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ABSTRACT Disrupted interactions between host and intestinal bacteria are implicated
in colorectal cancer (CRC) development. However, activities derived from these bacteria
and their interplay with the host are unclear. Here, we examine this interplay by per-
forming mouse and microbiota RNA sequencing on colon tissues and 16S and small
RNA sequencing on stools from germfree (GF) and gnotobiotic ApcMinΔ850/�;Il10�/� mice
associated with microbes from biofilm-positive human CRC tumor (BF�T) and biofilm-
negative healthy (BF-bx) tissues. The bacteria in BF�T mice differentially expressed (DE)
�2,900 genes, including genes related to bacterial secretion, virulence, and biofilms but
affected only 62 host genes. Small RNA sequencing of stools from these cohorts re-
vealed eight significant DE host microRNAs (miRNAs) based on biofilm status and sev-
eral miRNAs that correlated with bacterial taxon abundances. Additionally, computa-
tional predictions suggest that some miRNAs preferentially target bacterial genes while
others primarily target mouse genes. 16S rRNA sequencing of mice that were reassoci-
ated with mucosa-associated communities from the initial association revealed a set of
13 bacterial genera associated with cancer that were maintained regardless of whether
the reassociation inoculums were initially obtained from murine proximal or distal colon
tissues. Our findings suggest that complex interactions within bacterial communities af-
fect host-derived miRNA, bacterial composition, and CRC development.

IMPORTANCE Bacteria and bacterial biofilms have been implicated in colorectal can-
cer (CRC), but it is still unclear what genes these microbial communities express and
how they influence the host. MicroRNAs regulate host gene expression and have
been explored as potential biomarkers for CRC. An emerging area of research is the
ability of microRNAs to impact growth and gene expression of members of the in-
testinal microbiota. This study examined the bacteria and bacterial transcriptome as-
sociated with microbes derived from biofilm-positive human cancers that promoted
tumorigenesis in a murine model of CRC. The murine response to different microbial
communities (derived from CRC patients or healthy people) was evaluated through
RNA and microRNA sequencing. We identified a complex interplay between biofilm-
associated bacteria and the host during CRC in mice. These findings may lead to the
development of new biomarkers and therapeutics for identifying and treating
biofilm-associated CRCs.
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Numerous 16S rRNA and shotgun metagenomic studies have demonstrated that
colorectal cancer (CRC) patients have an altered intestinal microbiota compared to

healthy controls (1, 2). Colibactin-producing Escherichia coli, enterotoxigenic Bacte-
roides fragilis, and Fusobacterium nucleatum among others, are implicated in CRC
pathogenesis due to their abilities to produce genotoxins and adhesins which promote
proliferation and modulate immune responses in preclinical models (3, 4). How these
bacteria interact with the rest of the complex microbiota to influence CRC initiation
and/or progression is still unclear. In fact, recent studies with F. nucleatum suggest
these bacteria may be associated with later stages of disease and have less of an
influence on CRC initiation (5–8). Testing the functional role of human CRC-associated
bacterial communities in chemically induced mouse models of CRC have led to mixed
results (9, 10). One group demonstrated stool communities from either individual CRC
or healthy patients promoted polyp formation depending on the composition of the
microbiota that established in mice (9). Another recent report revealed an increased
tumorigenic phenotype in mice that received stools pooled from multiple CRC patients
compared to stools from controls (10).

The lack of a consensus carcinogenic CRC-associated microbiota from patient stools
suggests that other factors, including how the bacteria are organized/located or the
genes they express, may be just as important to CRC pathogenesis. Polymicrobial
bacterial biofilms, spanning �200 �m of epithelial surface were recently identified in
�52% of human CRC patients (11) and also found in �13% of the healthy patients who
were screened (12). We previously showed that human biofilm-forming bacterial
communities from either CRC or healthy patients play a functional role in CRC devel-
opment in multiple preclinical mouse models, emphasizing the contribution of bacte-
rial organization to CRC (13).

CRC is an evolving disease, characterized by a series of molecular and microbial
changes (14–16), suggesting a dynamic interplay between the host and intestinal
microbiota as the disease progresses. MicroRNAs (miRNAs) have emerged as potential
mediators of these host-microbe interactions with their ability to modulate both host
(17) and bacterial genes, which can result in shifts in microbiota composition (18, 19).
In turn, the microbiota is able to modulate host miRNA expression (18, 20, 21), with F.
nucleatum targeting several miRNAs related to CRC pathogenesis (5, 22). However, it is
uncertain how human CRC-associated microbial communities as a whole impact fecal
miRNA expression and whether host miRNAs affect bacterial composition/gene expres-
sion during CRC.

To examine the bacterial activities associated with biofilm-positive microbes from
CRC patients, we examined mouse and bacterial gene expression from colon tissues
and mouse small RNA sequencing from stools collected from biofilm-positive associ-
ated ApcMinΔ850/�;Il10�/� mice. We found that a number of bacterial virulence genes
were increased in biofilm-positive communities and identified a conserved core group
of transmissible biofilm-positive associated bacteria. Additionally, we demonstrate that
biofilm status and CRC development alter miRNA expression and specific miRNAs
correlate with biofilm-positive associated taxa.

RESULTS
Bacterial activities associated with biofilm status. In order to elucidate microbial

