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Abstract: Infants born prematurely have an increased risk of experiencing brain injury, specifically
injury caused by Hypoxia Ischemia (HI). There is no approved treatment for preterm infants, in
contrast to term infants that experience Hypoxic Ischemic Encephalopathy (HIE) and can be treated
with hypothermia. Given this increased risk and lack of approved treatment, it is imperative to
explore and model potential treatments in animal models of preterm injury. Hypothermia is one
potential treatment, though cooling to current clinical standards has been found to be detrimental
for preterm infants. However, mild hypothermia may prove useful. Caffeine is another treatment
that is already used in preterm infants to treat apnea of prematurity, and has shown neuroprotective
effects. Both of these treatments show sex differences in behavioral outcomes and neuroprotective
effects, which are critical to explore when working to translate from animal to human. The effects
and research history of hypothermia, caffeine and how sex affects these treatment outcomes will be
explored further in this review article.
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1. Introduction

Approximately 11–12% of newborns in the US and 11% globally are premature, mean-
ing born at less than 37 gestational weeks (GW) of prenatal development (aka preterm) [1–3].
These infants have increased mortality risk and are vulnerable to medical conditions that
compromise cerebral oxygen supply and brain function, as well as impair long-term
outcomes. Statistics indicate that more than 30% of premature infants have significant long-
term disabilities [4,5]. Beyond stabilizing care, neonatologists have few medical options to
protect surviving premature infants from long-term risks. There are no approved preterm
neuroprotective treatments available, even for infants with severe intra-cranial bleeding or
other forms of major encephalopathy. The high rates of premature birth, poor long-term
outcomes, and lack of available treatments combine to make preterm brain injury a major
health priority.

When cellular oxygen is reduced by hypoxia, ATP failure associated with inefficient
anaerobic metabolism restricts neuronal activity. Complete oxygen restriction following
ischemia or hypoxia-ischemia depletes high-energy metabolites even faster. This critical
ATP loss leads to excess extracellular glutamate, prolonged neural depolarization, and
elevated calcium and sodium influx. Maturity of glutamate receptors determines the rate of
events [6,7], but eventually sodium over-load leads to cell swelling and necrotic cell death,
while calcium over-load activates neuronal nitric oxide synthase (nNos) that accumulates
and activates free radicals nitric oxide and peroxynitrate. Mitochondrial dysfunction and
translocation of cytochrome-c from the mitochondria to the nucleus, caspase cleavage,
chromatin condensation, and DNA fragmentation follow. This mitochondrial dysfunction
also increases the levels of reactive oxygen species, that can contribute to cellular death [8].
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Simultaneous activation of poly (ADP-ribose) polymerase-1 (Parp-1; a DNA repair en-
zyme) leads to release of apoptotic factors [9–11]. Both pathways cause an increase in
inflammation, microglial activation, cell death, and tissue loss. Two potential treatments,
hypothermia and caffeine may help mediate these effects.

Although the mechanisms of action for caffeine and hypothermia are not precisely
known, therapeutic effects of hypothermia are thought to be mediated by a preservation
of energy metabolism, reduction in cytotoxic edema and free radicals, and reduction in
immune and inflammatory response as well as apoptotic cell death. Caffeine acts as an
adenosine antagonist (specifically at A2A and/or A1 receptors), and this interaction may
attenuate calcium influx [12,13]. Caffeine may also reduce microglial activation [14] and/or
reduce neuroinflammation either by decreasing the release of inflammatory proteins or
blocking their action. [15].

Preterm brain injury and associated poor outcomes often originate in hypoxic-ischemic
events (HI; decreased blood and/or oxygen supply) [16–19]. HI events often occur in
the perinatal period. The associated preterm encephalopathies can follow from vascular
fragility/immaturity and irregular blood pressure that together cause rupture and bleeding.
Typical areas of injury involve the capillary-rich germinal matrix and/or peri-ventricular
region (IVH hemorrhage). IVH still occurs in about 20–30% of severe preterm term in-
fants despite now-routine antenatal corticosteroid use [16–18]. This injury particularly
affects glial progenitors that are actively proliferating in the region, and are vulnerable
to insult. Thus, intra-cranial hemorrhage in very preterm infants often damages white
matter (e.g., motor tracts). This damage may be focal/cystic, or involve diffuse white mat-
ter loss (periventricular leukomalacia or PVL)—both are associated with cerebral palsy
(CP) [17,18,20–27]. Perfusion failure/reperfusion injury can also result from falling blood
pressure and capillary collapse, again with variable tissue loss. One of the most common
causes of HI in the preterm brain is chronic hypoxemia secondary to respiratory insuffi-
ciency due to apnea, bradycardia and/or bronchopulmonary dysplasia (BPD). All of these
conditions are very common in preterm infants. Resulting chronic low oxygen can cause
diffuse brain injury in vascular “watershed” zones, and emergent PVL [19,21,28]. Although
HI events are less common in late preterm infants, when they occur they typically lead to
neurodegeneration associated with serious cognitive disabilities [17,18,29].

