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Abstract
In humans and some other species perceptual decision-making is complemented by the

ability to make confidence judgements about the certainty of sensory evidence. While both

forms of decision process have been studied empirically, the precise relationship between

them remains poorly understood. We performed an experiment that combined a perceptual

decision-making task (identifying the category of a faint visual stimulus) with a confidence-

judgement task (wagering on the accuracy of each perceptual decision). The visual stimula-

tion paradigm required steady fixation, so we used eye-tracking to control for stray eye

movements. Our data analyses revealed an unexpected and counterintuitive interaction be-

tween the steadiness of fixation (prior to and during stimulation), perceptual decision mak-

ing, and post-decision wagering: greater variability in gaze direction during fixation was

associated with significantly increased visual-perceptual sensitivity, but significantly de-

creased reliability of confidence judgements. The latter effect could not be explained by a

simple change in overall confidence (i.e. a criterion artifact), but rather was tied to a change

in the degree to which high wagers predicted correct decisions (i.e. the sensitivity of the con-

fidence judgement). We found no evidence of a differential change in pupil diameter that

could account for the effect and thus our results are consistent with fixational eye move-

ments being the relevant covariate. However, we note that small changes in pupil diameter

can sometimes cause artefactual fluctuations in measured gaze direction and this possibili-

ty could not be fully ruled out. In either case, our results suggest that perceptual decisions
and confidence judgements can be processed independently and point toward a new ave-

nue of research into the relationship between them.

Introduction
In the domain of perceptual decision making, a distinction can be drawn between two types of
visually-informed decisions: “first-order,” such as the identification of a visual object or feature,
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and “second-order”, such as the estimation of the quality of the sensory evidence and/or the
certainty of the first-order decision [1]. Neuroscientists have made considerable progress in
trying to identify and characterize the neural phenomena that correspond to first-order [2] and
second-order [3–5] decision processes, but the precise relationship between the two remains
an open question.

A second-order decision is typically an expression of the degree of confidence in a decision,
or confidence in the quality of the evidence on which a decision is based. In addition to humans
[6], some non-human species, including apes [7], monkeys [3, 8], dolphins [8], and even rats
[4] appear to be capable of behaviorally expressing their level of certainty (or uncertainty)
about their decisions (for review see [9]). While there remains some debate as to whether these
faculties qualify as “metacognition” [10], it is clear that accuracy and confidence are dissociable
[5, 11–14].

Authors of prior work have adopted the convention of referring to first-order and second-
order decisions as “type-1” and “type-2” decisions, respectively [1, 5, 15], and we will follow
that same convention here.

In the study of type-2 decision making, it is important to distinguish between the overall de-
gree of confidence, and the reliability of the confidence judgements. One’s degree of confidence
can vary independently of one’s accuracy: one could, in theory, offer low confidence judge-
ments more often than high ones and yet perform well on a task, or vice versa. In addition, the
reliability of one’s confidence judgements, called type-2 sensitivity [1, 15], is also theoretically
distinct from both accuracy and confidence, although there are some a-priori constraints on
the relationship between type-1 and type-2 sensitivity [15]. Type-2 sensitivity refers to the de-
gree to which the subject’s confidence judgements accurately estimate his probability of being
correct, and this is what we are concerned with here. While type-1 and type-2 sensitivity can
vary between individuals [5], the precise relationship between these two types of decision re-
mains unknown. In particular there is an open debate as to whether these two types of decision
rely on distinct neural processing pathways [16] or can be accounted for by different criteria
applied to a single source of neural information [14, 17].