activities associated with biofilm-forming bacteria derived from human CRC patients
that promote tumorigenesis in ApcMinΔ850/�;Il10�/� mice (13), we characterized mouse
and microbial gene expression from colon tissue snips using RNA sequencing (see
Fig. 1AI and II for experimental design). Principal-component analysis (PCA) of microbial
community gene expression detected by both our de novo assembly and aligning the
microbial transcriptome sequencing (RNA-seq) reads to the human gut microbiome
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FIG 1 Experimental design and microbial community gene expression associated with biofilm status
(related to Materials and Methods). (A) Schematic showing the setup of the gnotobiotic association (I)
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integrated gene catalog (IGC) showed separate clustering of biofilm-positive CRC tumor
tissue (BF�T) associated ApcMinΔ850/�;Il10�/� mice from biofilm-negative healthy pa-
tient tissue (BF-bx) associated mice (Fig. 1B and Fig. S2A in the supplemental material,
respectively). Bacterial metatranscriptomic analysis found 2,918 significant differentially
expressed (DE) genes (false-discovery rate-adjusted P value [PFDR] � 0.05), the majority
of which were increased in BF�T mice (2,739 increased genes and 179 decreased
genes [see Table S1 at https://figshare.com/s/bd06b560c635de3ac830]) compared
to BF-bx mice. Pathways related to protein export, bacterial secretion systems, carbon
fixation, flagellar assembly, and biosynthesis of amino acids were increased in BF�T
mice compared to BF-bx mice (Table 1 and Fig. S2B and C). Additional genes related to
virulence and biofilm formation, including stress response, toxins, iron acquisition,
mucin cleavage/transport, outer membrane polysaccharide importers, and adhesins
were also significantly increased in BF�T mice (see Table S1 at https://figshare.com/s/
bd06b560c635de3ac830). Increased toxin genes included Clostridium difficile toxins A
and B, Clostridium perfringens Mu toxin, and E. coli colibactin (clbG and clbI). Weighted
gene coexpression network analysis (23) identified 34 hub genes (see Table S1 at
https://figshare.com/s/bd06b560c635de3ac830) from modules detected in BF�T mice
and included outer membrane proteins involved in protein export and heat shock
proteins involved in the stress response.

Despite the high number of microbial genes with increased expression in BF�T micro-
bial communities, no separation by PCA analysis was found at the host gene expression
level, and only 62 significant DE genes (Fig. 2A; see also Table S2 at https://figshare.com/
s/4b593b780f756a4acf69) between BF�T and BF-bx mice were detected. Instead, the
host was more responsive to the microbiota in general as opposed to the type of
microbiota, since the host transcriptomes of either BF�T- or BF-bx-associated mice
clustered separately from germfree (GF) mice (Fig. S1A and B). There were �3,000
significant DE host genes (�2,000 upregulated, �1,300 downregulated) in the BF�T
and BF-bx groups compared to GF mice (see Tables S3 at https://figshare.com/s/
163676e591c87b0d6c35, S4 at https://figshare.com/s/652055bdb15e48b866ef, and S5
at https://figshare.com/s/c9adfcd56af278666c55) and pathway analysis revealed that
the majority of upregulated genes in colonized mice belonged to immune-related
pathways (Fig. S1C and D). Only the peroxisome proliferator-activated receptor (PPAR)
signaling pathway was significantly upregulated (P � 1.88e�05, PFDR � 0.004) in BF�T

FIG 1 Legend (Continued)
and reassociation (III) experiments, along with the analyses done on the stool and tissue samples (II and
IV) at the end of the 12-week experiments. Twelve-week stool and/or DC tissue samples were used for
RNA, miRNA, and 16S rRNA sequencing analyses (II). Tissue was collected from 12-week-associated BF-bx
mice and 16- to 20-week-associated BF�T mice to make the reassociation inoculums (III). (B) PCA of
bacterial transcriptomes from BF�T- and BF-bx-associated ApcMinΔ850/�;Il10�/� mice generated from
Trinity de novo assembly (N � 5 for BF�T and BF-bx).

TABLE 1 Pathways enriched in BF�T samples using KEGG pathways from Trinity assembly
or HUMAnN analysis of RNA-seq reads

Method and pathway P value PFDR

Trinity assembly
Carbon fixation pathways in prokaryotes 1.06e�05 0.0006
Protein export 0.0002 0.0051
Bacterial secretion system 0.0002 0.0051
Valine, leucine, and isoleucine biosynthesis 0.0004 0.007
2-Oxocarboxylic acid metabolism 0.001 0.0131

HUMAnN analysis
2-Oxocarboxylic acid metabolism 1.41e�05 0.0007
Inositol phosphate metabolism 1.42e�05 0.0007
Biosynthesis of amino acids 0.0004 0.0163
Flagellar assembly 0.001 0.0204
Protein export 0.0021 0.035
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mice compared to BF-bx mice. The majority of the significant DE genes were upregu-
lated (56 versus 6 downregulated) in BF�T mice and included genes related to lipid
metabolism, iron scavenging, and the extracellular matrix (see Table S2 at https://
figshare.com/s/4b593b780f756a4acf69). Cross-referencing the list of upregulated genes
with The Cancer Genome Atlas (TCGA) colorectal microarray data using Oncomine (24)
revealed 10 of the upregulated genes were also significantly overexpressed in colon
adenocarcinomas compared to control tissues with SCD (stearoyl-coenzyme A [CoA]
desaturase, PPAR pathway member), MMP10, and SLC22A3 increased more than 2-fold
(see Table S6 at https://figshare.com/s/7248a5727e5972879086).

Biofilm status alters the fecal miRNA profile. Given the differential bacterial and
host gene expression observed in BF�T mice that developed colon tumors and the
potential of miRNAs to modulate interkingdom interactions (18), we next profiled stool
miRNA expression. To examine the interplay between miRNAs and bacterial commu-
nities derived from human CRC or healthy patients, we sequenced the fecal small RNAs
from GF, BF-bx, and BF�T ApcMinΔ850/�;Il10�/� mice. The PCA plot shows clear sepa-
ration between GF mice and BF-bx or BF�T-associated mice, demonstrating that
microbial colonization alters the fecal miRNA profile in ApcMinΔ850/�;Il10�/� mice
(Fig. 3A; see also Table S7 at https://figshare.com/s/b7d7ff960f787eb31954). Biofilm/
cancer status of the initial human-derived microbes also modulates miRNA expres-
sion since PCA analysis demonstrates separation of BF�T and BF-bx miRNAs
(Fig. 3A; see also Table S7 at https://figshare.com/s/b7d7ff960f787eb31954). Pair-
wise comparisons between the three groups of mice revealed that 25 unique miRNAs
were significantly DE (out of 142 total detected) (Fig. 3B; see also Tables S7 at
https://figshare.com/s/b7d7ff960f787eb31954, S8 at https://figshare.com/s/2eaad72ee
a8a5890f7f2, and S9 at https://figshare.com/s/20a8d9c108e990242bc7). Next, we com-
pared the significantly different miRNAs in BF�T or BF-bx versus GF mice and found
that nine significant DE miRNAs overlapped (mmu-miR-6538, -146b-5p, -215-5p, -194-
5p, -192-5p, -2137, and -5126 and mmu-let-7b-5p and mmu-let-7i-5p), suggesting host
miRNAs targeting the microbiota (Fig. 3B; see also Tables S8 at https://figshare.com/s/
2eaad72eea8a5890f7f2 and S9 at https://figshare.com/s/20a8d9c108e990242bc7). We
were also able to identify eight miRNAs (mmu-miR-709, -690, -21a-5p, -142a-5p, -6240,
-6239, and -148a-3p and mmu-let-7a-5p) that were significantly DE according to biofilm
status (BF�T versus BF-bx [Fig. 3B; see also Table S7 at https://figshare.com/s/
b7d7ff960f787eb31954]). These findings suggest that the microbiota modulates host
miRNA expression. Together, both microbiota composition and disease status drive
miRNA expression (BF�T versus BF-bx DE miRNAs).