Other factors in the perinatal period that can affect susceptibility to HI include mothers
experiencing chorioamnionitis, or preeclampsia, Preeclampsia is common in preterm moth-
ers and leads to high blood pressure and protein in their urine. Infants born to preeclampsia
mothers have a greater risk for periods of hypoxia and interventricular hemorrhage when
compared to infants born prematurely but to mothers without preeclampsia [30]. Chorioam-
nionitis, an infection of the amniotic fluid and membranes surrounding the fetus, leads to
an increase in inflammation for both the mother and infant fighting infection. Chorioam-
nionitis leads to an increased risk for PVL and IVH, and increased variability in brain
oxygenation [31,32]. Events like placental abruption, which is more common in preterm
delivery, increase instances of HIE in both term and preterm infants [33].

Poor outcomes associated with premature birth include blindness/deafness, cerebral
palsy (CP), learning disability, ADHD, reduced neurodevelopmental scores (e.g., IQ and
mental development index (MDI)) [34–54]. Specific statistics vary based on gestational
age at birth, survival rates, medical complications, and criteria for study inclusion, but
estimates suggest about 30% of surviving preterm infants (including those with and with-
out HI events) experience cognitive delay or disability [55]. This rises to 40% for very
preterm infants (<32 GW), and exceeds 50% for extremely preterm infants (<28 GW) [54].
Meta-analyses show that preterm children on average lose 10 IQ points, with specific
difficulties in language acquisition and processing [45,56–60]. These language problems
may relate to core underlying deficits in rapid auditory processing, such as the ability to
process rapidly changing acoustic information in speech (e.g., /ba/ vs. /da/). Acoustic
processing deficits are often seen in preterm infants, both with and without diagnosed
brain injury [59,61–64]. Since these measures can be obtained pre-lingually (<1 year) they
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offer excellent prognostic value, and in fact early rapid acoustic processing scores are highly
predictive of later language outcomes [61,63–68]. Importantly, these skills are not only
affected under pathologic conditions, but predict language abilities in typically developing
children as well [61,63–69]. This link provides a strong rationale for inclusion of rapid
acoustic processing in animal models of early brain injury as a translational marker for
language-relevant outcomes in clinical populations. Premature infants show other cognitive
problems as well, including deficits in learning, memory, and executive functioning [69–71],
poor performance on spatial memory tasks [41,72], and impairments in visual attention
with heightened incidence of attention-deficit disorders [34,36,39,43,73–79].

2. Animal Models of Preterm Brain Injury

To explore behavioral outcomes following HI injury, animal models of induced insult
have been developed in various species including sheep, piglets, and rodents [62–64,66–74].
Large-animal models offer key insight to cellular pathology of HI-induced white matter
injury since small animals have less myelin compared to humans [80,81], but have draw-
backs such as limitations in behavioral assessment. Overall, the most widely employed
neonatal HI model is one adapted from Levine by Rice & Vannucci [82]. This model in-
volves HI injury induced in rats on postnatal day (P) 7 by unilateral ligation/cauterization
of a carotid artery (typically right) combined with a period of exposure to a hypoxic envi-
ronment (45–180 min at 8% O2). For many years, P7 rats were thought to simulate near-term
injury in human neonates (~38 GW;) [83] based on comparisons of peak brain growth
across species [84,85]. With more precise mapping of cross-species neurodevelopmental
markers, it is now apparent that a P7 rat equates more closely to a late preterm infant
(32–34 GW) [86,87], with P7 HI in rats simulating late preterm brain injury [87,88]. Other
authors argue that P7 corresponds to 36 GW, which is still earlier than previously thought,
with P10 being roughly equivalent to a term infant [89]. P7 HI male rats exhibit reliable
deficits in rapid auditory processing as juveniles and adults, and deficits are persistent
and stable within subjects [90–105]. This follows other rodent models of language-related
disabilities [106–112], and supports the idea that rapid acoustic processing deficits in
animal models can serve as a biomarker of neural disruptions linked to language impair-
ments [61,63–68]. Deficits on spatial and working memory tasks have also been validated
in P7 HI rats (Morris Water Maze task, Non-Spatial Maze, delayed-match-to-place maze
tasks) [93,96,97,113–117], as well as deficits in visual attention [114,118,119]. Perhaps based
on this extensive literature, most pre-clinical neuroprotective HI studies use a P7 HI rat
model (Rice-Vannucci) [88,104,105,120–132].