By using ocular activity as a covariate, we provide evidence that type-1 and type-2 sensitivity
can be driven in opposite directions, suggesting that they may be subserved by distinct mecha-
nisms. We continuously recorded gaze direction and pupil diameter during a cued fixation in-
terval, while subjects performed a perceptual (type-1) decision-making task and also engaged
in post-decision wagering. Post-decision wagering is a form of type-2 decision-making that is
motivated by the prospect of winning money [18]. On each trial, after making a perceptual de-
cision, the participant places a wager. The amount wagered is won or lost depending on the ac-
curacy of the perceptual decision. Presumably, participants tend to wager more money when
they are more confident in their decision. Accordingly, the amount wagered (a type-2 decision)
provides a quantitative index of the confidence they had in their perceptual (type-1) decision.
While post-decision wagering may be subject to biases such as loss aversion [19], one can rule
out criterion effects by either testing for a shift in the proportion of high wagers, or by using
unbiased measures of type-2 decisions based on signal-detection theory (SDT) [1, 15].

Using a two-alternative forced-guess [20] object-categorization task together with post-
decision wagering, we found that the sensitivity of high wagers to correct decisions fell to zero
(as a function of color contrast) before accuracy on the perceptual task fell to chance. Data
from infrared eye tracking revealed that this dissociation was linked to a differential interaction
between the steadiness of visual fixation (as measured by our equipment; see Discussion) and
type-1 and type-2 judgements: greater variability in measured gaze direction [21] during stimu-
lus presentation, while subjects were fixating, was associated with significantly more-accurate
guessing, but significantly less-advantageous wagering.

Eye-Tracking Reveals Dissociation of Perception and Meta-Cognition
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Recall that “less advantageous wagering” does not necessarily imply “lower confidenÎ” (a
simple shift in bias), but rather refers to the degree to which confidence matches accuracy, i.e.
the ability to decide whether or not one’s own uncertain decision is likely to be correct. While
type-2 sensitivity can be estimated using metrics based on signal detection theory [1, 15], these
are aggregate measures and are thus not defined at the single-trial level, whereas the proportion
of advantageous wagers (PAW) is. PAWwill vary to some degree purely as a function of overall
confidence, but for a constant or near-constant proportion of high wagers, advantageous wa-
gering estimates the sensitivity of the type-2 judgement. We make use of PAW when a single-
trial metric is called for, being careful to rule out effects due purely to changes in overall
confidence.

Materials and Methods

Subjects
Subjects were Princeton University students who either signed up to perform the experiment
for pay, or for course credit. A total of 14 subjects participated in the experiment (4 males,
mean age 20 yrs). The first six (6) subjects performed the experiment before we had access to
the eye-tracking equipment. An additional eight (8) subjects performed the experiment with
eye tracking. The experimental protocol was approved by the Princeton University Institution-
al Review Board, and all subjects gave written informed consent before participating in the ex-
periment. Data from three subjects were excluded from the behavioral data analyses (see
below), and the eye-tracker data file was corrupt for one subject. Thus N = 7 for subjects con-
tributing both behavioral and eye-tracker data, and N = 11 for subjects contributing
behavioral data.

Stimuli, procedures, and task
Stimuli were simple line drawings of faces and houses, 175 by 175 pixels, line width 9 pixels
blurred with a Gaussian filter (radius 2 pixels) and rendered in exactly two colors using error-
diffusion dither (Photoshop CS2, Version 9.0, Adobe Systems, Inc). There were a total of 24 sti-
muli, 12 faces and 12 houses. Stimuli were presented on a 15” LCD display (30.5 x 23cm, 1024
x 768 pixels, 60Hz refresh) at a viewing distance of 45cm, and subtending approximately 6° x
6° of viewing angle. Stimuli were presented dichoptically with the aid of a cardboard divider
and prism lenses [22] (see S1 Fig). Two black square borders just large enough to frame the sti-
muli were displayed on either side of the vertical meridian. These were left on the screen at all
times during blocks of trials, and stimuli always appeared within the frames.