Fecal miRNAs correlate with specific bacterial taxa and target bacterial and
mouse genes. We next examined whether the fecal miRNAs of human microbiota-
associated mice correlated with bacterial taxa previously identified in the mice (13). We
identified 11 miRNAs that were significantly DE between GF, BF-bx, and BF�T mice
and correlated with the relative abundances of bacterial taxa in the stool, distal
colon tissue, or both compartments (Fig. 3B [colored green, orange, or underlined];
see also Tables S10 at https://figshare.com/s/55e156ec52d9d3e53394 and S11 at
https://figshare.com/s/1c47b438d806062915c9). Additionally, we identified miRNAs
that although not significantly DE between groups, correlated with five and eight
bacterial genera in the stool and distal colon tissues, respectively (Fig. 4A and B; see
also Tables S10 at https://figshare.com/s/55e156ec52d9d3e53394 and S11 at https://
figshare.com/s/1c47b438d806062915c9). Five of these genera (Bacteroides, Lachno-
spiracea incertae sedis, Anaerostipes, Clostridium XVIII, and Roseburia) were significantly
increased in BF�T mice (Fig. 4A and B; see also Tables S10 at https://figshare.com/s/
55e156ec52d9d3e53394 and S11 at https://figshare.com/s/1c47b438d806062915c9).
Furthermore, mmu-miR-140-3p correlated with Lachnospiraceae incertae sedis abun-
dance and tumor number, both of which were increased in BF�T mice (Fig. 4A and
Fig. S3A). Thus, CRC-associated microbial communities elicit a specific host miRNA
profile and maintain a subset of miRNAs that correlate with specific microbial taxa.
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Interestingly, computationally predicting the bacterial genes targeted by the signif-
icant miRNAs revealed several miRNAs (mmu-miR-2137, mmu-miR-5126, and mmu-
miR-6538) that primarily target bacterial genes (see Table S12 at https://figshare.com/
s/33fb65da16763a5e3347). In contrast, other miRNAs (mmu-let-7s, mmu-miR-21a-5p,
mmu-miR-142a-5p, mmu-miR-148a-3p, mmu-miR-194-5p, mmu-miR-690, and mmu-
miR-709) are predicted to primarily target mouse genes (see Table S13 at https://
figshare.com/s/be3f38607b2e9875e7f6), and there is a significant negative correlation
between the number of predicted bacterial versus mouse gene targets for the signif-
icant miRNAs we identified (Fig. 4C and D and Fig. S3B and C). Taken together, these
predictions suggest that specific miRNAs have differential roles in mediating host-
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microbe interactions, with some mainly modulating host gene expression and others
primarily impacting bacterial gene expression and/or abundance.

A core BF�T microbiota is transmissible. We previously showed that carcinogenic
properties are retained over time as microbial inoculums from homogenized mouse
colon tissues collected from the initial BF�T but not BF-bx tissue-associated microbes
promoted tumors in new cohorts of GF ApcMinΔ850/�;Il10�/� mice (13) (Fig. 1A.III).

We next examined microbial compositional differences between BF�T and BF-bx
reassociated mice. 16S rRNA sequencing revealed separation of stool and distal colon
(DC) tissue microbiota from reassociated mice according to the biofilm status of the
initial association (Fig. 5A and B). Thirteen genera were significantly different (12 genera
enriched and one genus depleted) in the stool and/or DC tissue of both the BF�T-
associated and reassociated ApcMinΔ850/�;Il10�/� mice (Fig. 5C), three of which also
correlated with specific miRNAs (Fig. 4A and B). Six of these genera (Clostridium XVIII,
Erysipelotrichaceae incertae sedis, Escherichia/Shigella, Eubacterium, Parabacteroides, and
Robinsoniella) were increased in both the stool and DC tissue of BF�T-associated and
reassociated mice compared to BF-bx mice. To determine how much the microbiota
composition shifted after reassociation, we compared the microbiotas from the reas-
sociated mice to the initial associated mice, whose tissues were used to generate the
inoculums (Fig. S4 and S5). The BF-bx communities were highly transmissible, with no
significant differences based on principal-coordinate analysis (PCoA) of the stool and
DC tissue communities (Fig. S4). The BF�T communities shifted more after reassocia-
tion, with distinct clustering seen in the PCoA (Fig. S5A and B). Depending on the colon
region the BF�T inoculum was derived from, there were 5 and 13 significantly different
genera within the DC tissue or stool compartment; however, only 1 and 5 of these
genera were significantly different based on biofilm status in the initial associations
(Fig. S5C and D). We also examined how the location of the colon tissues used to make
the BF�T reassociation inoculums impacts community composition by comparing the
stool and DC tissue communities from mice reassociated with PC or DC tissue inocu-
lums (Fig. S6A). We found that only 2 and 5 genera were significantly different (Fig. S6B)
and only 2 of these genera (Coprobacillus and Holdemania) differed according to biofilm
status in the initial associations. Out of the 12 genera that were increased in BF�T-
associated and reassociated mice, only 1 (Coprobacillus) was not maintained in both
groups of BF�T reassociated mice. Thus, regardless of the murine colon region of origin
(proximal or distal), the majority of BF�T microbes (11 genera total; Anaerostipes,
Clostridium XI, Clostridium XIVa, Clostridium XVIII, Erysipelotrichaceae incertae sedis,
Escherichia/Shigella, Eubacterium, Flavonifractor, Lachnospiraceae incertae sedis, Parabac-
teroides, and Robinsoniella) are able to reestablish and promote cancer when transmit-
ted to a new cohort of GF mice. Taken together, the data suggest there is a core set of
bacteria and bacterial gene expression associated with biofilm-positive cancers.