Large animal models (lambs and piglets) have been subjected to HI injury during fetal
life. Typically, in utero umbilical/placental occlusion is used to simulate preterm-like brain
injury, and as a platform to assess neuroprotective strategies [132–136]. Only a few studies
have assessed preterm-like (<P6) HI injuries in rodent models [92,101,126,137–140]. Impor-
tantly, even fewer of these studies report comprehensive long-term behavioral assessments
following preterm-like injury, or investigations of therapeutic intervention applicable to
preterm infants.

3. Therapeutic Hypothermia for Neonatal Brain Injury

Currently, the most widely employed and extensively studied intervention for full-
term infants with moderate to severe hypoxic ischemic encephalopathy (HIE)—a form
of post-HI injury associated with birth complications (e.g., umbilical occlusion) is hy-
pothermia (head or whole-body cooling) [141,142]. Using head-cap or cooling blankets,
affected infants are cooled by about 4 ◦C (33.5 ◦C core temperature) within 6 h of birth,
and maintained for 72 h before re-warming. These accepted parameters are the result of
extensive, randomized multi-site cooling trials that measured mortality, morbidity, motor
impairments/CP, sensory impairments, and cognitive outcomes [47,143–145]. Cooling of
full-term infants with moderate to severe HIE has been shown to reduce mortality and
incidence of major disability by about 25% (depending on inclusion criteria and outcome



Life 2022, 12, 1514 4 of 16

measures) [142] and improves mental/cognitive outcomes. Importantly, however, this
therapy remains approved only for term infants, ≥ 36 GW. It should be noted that some
clinicians are starting to use hypothermia at younger gestational ages. Despite being the
most successful intervention used in term infants with HI (albeit with modest benefits),
cooling has not been rigorously trialed or approved for <36 GW infants. Reports are limited
to a handful of late preterm case studies, and one clinical trial that proposed using a term
hypothermia regime (4 ◦C for 72 h) in preterm infants of 32–36 GW. However, this trial was
halted after recruitment of only 4 infants, and reported 50% adverse outcome and 25% mor-
tality [146–148] (NCT00620711). Another study has shown similar adverse outcomes from
preterm hypothermia, but as there was no control group of uncooled preterm infants, it is
difficult to say if the cooling truly caused more harm [18,33]. Concerns about use of cooling
therapies in preterm infants center on possible deleterious complications like hypoglycemia
and coagulopathy [18,148]. Indeed, the 72 h regimen optimized to term HI infants may not
be effective in preterm infants. Most pediatric associations agree that it should not be used
in preterm infants, outside of a research setting, due to potential deleterious outcomes [20].
However, premature infants might benefit from an abbreviated and milder temperature
reduction as shown below in work by Smith [103,104].