We manipulated the visibility of the stimuli by reversing the figure-ground color assignment
between the two eyes (dichoptic color masking or DCM [23–25]; Fig 1 and S1 Fig) and para-
metrically varying the color contrast. The two colors used in the line drawings were isolumi-
nant mixtures of red and green at different levels of color contrast, yielding opposing shades of
pale orange and pale yellow-green. A calibration was performed on the display device using
heterochromatic flicker photometry [26] so that isoluminance could be maintained across a
range of different levels of color contrast. Heterochromatic flicker photometry involves dis-
playing a colored patch on the screen that alternates rapidly (e.g. at 15 Hz) between the two col-
ors. The luminance of one color is adjusted up and down by hand in order to find the point at
which subjective flicker is minimized. Because the apparent flicker is driven mainly by differ-
ences in luminance, then the point of minimum apparent flicker approximates the point of
subjective isoluminance. RGB values (0< = RGB< = 1) for the set of color pairs used on our
display device ranged from [0.4 0.2745 0] to [0.4 3.647 0] for the shades of orange, and [0.2343
0.3414 0] to [0.3528 0.3869 0] for the shades of yellow-green (see S1 Table for the full set of
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RGB values used, but bear in mind that these were calibrated on our display device, and are in-
cluded for illustrative purposes only—these are unlikely to be isoluminant on your display de-
vice). The screen background was blue and approximately isoluminant with the stimuli so that
the onset of the stimulus would be less likely to provoke blinks or saccades. The lights were
turned off in the testing room during the experiment.

Before the experiment, subjects practiced maintaining steady fixation by trying to sustain
the disappearance of a blurred peripheral annulus (Troxler’s illusion [27]) for a few seconds at
a time, repeatedly for two or three minutes. Subjects were instructed to maintain steady fixation
during each trial, from the onset of the fixation point (black, 2 x 2 pixels, appearing 500ms pre-
stimulus) through the disappearance of the stimulus (about 2 seconds in total). Once seated in
front of the computer display (with cardboard divider and prism lenses) a dual-image random-
dot stereogram was used to confirm dichoptic fusion [22].

The sequence of events during each trial (explained to subjects verbally; see Fig 1) was as fol-
lows: 500ms before stimulus onset, a fixation point would appear cueing the subject to keep
his/her gaze as steady as possible for the next two seconds. In order to limit the possibility of
binocular rivalry [24, 25] the stimulus was flashed at a rate of 8 Hz (2 refresh cycles ‘on’ and 6
cycles ‘off’ at 60 Hz refresh rate), for a duration of 1.33 seconds. After stimulus cutoff, the fixa-
tion point disappeared and a text prompt appeared cueing the subject to respond (subjects
were instructed to wait for the stimulus to stop flashing before responding). On each trial the

Fig 1. Trial sequence. Stimuli were presented dichoptically using prism lenses and a cardboard divider (see S1 Fig). To the left of the dotted line are the trial
sequences from the point of view of each eye, and to the right of the dotted line is the sequence from the subjective point of view showing the resulting fused
percept. The visibility of the object depended on the color contrast, which varied from trial to trial. 500ms before stimulus onset, a fixation point appeared (2x2
pixels; < 0.1°) cueing the subject to keep his/her gaze as steady as possible for the next two seconds. In order to limit the possibility of binocular rivalry [24, 25]
the stimulus was flashed at a rate of 8 Hz (2 refresh cycles ‘on’ and 6 cycles ‘off’ at 60 Hz refresh rate), for a duration of 1.33 seconds. After stimulus cutoff, the
fixation point disappeared and a text prompt appeared cueing the subject to respond (subjects were instructed to wait for the prompt before responding). The
first question on each trial was to identify the category of the object by pressing either the ‘F’ (face) or ‘H’ (house) key on a computer keyboard with the left
hand, guessing if necessary. Then a second prompt appeared cueing the subject to place a wager (‘high’ = 20¢ or ‘low’ = 5¢) on the accuracy of their
immediately preceding perceptual decision, by pressing either the ‘1’ (low bet) or ‘2’ (high bet) key on the numeric key pad with the right hand. If the subject
waited longer than 3 seconds to respond, the fixation point would disappear, the inter-trial interval would elapse, and then the next trial would begin. Subjects
rarely took longer than 1.5 sec to respond.