DISCUSSION

In contrast to previous studies that tested the carcinogenicity of CRC-associated
microbiotas by gavaging mice with stools from either CRC or healthy control patients
(9, 10), mucosa-associated BF�T bacteria retain their carcinogenicity when trans-
planted into a new set of GF mice, regardless of whether they were extracted from the
proximal or distal colon (13). The number of taxa that overlap between the initial

FIG 4 Legend (Continued)
The name of each miRNA is shown below the genus it correlates with. Genera in blue font are significantly different between BF-bx and BF�T
ApcMin�850/�;Il10�/� mice. The red underlined genera were significantly different based on biofilm status in both the initial association and reassociation
experiments. The direction of correlation is shown within parentheses. Relative abundance data are from the subset of BF-bx and BF�T mice that were
used for miRNA sequencing (n � 7 for BF-bx; n � 10 for BF�T). See Tables S10 at https://figshare.com/s/55e156ec52d9d3e53394 and S11 at https://
figshare.com/s/1c47b438d806062915c9 for the full list of miRNAs that correlate with bacterial taxa and the corresponding correlation coefficients. (C)
Heatmap comparing the log2-transformed number of predicted bacterial versus mouse gene targets for the miRNAs that were significantly DE between
the GF, BF-bx, or BF�T group. There is a significant negative correlation (Pearson) between the number of predicted bacterial versus mouse gene targets
for the set of significant DE miRNAs. (D) Scatter plot demonstrating the significant negative Pearson correlation between the log2-transformed number
of mouse versus bacterial gene targets where each circle represents a unique mouse miRNA that was significantly DE between GF, BF-bx, or BF�T group.
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association and the reassociation experiments, shown herein (Fig. 5), suggest that there
is a core, transmissible, cancer-promoting microbiota associated with biofilm-positive
cancers.

Four of the BF�T core transmissible cancer-promoting genera overlap with human
stool-derived taxa that established and were associated with cancer in mice. Parabac-
teroides correlated with high tumor numbers in a gnotobiotic azoxymethane (AOM)/
dextran sulfate sodium (DSS) C57BL/6 model (9), and Erysipelotrichaceae, Lachno-
spiraceae, and a Clostridium XIVa derived from CRC patients were associated with polyp
formation in an antibiotic-treated AOM C57BL/6 model (10). Additionally, increased
Erysipelotrichaceae, E. coli, Lachnospiraceae, and Parabacteroides and decreased Bifido-
bacterium have previously been associated with human CRC patient samples by 16S
rRNA gene sequencing studies (1, 25).

Metagenomic predictions generated from 16S rRNA data identified bacterial secre-
tion systems and motility genes associated with human CRC stool communities (26)
and host glycan utilization genes correlated with tumor numbers in human stool-
associated AOM/DSS mice (9). Recent meta-analysis studies of metagenomes from CRC
patient fecal samples identified gluconeogenesis, mucin degradation, and colibactin as
associated with the CRC microbiome (27, 28). These bacterial pathways and genes were
also increased in our BF�T metatranscriptome. PICRUSt analysis of biofilm-positive
versus biofilm-negative human CRC tissues also demonstrated an increased sporulation
capacity associated with biofilm-positive CRCs contributed by several taxa, among
them the Lachnospiraceae family (11). Similarly, herein, we saw genera from the
Lachnospiraceae family (Anaerostipes, Clostridium XIVa, Lachnospiracea incertae sedis,
and Robinsoniella) and upregulation of multiple sporulation genes in mice transplanted
with the BF�T community. There is also overlap between BF�T community gene
expression and human periodontitis polymicrobial metatranscriptomes, particularly for
genes related to iron acquisition, flagellar synthesis, and the stress response (29). These
findings are interesting since biofilms have also been associated with periodontal
disease and F. nucleatum and Porphyromonas spp. are associated with both oral
biofilms and colon cancer (4, 11, 25, 30).

Multiple genes related to nutrient, envelope, DNA damage, and environmental
stress responses were increased in the BF�T community that could be indicative of
host immune pressures, but could also be associated with a competitive polymicrobial
environment, a feature of biofilms (31). Host iron metabolism changes during inflam-
mation and cancer can promote competition for iron within the intestinal microbiota
(32). Multiple iron acquisition genes, including siderophores and transport receptors,
were increased in BF�T mice (32). The expression of these metabolic and iron acqui-
sition genes could be indicative of a low-nutrient environment, fostering interbacterial
competition.

Bacterial adhesion genes are a critical colonization determinant and may also
contribute to biofilm formation, in which attachment to host cells represents a key
initiating step (33). There are a number of adhesins expressed in the BF�T community,
including type I and IV pili, capsule genes, and proteins that bind to host extracellular
matrix (ECM) components such as fibronectin and laminin. On the host side, BF�T mice
exhibit upregulation of a laminin subunit and the ECM-degrading matrix metallopro-
teinase MMP10 (34), suggesting alterations to the host ECM. BF�T communities also
expressed numerous moonlighting adhesins (such as flagellin, GroEL, DnaK, and elon-
gation factor Tu), putative multifunctional proteins which have been demonstrated in
some bacterial strains to bind host cells, mucin, or ECM components (35). Bacterial

FIG 5 Legend (Continued)
DC, respectively). (A) BF�T PC reassociation compared to the BF-bx DC reassociation. (B) BF�T DC reassociation compared to the BF-bx DC
reassociation. (C) Heatmap depicting the mean log10-normalized relative abundances of genera that were significantly different in the stool and/or DC
tissues of reassociated mice inoculated with murine colon tissue homogenates derived from human BF�T or BF-bx tissue-associated mice. The
underlined genera were significantly different based on biofilm status in both the initial association and the reassociation, and the red underlines
represent the three genera that correlated with specific miRNAs (Fig. 4A and B).
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adherence has also been identified as an important feature of CRC-associated bacteria,
including F. nucleatum (36) and Streptococcus gallolyticus subsp. gallolyticus (37), the
latter of which is capable of forming biofilms on collagen IV, an ECM component (38).
Furthermore, bacteria expressing adhesins that bind to ECM and host glycoproteins
may have an additional colonization advantage, as host glycosylation is disrupted
during inflammation and cancer with increases in sialylation and fucosylation that can
result in decreased host cell adhesion to ECM components (39). Additionally, some of
the effects of CRC-associated bacteria may be contact dependent; for example,
colibactin-induced DNA damage requires direct contact between the bacteria and
epithelial cells (40).