Potter [149] conducted a study using a hypothermia treatment modeled after the
approved therapy for term infants with moderate or severe brain injury (as defined by
prolonged core temperature reduction of 4 ◦C). They reduced core body temperature of P6
rat pups by 4 ◦C for 5 h following induction of HI (human GA = 32–35 week). Matched
littermates received HI followed by normothermic conditions, or sham treatment with
comparable hypothermia or normothermia. Results showed that this cooling intervention
was not only ineffective, but it was also deleterious to both sham and P6 HI rats as measured
by behavioral and neuroanatomical outcomes [129,149]. Specifically, cooled sham males
had worse scores on a Silent Gap acoustic task compared to normothermic sham males,
and significantly worse scores on Non-Spatial Water Maze (p < 0.01) [149]. These findings
have important implications for therapeutic intervention in at-risk preterm human popula-
tions, and certainly promote caution in the application of existing hypothermia protocols
to at-risk preterm infants. However, they did successfully use a more modest form of
temperature reduction in P7 HI rats, specifically a 1.5 ◦C temperature reduction for 2 h
(Figure 1). This intervention—in contrast to the 4 ◦C/5 h regimen described above—was
effective in mitigating some long-term behavioral deficits in both male and female rats
with P7 HI injury and offered some protection from gross brain injury (Figure 1) [103,105].
Using a repeated measures ANOVA, cooled HI female and male rats showed improved
performance compared to normothermic HI rats on a silent gap rapid auditory processing
task (Females: p < 0.05, Males: p < 0.05) [104]. Cooled HI females and males also showed
similar improvements in performance on the Morris Water Maze (females: p < 0.05, males:
p < 0.05) compared to HI normothermic animals using a repeated measures ANOVA [104].
On the Non-spatial Water Maze a marginal treatment effect was seen in females, showing
improved performance in the cooled HI group compared to normothermic HI animals
(p = 0.08) [97]. Males on the same task did not show any overall treatment effects, but did
show, through individual t-tests, normothermic rats doing significantly worse compared to
shams (p = 0.05) [104].
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(green) and Sham normothermic (blue) male rats on: (A) silent gap 0–100 ms detection; (C) Morris
Water Maze (MWM); and (E) Non-Spatial Water Maze (NSM). Performance in P7 HI normothermic
(red), HI cooled (green) and Sham normothermic (blue) female rats on: (B) Silent Gap 0–100 ms
detection; (D) Morris water maze (MWM); and (F) Non-Spatial Water Maze (NSM). Adapted with
permission from Ref. [104]. 2015 by the authors.
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4. Therapeutic Caffeine for Neonatal Brain Injury

To our knowledge the only therapeutic agents that have been explicitly trialed for
neuroprotection in preterm infants are erythropoietin (PENUT trials) [150] and magnesium
sulfate [122]. Magnesium sulfate has a drawback that treatment must be prophylactic,
meaning the unnecessary treatment of many infants to achieve efficacy for those with injury.
Moreover, magnesium only appears to improve motor issues. However, retrospective anal-
yses of caffeine administered to preterm infants for respiratory stimulation suggest it may
offer neuroprotection [151–155]. One of the most well-known prospective studies—caffeine
for the treatment of apnea (“CAP”)—randomized a large sample of preterm infants to caf-
feine or placebo treatment for respiratory stimulation. Results showed that preterm infants
treated with caffeine citrate (20 mg/kg loading dose; 5–10 mg/kg daily maintenance) had
better survival without neurodevelopmental disability, and lower rates of CP and cognitive
delay at 18–21 months [156]. By 5 years of age caffeine was still associated with enhanced
motor function, but not reduced rates of cerebral palsy or intellectual impairment [157].
However, other recent studies continue to support beneficial outcomes from caffeine, based
primarily on retrospective assessment of caffeine administered for respiratory applications
in preterm infants. Moreover, studies show that benefits from early/immediate caffeine
treatment are more robust than later caffeine administration [151–155].

These clinical findings are consistent with animal work showing that treatment with
caffeine citrate (50 mg/kg/day) from postnatal day 1 (P1) to P12 increased pyramidal
neuronal growth in prefrontal cortex of rats at P35 and P70 [158]. Such growth-promoting
effects could explain improved cognitive function reported in both children and rats treated
with caffeine after brain injury. In another study, caffeine citrate (15–20 mg/kg/day) ad-
ministered to rats from P2 to P6 reduced seizure susceptibility to some chemo-convulsants
in both juvenile and adult rats [159]. Further, rat pups exposed to caffeine from P0–P12 or
P1–7 via treated lactating dams and then subjected to induced injury showed enhanced
myelination, with reduced ventriculomegaly and tissue loss relative to untreated injured
pups [160,161]. Mice with neonatal HI were also shown to benefit from a single dose of
caffeine [162]. These combined findings support rigorous testing of the therapeutic benefits
of caffeine in preterm HI injury rat models.