doi:10.1371/journal.pone.0125278.g001
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subject was to decide whether the object on the screen had been a face or a house, guessing if
necessary, by pressing either the ‘F’ (face) or ‘H’ (house) key on a computer keyboard with the
left hand. After each perceptual decision the subject placed a wager (‘high’ = 20¢ or ‘low’ = 5¢)
on the accuracy of his/her own guess by pressing either the ‘1’ (low bet) or ‘2’ (high bet) key on
the numeric key pad with the right hand. Overall winnings could not go below zero or above
$20. The subject had a maximum of 3 seconds for each response (from the time of stimulus
onset), but subjects rarely used more than half of that time. If the subject waited longer than 3
seconds to respond, the fixation point would disappear, the inter-trial interval would elapse
(1.5–2.0 sec, varying randomly), and then the next trial would begin.

The experiment was run in blocks of 24 trials, with each block representing one cycle, in
random order, through all 24 stimuli (12 face / 12 house). Before beginning the experiment,
subjects performed three practice blocks with above-threshold “same color” stimuli, at three
progressively lower levels of color contrast. After the practice blocks there were four experi-
mental blocks with “opposite color” stimuli at one of four different levels of color contrast
(chosen based on prior pilot testing) varying randomly from trial to trial.

Eye tracking
Eye tracking was performed on 8 of the 11 subjects who participated in the experiment using
an infrared eye-tracking system (Applied Science Laboratories, Bedford, MA), sampling at
60Hz. This particular eye-tracking device can resolve differences in relative eye position on the
order of 0.25°. The eye-tracker data file for one subject was corrupted and could not be read,
leaving N = 7 for eye-tracking analyses. During eye tracking, the subject’s head was secured
using a chin/forehead rest (Applied Science Laboratories). Prior to each experiment, the eye
tracker was calibrated on the 6° x 6° frame in which the stimuli would appear on the computer
display. The eye-tracking camera was positioned just to the left of the cardboard divider, and
monitored the subject’s left eye.

Data analysis
Data inclusion criteria. Data were excluded from the analysis if the subject failed to score

at least 90% correct on the 2nd and 3rd practice blocks, or there were too few high wagers to ac-
curately estimate wagering performance. Three subjects (among the first six) were excluded
from the behavioral data analyses for one or more of these reasons, leaving N = 11 for
behavioral analyses.

Wagering. One way to analyze wagering behavior is to use signal-detection theory (SDT):
a correct decision is treated as “target present” and a high wager placed on a correct decision is
treated as a “hit”. d’ can then be calculated as zinv(HR)—zinv(FAR), where zinv is the inverse
normal distribution, HR is the hit rate, and FAR is the false-alarm rate (the 0.5 convention was
applied whenever either HR or FAR was zero [28]). Intuitively this measure (type-2 d’ orWd’,
for “wagering d-prime”) attempts to estimate how well the subject made use of the high wagers
that s/he placed, independently of the subject’s willingness to place high wagers [29]. In order
to estimateWd’ with reasonable accuracy it is necessary to have at least a moderate number of
high wagers, and subjects may avoid high wagers under uncertainty due to the phenomenon of
loss aversion [19]. In an attempt to counter loss aversion, we told subjects “it is OK to bet high
all of the time, but please avoid betting low all of the time—try to ‘go for it’ (i.e. bet high), even
if you have only a vague hunch. It might help you to win more money.”

According to SDT, type-2 d’ (Wd’) is expected to vary positive linearly purely as a function
of type-1 d’ (sensitivity on the first-order perceptual decision making task), and so any appar-
ent differences in wagering sensitivity could simply be due to changes in the accuracy of the
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type-1 decisions. In order to control for this relationship Maniscalco and Lau [15] recently de-
veloped a metric for estimating the sensitivity of type-2 decisions, called “meta d-prime”, that
is independent of the type-1 decision accuracy. We computed both measures in our analyses
and they both gave qualitatively similar results (see below).