Coupled with its role in facilitating colonization and attachment, mucin also repre-
sents a source of nutrition for intestinal bacteria (41). Antibiotic treatment was shown
to increase sialic acid levels in the lumen and promoted the expansion of pathogenic
bacteria such as C. difficile and Salmonella enterica serovar Typhimurium (42). Interest-
ingly, sialic acid and other mucin sugar cleavage and transport expression were
increased in BF�T mice along with an increased abundance of Clostridium XI and
Salmonella. The SusC and SusD outer membrane proteins, involved in oligosaccharide
binding and transport (43), were also increased in the BF�T community (from Bacte-
roides and Parabacteroides spp.). The upregulation of stress responses, mucin, and other
nutrient acquisition genes indicate environmental conditions that could in turn pro-
mote virulence expression. Nutrient- and iron-responsive global transcriptional factors
such as cyclic AMP receptor protein and ferric uptake regulator (Fur), which were
increased in BF�T mice, have also been shown to regulate bacterial virulence expres-
sion (44).

Shotgun metagenomic sequencing of patient stools has revealed that host
glycan utilization and virulence factor genes are associated with the CRC micro-
biome (16) and that genes in these categories were also overexpressed in the BF�T
microbial community. Host inflammation, bacterial iron (Fur), and stress response
(Hsp90 chaperone) genes have all been implicated in colibactin regulation, and all
of these genes were increased in BF�T mice (45–47). Additionally, iron acquisition
genes have previously been associated with E. coli mucus colonization (48), and
mucins have the capacity to induce E. coli virulence gene expression (41). Mucin and
its components may also serve as a cue for virulence regulation of other BF�T
community members, as they have also been linked to virulence regulation in S.
enterica and Campylobacter jejuni (41). Although the expression of multiple B.
fragilis genes were increased in the BF�T community, B. fragilis toxin (bft) was not
detected. One possible explanation is that expression of the RprXY two-component
system, recently implicated in bft suppression (49), was significantly increased in
BF�T mice. However, even intermittent enterotoxigenic B. fragilis colonization as
short as 2 weeks appears to be sufficient to induce tumor formation (50), so it is
possible that bft expression occurred at an earlier time point in the ApcMinΔ850/�;
Il10�/� model. Taken together, the metatranscriptomic data suggest that the BF�T
community expresses more pathogen-related virulence factors and metabolism
genes that provide competitive advantages over commensals but may have detri-
mental side effects to the host.

Members of the Erysipelotrichaceae family, part of the core transmissible bacteria in
BF�T mice, were also increased in the microbiota of Western or high-fat diet-fed mice
(Clostridium innocuum, Eubacterium dolichum, and Clostridium ramosum) and were
associated with increased fat deposition (51, 52). Diets high in fat and obesity are
established risk factors for CRC (53). Conceivably, the activation of the PPAR signaling
pathway within BF�T mice could be a response to colonization with these obesity-
associated taxa. PPARs are nuclear hormone receptors that regulate key aspects of lipid
and carbohydrate metabolism, including fatty acid synthesis, uptake, and storage (54),
and have both suppressive and promotional effects in CRC (55).

Branched-chain amino acid (BCAA) biosynthesis was increased in the BF�T com-
munity, and serum BCAA have also been associated with metabolic disorders and
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correlated with intestinal microbiota members such as Bacteroides vulgatus (56). BCAAs,
which include valine, leucine, and isoleucine, may also contribute to fatty acid synthe-
sis, which is also a feature of cancer metabolism (57). Valine and/or leucine secretion
were previously associated with E. coli (58) and polymicrobial environmental biofilms
(59). Polyamines were previously shown through metabolomics to be increased in CRC
patients, with a rare polyamine, N1, N12-diacetylspermine detected in biofilm-positive
CRCs (60), and we found that multiple microbial polyamine-related genes were in-
creased in BF�T mice (61). Polyamines increase in proliferating cells and can promote
tumor growth and invasion (62) and are also important to bacterial biofilm formation
(61). Several transporter genes (Slc22a3, Abcb1a, and Abcb1b) that have been previously
implicated in polyamine uptake (63) were upregulated in BF�T mice. Thus, biofilm-
associated communities and their associated metabolism pathways have the potential
to modulate host metabolism, which may promote cancer.

In addition to bacterial components and metabolites, miRNAs represent another mode
of host-microbe interplay during cancer. Profiling the fecal miRNAs of ApcMinΔ850/�;Il10�/�

mice under different microbial conditions allowed us to identify specific miRNAs that were
associated with biofilm/CRC status. A few of the CRC-associated miRNAs we identified have
conserved sequences with human miRNAs (hsa-miR-21-5p, hsa-miR-142-5p, and hsa-miR-
146a-5p) that are increased in CRC patients (17, 22, 64, 65). Mmu-miR-21a-5p was signifi-
cantly increased in the BF�T mice, and F. nucleatum has previously been shown to increase
miR-21 (22), suggesting that miR-21 may be targeted by multiple CRC-associated bacterial
genera.

Although the depleted miRNAs in BF�T mice, miR-690 and miR-709, are not found
in humans, they do share several CRC-related gene targets (such as Ctnnb1, Il6ra, Stat3,
Src, and Zeb1) with other miRNAs depleted in CRC (17). Though none of these genes
were significantly DE according to biofilm status in the mouse colon tissue RNA-seq
data set, it is possible the luminal miRNAs might target other regions of the colon or
specific intestinal epithelial cell types. Additionally, even though miRNAs have been
shown to primarily control gene expression through mRNA degradation, translational
repression is also possible (66). Alternatively, another mechanism of miRNA regulation
could relate to targeting the RNA-induced silencing complex genes like Argo1, Argo2,
Argo3, Argo4, Cnot6, and Dcp2 (66), which are predicted targets of multiple significant
DE miRNAs, the majority of which are increased in BF�T mice.

miRNAs also have the capacity to target bacterial genes and impact microbial
composition (18), and our computational predictions indicate that newly discovered
miRNAs (those with higher numbers in their names) preferentially target bacterial
genes. These miRNAs include miR-2137, miR-5126, miR-6239, miR-6240, and miR-6538,
which were also increased in DSS-treated mice (67), where microbiota composition also
contributes to disease susceptibility (68). Many of these miRNAs were predicted to have
redundant bacterial targets (including genes regulating motility, secretion, outer mem-
brane proteins, stress response, iron acquisition, and carbohydrate utilization/transport)
that overlap with genes that were increased in the BF�T microbial community.
miR-6239 and -6240 were decreased in BF�T mice, but miR-2137, -5126, and -6538
were increased in mice, regardless of biofilm status.