Our lab conducted two published studies using caffeine treatment in moderate to
late-preterm neonatal rat models of HI injury [149,163] and found a consistent benefit of
caffeine treatment following HI. In the first study, we assessed effects of one-time caffeine
in P7 HI male rats (late preterm), using a Rice-Vannucci injury (120 min hypoxia). Caffeine
was administered immediately after injury. We found beneficial long-term effects of caffeine
treatment on several tasks, including significant improvement on the Morris Water Maze
task [93]. We also saw decreased injury-related brain pathology in caffeine-treated HI rats
relative to untreated HI rats in adulthood. In the second study, we assessed the effects of
an immediate plus 24 h-delayed dose of caffeine in male rats with HI induced on P6 [149].
Again, we found significant benefits of caffeine treatment on a Rotarod task, Silent Gap
0–100 ms acoustic detection task, and Non-Spatial Water Maze (though trends were seen
on other tasks). We also found reduced injury-related pathology in caffeine-treated HI
compared to untreated HI rats in adulthood. Importantly, a recent pilot study extended
these beneficial effects to P6 HI-injured female rats, with improved performance on Silent
Gap 0–100 ms and Morris Water Maze, and reduced neuropathologic indices in caffeine-
treated P6 HI female rats compared to HI-saline female littermates [164].

We performed a post hoc pooled multi-variate ANOVA to test for differences between
P6 and P7 rats. This also included analysis of a single vs. multiple dose regimen of
therapy. Sex was not use as a variable. Results of a repeated measures ANOVA showed
robust significant benefits of caffeine on outcome measures. We found no difference in
the beneficial effect between P6 and P7. We continued to see superior behavioral effects
with caffeine treated pups compared to non-treated on Silent Gap acoustic discrimination
0–100 ms (F(1,47) = 11.3, p < 0.01; Figure 2A); Morris Water Maze (F(1,47) = 4.2, p < 0.05;
Figure 2B); and Non-spatial Water Maze (F(1,47) = 4.5, p < 0.05; Figure 2C). In all analyses,
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Day was significant (reflecting ongoing improvement) but did not interact with Treatment.
Task was further included as a repeated-measures variable (3 levels), and here the effect size
for the difference between HI saline and HI caffeine-treated rats was quite robust (0.93 effect
size; F(1,47) = 10.5, p < 0.01), confirming that these three tasks together (SG-100, MWM
and NSM) provide an excellent and sensitive tool for preliminary screening of therapeutic
caffeine treatment parameters in a rat neonatal HI model.
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permission from Refs. [93,149]. 2013 by the authors and 2018 by ISDN.

5. Mechanisms of Hypoxia/Ischemia, Cell Death, and Brain Injury of Prematurity

As mentioned in the introduction, the exact mechanisms of action of hypothermia and
caffeine treatment are not fully understood. For hypothermia, it is thought that benefits
are seen through preservation of energy metabolism and a reduction in cytotoxic edema,
free radicals, inflammation, and apoptotic cell death. Caffeine, as a non-selective adenosine
antagonist is thought to act at the A1 and A2A receptors to reduce calcium influx, and
potentially reduce microglial activation or the release of inflammatory compounds [15–17].

We recently addressed this question in a study examining the effects of caffeine
treatment following P6 HI injury in a rat model on microglial activation as measured 48
h post-injury. Both male and female rats were assigned to either a P6 Sham, HI injury
followed by saline, or HI injury followed by caffeine treatment [165]. Results showed that
both male and female rats with P6 HI injury and saline treatment exhibited significantly
elevated chromatin condensation 48 h after injury in the right cortex (side of HI injury)
as measured by concentrated DAPI staining. Male and female rats with P6 HI injury
followed by caffeine treatment did not differ significantly from shams and had chromatin
condensation values mid-way between sham and HI saline animals. The lack of significant
chromatin condensation in HI caffeine rats relative to shams—despite a robust effect in
HI rats treated only with saline, confirms behavioral evidence of therapeutic caffeine
effects, as observed using behavioral measures shown above [165]. Interestingly, though
we saw similar reductions in cell death between the sexes, when we looked at microglial
activation as measured by soma-size of Iba-labelled cells, we saw trending microglial
activation differences in HI saline male rats versus HI caffeine male rats (p = 0.08, one-tail)
specifically with less activation in caffeine treated subjects. A very different pattern was
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seen in females, where we saw no significant microglial activation in HI saline animals
relative to shams, nor effects of caffeine on microglial activation. These results suggest that
therapeutic effects of caffeine in neonatal males may occur at least in part via reductions
in microglial activation, whereas female benefits from caffeine appear to be conferred via
different protective mechanisms. This is despite the fact that, both sexes show structural
and functional benefits following caffeine treatment (per cumulative studies).