Wagering behavior can also be analyzed by labeling each wager as subjectively advantageous
or disadvantageous: high wagers on correct decisions and low wagers on incorrect decisions
are labeled as “advantageous”, and the proportion of advantageous wagers (PAW) can be com-
puted [18]. PAWmust be treated with caution since, unlikeWd’, it is subject to decision biases
such as loss aversion [19, 29]. However, it has the advantage of being applicable to single trials
(d’ is strictly an aggregate measure). We make use of the “advantageous wager”metric (with
due caution) when a single-trial measure is called for. Although bothWd’ and PAW are prob-
lematic (and have been criticized [1, 19, 29]), the primary finding reported here does not de-
pend on the particular value(s) that these measures take on, but rather on the way that they
interact with ocular activity.

Eye tracker data. Analyses of ocular activity were performed on the 1.5-second time win-
dow immediately following stimulus onset, but before a response was made (stimulus duration
was 1.33 sec and subjects rarely responded earlier than 300 ms after stimulus cutoff). Pre-pro-
cessing of the eye-tracking data was carried out using the ILAB software application [30], and
further analyses were carried out using MatLab (The MathWorks, Inc). The data were first
detrended (linear) to remove slow drift; epochs surrounding large eye movements or eye blinks
were replaced with null values (thereby excluding these epochs from any analyses); and then
the eye-position data were converted to velocity. The sampling rate of our eye-tracking equip-
ment (60 Hz) was not sufficient to resolve individual microsaccades. Instead we used a method
that separates trials with extreme fluctuations in gaze-direction from trials with relatively stable
gaze-direction, during the period of time when the subject was instructed to maintain steady
fixation. Trials with extreme fluctuations in gaze direction were defined as outliers in the right
tail of the distribution of velocity measurements across an entire run (x � ~x > 2 � iqr, where
~x is the median and iqr is the inter-quartile range). Trials with one or more such outliers were
marked as ocular-activity trials [since we could not rule out minute changes in pupil diameter
as a cause of the measured changes in gaze direction, we use the label “ocular activity” rather
than “eye movement”]. The variable, OCULAR-ACTIVITY, was thus binary, coded with a 1
(significant variability in gaze direction detected;OA+) or 0 (no significant variability in gaze
direction detected;OA-). The magnitude of within-trial changes in measured gaze direction
(< 1) was consistent with these being fixational eye movements (Fig 2).

Correcting for multiple comparisons
For the post-hoc sliding window analysis (see below) it was necessary to correct for multiple
comparisons and temporal non-independence. This was done using a cluster-based permutation
test. The analysis was repeated 1000 times shuffling the OCULAR-ACTIVITY trial labels for
each subject on each iteration. A sample-wise threshold of p< 0.05 was used to identify positions
of the sliding window at which the relevant dependent measure (the difference between ϕAW and
ϕCR) was significantly different from zero. The largest number of contiguous significant values
was recorded on each iteration, and the distribution of these temporal cluster sizes was compared
against the temporal cluster sizes in the observed data in order to arrive at a corrected p value.

Results
The main results are presented in Figs 3 and 4. Looking first at the 7 subjects for whom we had
eye-tracker data (Fig 3A): At contrast level 2, accuracy was significantly greater than chance
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(68% +/- 4.8% SEM, p< 0.02, one-sided Wilcoxon; accuracy > = 50% for 7 of 7 subjects) while
neitherWd’ nor meta-d’ was significantly different from zero (Wd’ = 0.14 +/- 0.23 SEM,Wd’
< 0 for 5 of 7 subjects; Fig 3A). Out of 7 subjects, 3 individually scored significantly higher
than chance (i.e.� 17 correct out of 24; p< 0.05 binomial), whileWd’ for each of these 3 sub-
jects, at this same contrast level, was less than zero.

