing
output, the only way to have a re-sampled dataset is either performing the simulation with different
grid discretization sizes or taking several calibrations points information to estimate the CIR over and
over to refine the dataset. First, the simulation domain was clustered and split into slices, and then the
values of the time delays and the amplitude were normalized.

Before making further assumptions, the dataset was tested to see whether the relationship
between input and output is linear, and then a noise remove procedure to extract the outliers in the
measurements was performed. The collinearity was removed by calculating pairwise correlations for
input data and removing the most correlated. Once the data were prepared, several data analysis
and visualization techniques were used as a basis for experimentation to come up with a suitable
regression model. The multipath dataset preprocessed to be used in machine learning engine is
displayed in Figures 19–21.

Then, the CIR estimated from the target with up to five rays (delay and power) was used to
search in the fingerprint database for an estimated emitter position. The dataset obtained is shown
in Figure 18.

One thousand “training” sequences from the calibration points were necessary to train the model
in such a way that the method starts to give an improvement in the position estimation.

Figure 19. Ray-tracing delay fingerprint Sensor 1.
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Figure 20. Ray-tracing amplitude fingerprint Sensor 1.

Figure 21. Multipath fingerprint of Ray 1 in Sensor 1.

4.2. Hypothesis and Loss Function

A typical machine regression algorithm [47] has two components: hypothesis (i.e., model) and loss
function (i.e., cost function). From the simulated dataset, we have three dependent (emitter position
[Xe, Ye, Xe]) and twenty independent variables, αi, τi, , i = 1, . . . , 5.

From the data structure of the problem, using the framework from [47] connecting dependent
variables (path delay and field strength for up to five rays at each sensor position) and independent
variables (geolocation co-ordinates X, Y, Z), we chose following hypothesis for our machine to train.
For each ray taken from ray-tracing simulation, the following procedure was performed for Xe, Ye, Ze.
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Xe =

{
wx ∗ (τ2

1 + τ2
2 + τ2

3 + τ2
4 + τ2

5 )

+ FSWx ∗
[
(α2

1 − α1) + (α2
2 − α2) + (α2

3 − α3) + (α2
4 − α4) + (α2

5 − α5)

]}1/2

+ kx

(30)

Ye =

{
wy ∗ (τ2

1 + τ2
2 + τ2

3 + τ2
4 + τ2

5 )

+ FSWy ∗
[
(α2

1 − α1) + (α2
2 − α2) + (α2

3 − α3) + (α2
4 − α4) + (α2

5 − α5)

]}1/2

+ ky

(31)

Ze =

{
wz ∗ (τ2

1 + τ2
2 + τ2

3 + τ2
4 + τ2

5 )

+ FSWz ∗
[
(α2

1 − α1) + (α2
2 − α2) + (α2

3 − α3) + (α2
4 − α4) + (α2

5 − α5)

]}1/2

+ kz

(32)

where wx, wy, wz, and kx, ky, kz are the adjustment parameters refined by the multipath information
given by the calibration emitters. There are nine parameters to tune; in the experimental phase
of this work, we investigated seven different models, changing up to thirty parameters. None of
those permutations were statistically better or worse, permitting random noise of order during the
training phase.

Here, τi measures path delay while αi measures field strength of the ith path the signal received.
Parameters wx, wy, wz are weights of delay in the hypothesis and FSWx, FSWy, and FSWz are weights
of field strength parameter in the direction of X, Y and Z axes, respectively. The last three parameters,
kx, ky, kz are intercepts of linear hypothesis in the directions of X, Y, and Z, respectively. In total,
there are nine parameters to tune. In the experimental phase of this work, we investigated seven
different models of up to thirty parameters. None of those permutation were statistically better or
worse, permitting random noise of order during the training phase.

A loss function or cost function is a function that maps an input data values of one or more
variables onto a real number representing loss/cost with associated event. While there are numerous
regression loss functions, we focused on the mean squares (MS) function.