6. Sex Differences in Neonatal HI and Therapeutic Intervention

Our overall findings combined with the existing literature highlight the importance of
including sex differences in studies of perinatal brain injury in term and preterm infants
as well as sex differences in response to therapeutic intervention [128,161,166–168]. While
caffeine appears to exert similar levels of protection in both sexes, hypothermia appears to
have different degrees of benefit in males and females [104,164]. Surprisingly few neonatal
brain injury outcome studies consider sex as a variable, and none of the human trials
provide outcome data for males and females separately. Yet, human research supports
differences in the events surrounding HI in males and females. Male infants are 61% more
likely to experience brain injury [169,170], and have a higher incidence of prematurity,
anoxia, intraventricular hemorrhage, and mortality from prematurity [171–175]. Males are
more likely to be diagnosed with developmental disorders including speech and language
disorders and ADHD. Males develop CP at a higher frequency relative to females with
similar brain injury [171,176–179]. The heightened susceptibility of males to HI insult is cou-
pled with exacerbated cognitive/behavioral deficits following HI [48,173,180–183].Preterm
males either with or without with neonatal HI injuries score lower than comparable preterm
females on cognitive and developmental outcomes [38,39,43,49,171,175,176,180,184,185].
These differences were summarized in a meta-analysis performed by our lab showing sig-
nificantly worse IQ outcomes for preterm male infants compared to matched females [91].
Despite important clinical implications, precise mechanisms underlying sex differences in
outcomes are not well understood. Testosterone may exacerbate neural injury in the male
or estrogen/progesterone could be protective in the female [88,140,186–189]. Other evi-
dence suggests sex differences in cell death pathways may favor females [10,100,190–193]
as well as sex differences in inflammation, microglial activation, and/or post-injury cell
genesis [189,194,195]. Knowledge about the mechanisms of this female advantage could
lead to novel therapeutic discovery. Moreover, males and females may respond differently
to interventions, which is clinically important [128,166–168,176,180]. A classic illustration
is the case of indomethacin, which was widely used in preterm infants to lower IVH risk,
and later discovered to be effective only in males [196,197].

Overall results show that although caffeine reduces cell death in both male and female
rats as measured by DAPI to index chromatin condensation, offering equivalent protection,
the intermediary impact on microglial activation as a therapeutic mechanism may be quite
different in the sexes. This could have critical implications for individual optimization of
timing, dosing, and/or interactions between caffeine and other adjunct interventions in at-
risk male versus female infants. Our results may also indicate that different mechanisms of
cell death in neonatal males and females following HI may lend themselves to sex-specific
next generation interventions.

7. Conclusions

Translational work and animal models looking at preterm HI are extremely important
especially because preterm infants are at higher risk of brain injury and there are no
approved treatments. This contrasts term infants, where injury risk is lower but approved
treatment exists. It also appears from work in our lab and others that what is therapeutic
for term infants may not be effective for preterm infants (e.g., hypothermic treatment)
or what works/is beneficial for one sex may not be for the other (indomethacin, mild
hypothermia, and caffeine). In addition, the effect of injury appears to have different
outcomes in extremely preterm vs. mildly preterm infants [92]. Thus, extensive animal
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modeling helps to avoid later discoveries of adverse outcomes once treatment trials move
to humans.

Current work from our lab and other studies show that mild hypothermia and caffeine
treatment have great potential to be effective treatments for preterm HI. There are other
potential treatments in the translational pipeline, such as metformin, exendin-4, and lep-
tin [198–200]. Further work on potential treatment must model conditions of prematurity
and sex. As seen above, sex and gestational age may affect the mechanism of protection
as well as how effective the treatment is. Modeling injury in rodents < P7, reporting sex
differences, and looking at a wider variety of induced brain injury (because there are many
potential causes of brain injury in the preterm), would help to ensure we can better transi-
tion from pre-clinical animal models into human trials. To further help validate our models,
there are several factors that may contribute to development of preterm brain injury that
should also be considered (genetics, inflammatory conditions, other comorbidities, and
recurrent hypoxia). These other variables must be included and addressed in research to
ensure we are using the most valid modeling we can, which will enhance the transition
into human studies.
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