Conclusions. The mechanisms by which miRNAs enter and regulate bacterial gene

expression and how bacterial organization affects bacterial community gene expression
warrant further investigation. A recent publication showed that plant-derived exosome-
like nanoparticles contain miRNAs that altered intestinal microbial composition and
gene function (69). Whether intestinal epithelial cell-derived exosomes carrying miRNAs
could similarly target intestinal microbiota is under investigation. Our findings suggest
a complex interplay between BF�T-associated bacteria, their gene expression, the host
transcriptome, and miRNAs that may contribute to CRC pathogenesis (Fig. 6). Deci-
phering this complex interplay will likely identify new regulatory pathways and mole-
cules with potential therapeutic implications.
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MATERIALS AND METHODS
Animals. Germfree (GF) 129/SvEv ApcMinΔ850/�;Il10�/� mice were transferred to separate gnotobiotic

experimental isolators based on inoculum type for the duration of the association.
Initial associations with human tissue-associated microbes. GF 129/SvEv ApcMinΔ850/�;Il10�/�

mice were inoculated with pooled tissue-derived microbes from biofilm-negative tissues collected from
healthy patients via colonoscopy biopsy (BF-bx) or biofilm-positive tumor tissues collected from CRC
patients (BF�T) via surgical resection. Patient tissues were collected and screened for biofilm status via
fluorescence in situ hybridization (FISH) (biofilm-positive criteria, polymicrobial, within the mucus layer,
spanning 200 �m, and �109 bacteria/ml) as described previously (12). Tissues were analyzed with the
universal bacterial probe (EUB338), and a nonsense probe (non338) was used as a negative control (12,
13). Additional FISH analysis was conducted on biofilm-positive tumor tissues with probes to detect
Bacteroidetes, Lachnospiraceae, Fusobacteria, and Proteobacteria (12, 13). The probe sequences are listed
in Table S4 in reference 12. Each inoculum was prepared anaerobically by homogenizing tissue (tissue
pooled from five different patients) in phosphate-buffered saline (PBS), and FISH images for these tissues
can be found in Fig. S1 in reference 13. Each mouse received 100 to 200 �l of inoculum, and associations
were carried out for 12 to 20 weeks (Fig. 1AI). Tissues and/or stools from mice collected 12 weeks after
association were used for transcriptome sequencing (RNA-seq), microRNA sequencing (miRNA-seq), and
16S rRNA gene sequencing analyses (Fig. 1AII).

Mouse reassociation inoculums. Mouse reassociation inoculums (Fig. 1AIII) were made from colon
tissues from 12-week BF-bx-associated (cohort 2) and 16- to 20-week BF�T-associated (cohort 3)
ApcMinΔ850/�;Il10�/� mice (13). After the colon was flushed 1	 with PBS, tissue snips were taken from
both the distal colon (DC) and proximal colon (PC) and stored at – 80°C until time of inoculum
preparation. Each inoculum was prepared from colon tissue snips pooled from four mice. All inoculums
were prepared anaerobically by mincing and homogenizing tissue snips in prereduced PBS. The BF-bx
reassociation inoculum was prepared from inflamed (average inflammation score of 2.5/4) distal colon
tissues (BF-bx DC). The two BF�T reassociation inoculums were prepared from mostly normal (average
PC inflammation score of 0.9/4) proximal colon tissues (BF�T PC) or distal colon tissues (BF�T DC) from
the same four mice with colitis and tumors (average DC inflammation score of 3.6/4; average number of
tumors � 5.5, range � 3 to 10 tumors).

Reassociation with mouse tissue-associated microbes. Six- to 13-week GF 129/SvEv ApcMinΔ850/�;
Il10�/� (males and females) were transferred to gnotobiotic isolators (separate isolator for each exper-
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FIG 6 Schematic depiction of the major findings. The core, transmissible bacteria found in biofilm-positive
tumor (BF�T) associated and reassociated mice are listed under core bacteriome. Some of the bacterial and
mouse genes that were differentially expressed in the BF�T associated mice compared to biofilm-negative
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status, correlated with the relative abundances of some bacterial taxa, and were predicted to target mouse
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imental group) and gavaged with 100 to 200 �l of inoculum (Fig. 1AIII). Mice were euthanized after
12 weeks, and the colon was flushed once with PBS and then cut and splayed longitudinally for
macroscopic tumor counts. About 2 	 0.5 cm tissue snips from the proximal and distal colon were
collected by flash freezing in liquid nitrogen and stored at – 80°C until analysis.

Stool and distal colon tissue DNA extraction. Stool and DC tissue DNA (Fig. 1AII and IV) was
extracted via phenol-chloroform separation by lysing the cells with phenol-chloroform-isoamyl alcohol
(25:24:1) and 0.1-mm zirconium glass beads on a bead beater (Precellys), followed by phase separation
with chloroform-isoamyl alcohol (24:1), DNA precipitation with ethanol, and subsequent purification with
the DNeasy Blood & Tissue kit (Qiagen catalog no. 69506).