The mean square error of the measurements was taken from the difference between predicted
geolocation and that measured during simulation. The next three expressions are mean square error
functions of coordinates X, Y, and Z, respectively. The fourth expression is the loss function that
represents the error of the first three mean square error functions. The loss function is used during
training to minimize overall loss as a mean square error.

MSEx = 1
n

n
∑

i=1

(
Xpred − Xsim

)2
MSEy = 1

n

n
∑

i=1

(
Ypred −Ysim

)2
MSEz =

1
n

n
∑

i=1

(
Zpred − Zsim

)2

Loss = 2
√

MSEx + MSEy + MSEz

(33)

Our simulated dataset consists of over 46,000 samples. We noticed the range of the dataset values
was orders of magnitude. In particular, delay values were from 100 to 11,000. We normalized our
dataset, using well-known z-scores [48].

zscore =
data− µ

σ
(34)

µ, σ are the mean and standard deviation of each variable in the dataset. Based on [49],
randomization in the dataset was performed to improve the efficiency of our training and to reflect
field environment. The total number of training samples was over 37,000.
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As shown in Figure 22, the dataset was analyzed regarding delay–distance and power–distance
relationships to extract the features for the machine-learning engine.

Figure 22. Testing the dataset with delay–distance and power–distance mapping.

4.3. Training and Model Generation

The graph was created with the hypotheses and loss function using eight neurons for every
coordinate (X, Y, Z) of geolocation with a total of 24 neurons. Once the compute graph was ready,
an optimization algorithm gradient descent was applied to optimize the loss function described in the
previous section. The so-called "learning rate”, defined in [42],was fixed at 0.1, as a hyper-parameter to
improve accuracy. Resulting learning network was trained for 1000 epochs. With the "trained” dataset
model, all nine model parameters were saved. These parameters were used in creating a stand-alone
model ready for in-house testing and subsequent deployment in the field. Testing was performed
using this model with 20% of the dataset set aside during the data conditioning phase.

4.4. Results

An accuracy of 2% was achieved, representing the error in the result of the application of the
method using 1000 epochs to training and optimize the loss function. The training dataset error mean
=1.303%. The same model was used on the test dataset, and accuracy was found within the same range
and the test dataset error mean =1.322%

The training set and the test set are displayed in Figure 23. The trends in both these charts reflect
that data were randomized in a statistically significant manner to show that model can generalize
well over a large dataset of over 46,000 samples. The localization procedure is not straightforward to
analyze; the machine-learning engine and ray-tracing simulation are two tools that only give reasonable
results depending on the obstacle representation quality in the geographic database. Machine learning
can improve the multipath fingerprint generated by ray tracing, but it also depends on the capability
of processing the channel impulse estimation and getting an appropriate multipath characterization of
the calibration point.
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Figure 23. Error analysis of training data and test dataset.

The method was improved to avoid dealing with ambiguities in the position estimation, once only
the time differences that intercept the three subsets (τ21,τ31,τ41), were considered in the calculations.
The scenario and geographic features were included in the position processing estimation to improve
the emitter localization precision.

Table 2 summarizes the performance of the proposed method. The values for the mean
and variance in time-differences τ21, tau31, tau41 given by the TDOA system measurements,
the ground-truth and the proposed method show the improvement in the error reduction. Sensor 1 is
close to the emitter, and Sensor 4 is in LOS situation, thus the TDOA measurement errors are smaller
than those for other sensors, which is why the reduction in the error of the time-difference tau41 was
a little bit lower than the improvement in τ21, tau31.

The performance is also displayed in Figures 24 and 25. Figure 24 shows the dispersion of position
estimation within 200 m of the real position, which means that the error in the time-differences
estimation caused by the NLOS condition affects the final results of the system. The improvement in
the time-differences estimation in Table 2 is shown in Figure 25, where the joint estimation using the
ray tracing multipath fingerprints has improved the performance, and the dispersion was reduced to
within 18 m of the real emitter position.

As can be seen, several estimates are recursively done taking more and more samples from
the signal and the calibration signals. The “reinforcement” in the learning process is done by
an improvement in the hyper-parameters used, the position is estimated by using a joint estimation
procedure enhancing the performance of the TDOA system in NLOS situation.

The improvement in emitter location is achieved with ray tracing and machine learning using
the dataset from calibration emitters in a real scenario. It binds together the RSS fingerprint approach,
with five rays and four different base stations.

Table 2. Improvement in TDOA position estimation.

TDOA Ground Truth GPS
Measurements

Proposed Method (µs) Error Reduction (Improment)
Mean (µs) Variance (µs)

τ21 0.333 0.114 0.0341 0.344 94%

τ31 0.27 1.76 0.0303 0.266 96%

τ41 0.266 0.15 0.0157 0.238 79%
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Figure 24. Position estimation error in NLOS.

Figure 25. Final position estimation error with machine learning RT.

5. Conclusions

This paper proposes a kernel-based machine learning localization scheme based on TDOA
fingerprinting. It describes how to use ML for refining the Multipath Fingerprint generated by
ray tracing simulation. Despite the bias and imprecision of the scenario description, the main obstacles
that affect the signal in a given frequency are the buildings, taken into account by ray trace simulation.

An enhancement of the ray tracing fingerprint approach was proposed to add the time differences
database to the classical RSS approach. Despite the imprecision in building description, the uniform
theory of diffraction implemented in the simulation can give the effects in the propagation paths that
influence the TDOA system.

The results, using real measurements set, show that geo-information is a field to be further
explored because it can further improve radio frequency system performance. In this sense, the scenario
features, summed up in the cartographic maps, can give the signal processing an extra dimension
of work.
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We also show that our method is very insensitive and measurement errors from the reference
nodes that are randomly chosen form emitter tracks in the area of interests. These features make our
approach very appealing for practical applications in NLOS propagation environments. The results
applying this method in a real scenario show that our approach can derive more accurate localization
than RSSI fingerprinting procedures and the previously published TDOA fingerprints approach.
We also show that the method can deal with measurement errors by continuously improving the
estimation based on the measurements available in the area of interests. These features make our
approach very appealing for practical applications in NLOS propagation environments.

The effect in localization procedure is not straightforward to analyze; the ML engine and
ray tracing are two tools that only give reasonable results depending on the quality of obstacle
representations in a geographic database. The ML can improve the multipath fingerprint generated by
ray tracing, but it also depends on the capability of processing the channel impulse estimation and
getting an appropriate multipath characterization of the calibration point.

The real signal in the environment needs to be up-sampled and filtered to have an NLOS
description that matches with the ray tracing simulations. However, the approach showed that further
analysis could be done to improve the idea of using NLOS reflection information; embedded into RT
simulation, it can handle NLOS environments as well as LOS propagation.

For next steps in the research, the authors would like to consider the use of more features,
either signals or scenarios, trying to record more multipath information and patterns to build a data
fusion engine with the cartographic database and signal processing. The authors also plan to use
optimization tools for Sensor Management and to apply the machine learning approach to deal with
the rough information produced by multipath reflection in the TDOA system deployment.
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Abbreviations

The following abbreviations are used in this manuscript:

AOA Angle of Arrival
CBB Complex Baseband
CIR Channel Impulse Response
CRB Cramer-Rao Bound
DMC Dense Multipath Components
DOA Direction of Arrival
EKF Extended Kalman Filter
FDOA Frequency Difference of Arrival
FIM Fisher Information Matrix
LS Least Squares
LLS Linear Least Squares
KF Kalman Filter
ML Maximum Likelihood
NLOS Non-Line-of-sight
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NLS Nonlinear Least Squares
TDOA Time-difference of Arrival
RSS Received Signal Strength
RX Receiver
SC Specular Components
SDP Semidefinite Programming
SVM Support Vector Machine
TMA Target Motion Analysis
TOA Time of Arrival
TTW Through-the-wall
TX Transmitter
WLLS Weighted Linear Least Squares
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