16S rRNA sequencing. The 16S rRNA V1-V3 hypervariable region was amplified using barcoded
primer pairs 27F (5=-AGAGTTTGATCCTGGCTCAG-3=) and 534R (5=-ATTACCGCGGCTGCTGG-3=) with uni-
versal Illumina paired-end adapter sequences (see Tables S14 at https://figshare.com/s/
ffd8c3066929eb0c69fc and S15 at https://figshare.com/s/5e95b9a855710812950b). PCR products were
purified, quantified, and pooled as described previously (7) and sequenced with an Illumina MiSeq (as
two separate runs). The first 16S rRNA run (Run01, Fig. 1AII and Table S16 at https://figshare.com/s/
97c3b0a48482b6fb0ecf) included stool and DC tissue samples from BF-bx cohort 1, BF�T cohorts 1 to
3, and two different biofilm-positive groups (13). Differentially abundant taxa were identified by
comparing stool (1- and 12-week time points) and DC tissue (12-week time point) communities collected
from BF-bx #1, BF�T#1-2, and two additional biofilm-positive groups reported in Tomkovich et al. (13).
The second 16S rRNA run (Run02, Fig. 1AII and IV and Table S16 at https://figshare.com/s/
97c3b0a48482b6fb0ecf) included stool and DC tissue samples from BF-bx cohort 2 and the three
reassociation groups (BF-bx DC, BF�T PC, and BF�T DC). Comparisons between initial associations and
reassociations were assessed by comparing the microbiota from mice whose tissues were used for the
inoculums (BF-bx #2 and BF�T#3) to the reassociation microbiotas (BF-bx DC, BF�T PC, and BF�T DC).

16S rRNA sequencing analysis. Reads were preprocessed using Quantitative Insights into Microbial
Ecology (QIIME) (70) version 1.9.1 including trimming and filtering at Q20. The final set of reads was fed
to the RDP (Ribosomal Database Project) classifier (71) version 2.12 with the confidence set at 80%. Reads
were grouped by genera, and samples with less than 1,000 total reads and genera with less than 5 reads
were removed. The resulting counts were normalized and log10 transformed (72) using the following
formula:

log10�RC

n
�

� x

N
� 1�

where RC is the read count for a particular taxon in a particular sample, n is the total number of reads
in that sample, the sum of x is the total number of reads in all samples, and N is the total number of
samples. The principal-coordinate analysis (PCoA) was generated from the Bray-Curtis distance of the
normalized and log10-transformed counts using the phyloseq (73) R package (74).

Genera significant for biofilm group (BF-bx, BF�T, BF-bx DC, BF�T PC, and BF�T DC) were detected
using the lme function in the R nlme package, with the REML method (75) to fit a mixed linear model
of the form:

genus � variable � 1|cage � �

where genus indicates the log10 normalized abundance of a particular genera, variable indicates either
the biofilm group or PCoA axis, and 1|cage indicates that we used the cage as a random effect. We then
ran an analysis of variance (ANOVA) on the above model to generate P values for biofilm group or PCoA
axis. We checked for possible cage effect by comparing the above model and a model with the cage
removed (genus � variable � �) using ANOVA. The P values were adjusted for multiple hypothesis
testing in R using the p.adjust function employing the method of Benjamini and Hochberg (76). The
heatmaps were generated using the R function ggplot2 (77).

We performed two additional analyses on the 16S rRNA data, the first utilizing QIIME (70) v. 1.9.1
closed-reference at 97% similarity level using the Greengenes reference data set release 13_8 and the second
employing Deblur (78) workflow v. 1.0.3 with the default parameters (using Deblur’s default positive and
negative reference filtering) and trim length set to 100 bases. Both pipelines showed no significant separation
between the BF-bx and BF-bx DC samples (see Fig. S4C and D in the supplemental material).

RNA extraction, rRNA depletion, and RNA sequencing. Total RNA was extracted from frozen
proximal colon tissue snips (Fig. 1AII) using the mirVana miRNA isolation kit, with phenol (ThermoFisher
Scientific catalog no. AM1560) according to the manufacturer’s instructions, with the addition of an �1:1
mix of 1-mm acid-washed glass beads and 0.1-mm zirconia beads and a Precellys24 (Bertin Instruments
catalog no. EQ03119-200-RD000.0) bead beater for tissue disruption and lysis. Extracted RNA was treated
with the Turbo DNA-free kit (ThermoFisher Scientific catalog no. AM1907) to remove DNA. Quality
control, rRNA depletion, and cDNA library preparation were performed by the University of Florida’s
Interdisciplinary Center for Biotechnology Research (ICBR) Gene Expression and Genotyping core using
the Agilent 2100 bioanalyzer (Agilent Genomics catalog no. G2939BA), Ribo-Zero Gold rRNA removal kit
(Epidemiology) (Illumina catalog no. MRZE724) and ScriptSeq v2 RNASeq library preparation kit (Illumina
catalog no. SSV21124) starting with 1 �g total RNA. Samples were sequenced by the University of Florida
ICBR NextGen DNA Sequencing core on the Illumina HiSeq 3000 (2 	 100 run), multiplexing each sample
into three lanes to avoid lane effect.

Mouse RNA-seq analysis. Reads were quality filtered at Q20 and trimmed to remove remaining
adapters using Trimmomatic (79) version 0.36. The resulting reads were aligned to Illumina iGenome Mus
musculus Ensembl GRCm38 reference genome using Tophat (80) version 2.1.1 utilizing Bowtie2 (81)
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version 2.3.0 following the approach of Gilad and Mizrahi-Man (82). The resulting alignments (averaging
34,079,158 concordant read pairs per sample) were processed using Cufflinks (83) version 2.2.1 along with
Illumina iGenome Mus musculus Ensembl GRCm38 gene transfer format file, after masking rRNA features (82).
We used cuffquant to perform transcript quantification and exported the raw counts (nonnormalized counts)
to text files. The raw counts were then imported to edgeR (84) version 3.16.5 for detecting differentially
expressed (DE) genes. A gene was considered for the differential expression test if it was present in at least
50% of the samples. We considered a gene DE if its edgeR false-discovery rate (FDR)-adjusted P value (PFDR)
was �0.05. Parallel analysis using featureCounts from the subread package version 1.5.3 for transcript
quantification showed similar results (data not shown) (85). Pathway analysis was conducted through GAGE
(86) version 2.24 using Mus musculus (mmu) Kyoto Encyclopedia of Genes and Genomes (KEGG) (87)
pathways, and genes were mapped to KEGG pathways using Pathview (88). We considered a pathway
significant if its GAGE false-discovery rate (q value) was less than 0.05. We tested the effect of sequencing lane
on the clustering of the samples (Fig. 2A) and found it to be insignificant (P value � 0.05) (data not shown).

Metatranscriptome analysis. Quality-filtered and trimmed reads from above were aligned to iGenome
Mus musculus Ensembl GRCm38 reference genome using BWA (89) version 0.7.16a, and reads with alignments
were excluded from further analysis. The remaining reads were then filtered from rRNA and tRNA sequences
by aligning (using BWA) to a collection of NCBI rRNA and tRNA sequences and SILVA database sequences,
resulting in an average of 1,208,429 reads per sample, which were then submitted for de novo assembly using
Trinity (90) version 2.4.0. The resulting assembly was annotated using Trinotate (91) version 3.0.1 (http://
trinotate.github.io) with the following databases: uniprot_sprot (92), Pfam (93), and Virulence Factor
Database (VFDB) (94). The resulting annotations were examined, and sequences annotated as nonbac-
terial were removed. Transcript abundance was determined using RNA-seq by expectation maximization
(RSEM) (95) through Trinity’s align_and_estimate_abundance.pl script, and the counts were imported to
edgeR version 3.16.5 for differential expression analysis. A gene was considered for the differential
expression test if it was present in at least 50% of the samples. We considered a transcript DE if its edgeR
FDR-adjusted P value was �0.05. To account for normalization artifacts, we also examined the ratios of
DE genes between the BF�T and BF-bx groups generated from a rarefied data set that was based on
140,000 reads per sample (Table 2). The similar ratios of DE genes from the complete and rarefied data
sets suggest that our findings are not an artifact of normalization. We conducted a second analysis
(reference-based analysis) by aligning the reads submitted for de novo assembly to the human gut
microbiome integrated gene catalog (IGC) (96) using Bowtie2 (81) (v.2.3.4.2) followed by quantification
using featureCounts (85) from the subread package (v.1.5.3) and obtained similar results (Fig. S2A).

Pathway analysis was conducted through GAGE version 2.24 using Kyoto Encyclopedia of Genes and
Genomes (KEGG) reference pathways on the assembled transcript and The Human Microbiome Project
(HMP) Unified Metabolic Analysis Network (HUMAnN) (97) on the unassembled reads. Genes were
mapped to KEGG pathways using Pathview (88). We considered a pathway significant if its q value was
�0.05. Weighted gene coexpression network analysis (WGCNA) version 1.68 (23) was utilized to detect
modules in each biofilm status samples using the blockwiseConsensusModules function which performs
the network construction and consensus module detection. The hub gene in each detected module was
identified using the WGCNA function chooseTopHubInEachModule. The sequencing lane had no effect
on the clustering of the samples in Fig. 1A (P value � 0.05, data not shown).

miRNA extraction and sequencing. Small RNAs were extracted from snap-frozen stool samples
(Fig. 1AII) using the mirVana miRNA isolation kit. Because of the low amount of small RNA, GF stools were
pooled from 13 ApcMinΔ850/�;Il10�/� mice (20- to 44-week age range) total, or stools from 2 to 5 mice per
sample (n � 4). BF-bx and BF�T small RNAs were extracted from the stools of 12-week-associated BF-bx
(n � 7) and BF�T (n � 10) ApcMinΔ850/�;Il10�/� mice. cDNA libraries were synthesized with the NEBNext
Multiplex Small RNA Library Prep Set for Illumina kit (New England Biolabs catalog no. E7300) and small
RNAs for each library (21- to 30-nucleotide size range) were gel purified. For the GF, BF-bx, and BF�T
comparisons, a pool of 21 libraries (equivalent molar concentrations; 4 GF, 7 BF-bx, and 10 BF�T) were
multiplexed and sequenced using the Illumina Miseq.

miRNA analysis. CAP-miRSeq (98) was used to process the miRNA sequences. We used the
databases and reference sequences that ship with CAP-miRSeq for all the analyses. Briefly, sequences
were filtered and trimmed using cutadapt (99). Quantification of miRNA was done using miRDeep2 (100),
and DE miRNAs were detected using edgeR version 3.16.5. We considered a miRNA DE if its edgeR
FDR-adjusted P value was �0.05. Principal-component analysis (PCA) was created using R’s prcomp
function from the normalized and log10-transformed miRNA counts according to the equation above.

Correlations with microbiota taxon abundance were done using R lm function, P values were
determined using R’s ANOVA function, and FDR correction was done using R’s p.adjust function

TABLE 2 Ratios of DE genes in BF�T and BF-bx groups

Data set

% of genes

DE genes
(FDR < 0.05)
(% of input transcripts)

Upregulated genes
in BF�T group
(% of DE transcripts)

Downregulated genes
in BF�T group
(% of DE transcripts)

Complete 36 93 7
Rarefieda 40 88 12
aThe rarefied data set was based on 140,000 reads per sample.
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employing the method of Benjamini and Hochberg (76) and only those with a FDR-adjusted P value of
�0.05 were considered.

Mouse miRNA targets were predicted using miRDB (101), and bacterial target prediction for mice
miRNA was done using PITA (102) on the assembled bacterial transcripts from the RNA-seq data
described above. We considered a bacterial transcript a potential target for a particular mouse miRNA if
its ΔΔG score was less than or equal to �15 kcal/mol. The bacterial and mouse gene targets of miRNAs
significantly different between GF, BF-bx, and BF�T groups are listed in Tables S12 at https://figshare
.com/s/33fb65da16763a5e3347 and S13 at https://figshare.com/s/be3f38607b2e9875e7f6.

For miRNA expression correlation with tumor numbers, two BF-bx samples were excluded because
they were fixed without splaying the colon so tumor counts could not be generated. Correlation was
done using Spearman’s rank correlation through R’s cor.test function.

Statistical analyses. For all sequencing analyses, a taxon or miRNA was considered only if it was
present in at least 30% of the comparison samples, and statistics are described in above 16S rRNA
sequencing, mouse RNA-seq, metatranscriptome and miRNA analysis sections. P values of �0.05 were
considered statistically significant.

Ethics. All animal experiments were approved by the University of Florida Institutional Animal Care
and Use Committee (protocol 201308038). All patient tissues were collected as previously described (11,
12, 103).

Data availability. The data supporting the results of this article have been deposited in the National
Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) under accession number
GSE108165 for the RNA-seq and miRNA data sets and the National Center for Biotechnology Information
Sequence Read Archive (NCBI SRA) under BioProject identifier (ID) PRJNA422588 for 16S rRNA Run02
sequences. Run01 sequences are in the article by Tomkovich et al. (13).
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