The results were similar if we also included the subjects who contributed only behavioral
data (N = 11; S2 Fig). At contrast level 2, accuracy was significantly greater than chance (67%
+/- 3.5% SEM, p< 0.005, one-sided Wilcoxon; accuracy> 50% for 9 of 11 subjects) while nei-
therWd’ nor meta-d’ was significantly different from zero (Wd’ = 0.18 +/- 0.16 SEM,Wd’< 0
for 6 of 11 subjects; Fig 3A). In addition, out of 11 subjects, 5 individually scored significantly
higher than chance (i.e.� 17 correct out of 24; p< 0.05 binomial). The meanWd’ for these 5
subjects, at this same contrast level, was not significantly different from zero (0.07 +/- 0.20
SEM;Wd’< 0 for 3 of the 5). BothWd’ and meta-d’ gave qualitatively similar results when ap-
plied to our data—both were not-different-from zero at contrast levels 1 and 2 and both were
significantly greater than zero at contrast levels 3 and 4 (S3 Fig).

For the same eleven subjects, reaction times increased monotonically with decreasing color
contrast (mean RTs = 440 +/- 50ms SEM, 500 +/- 79ms SEM, 582 +/- 71ms SEM, and 608 +/-
71ms SEM, respectively; N = 11), and the differences were significant according to a one-way
repeated measures ANOVA (p = 0.002, F = 6.21, df = 3). There was also a significant slowing
of reaction times for incorrect versus correct responses at contrast level 3, where subjects
scored on average ~ 75% correct (RTcorrect = 452 +/- 66ms SEM; RTincorrect = 643 +/- 114ms
SEM; p< 0.005 paired-samples signed rank test), but no significant differences in RT at any
other contrast level. Notably, there were no significant differences in RT (for correct vs incor-
rect responses) at contrast level 2, where we found effects tied to eye-tracker measurements.

Fig 2. Meanmeasured gaze direction during trials, averaged across subjects (N = 7). The sampling rate of our equipment (60 Hz) was not sufficient to
resolve individual microsaccades, therefore we used a method that separates trials with extreme variance in gaze direction (OA+) from those with relatively
stable fixation (OA-) (see Methods). For each subject, we constructed a two-dimensional matrix with each element representing a 0.1° square region on the
LCD display. Horizontal and vertical gaze position measurements were binned into the 0.1° x 0.1° square regions, separately for OA+ and OA- trials, and
each element of the matrix was assigned the number of times that an eye position was recorded at that location, throughout the entire experiment. Then the
grids for all subjects were averaged together to produce panels A and B. (A) Average of trialswith high variance in measured gaze direction (OA+; identified
by looking for outliers in the distribution of velocity measurements across trials. (B) Average of all of the remaining trials (OA-; i.e. trialswithout high variance
in gaze direction). (C) Difference,with (OA+) minuswithout (OA-): lighter colors correspond to locations visited more often on OA+ trials, and vice versa for
darker colors. Note the dark square in the center, indicating that this location was dominated by OA- trials, and the lighter shades in the periphery indicating
that the periphery was dominated by OA+ trials. The position data, evenwith high variance in gaze direction, are confined to a radius of < 1°, consistent with
the ocular activity in question being fixational eye movements.

doi:10.1371/journal.pone.0125278.g002
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The authors (AS and MSK) noted from direct observation that small eye movements can
disrupt the effectiveness of dichoptic color masking (making contours more visible), even
when fusion is not noticeably disrupted. However, disappearance of the object becomes in-
creasingly immune to eye movements at lower levels of color contrast. Thus we conjectured
that fixational eye movements (“ocular activity” or OA) might be associated with an increase in
accuracy at a color contrast level that is near the subjective threshold of visibility. Accordingly,
one would expect that any effect of fixational eye movements would appear at a near-threshold
level of color contrast, but not be apparent at lower or higher levels of color contrast due to
floor and ceiling effects, respectively.

The trial-by-trial correlation between OCULAR-ACTIVITY (a binary variable, coded with
a 1 or 0; see Methods) and correct-response (also a binary variable) was computed as the phi
(F) coefficient (ϕCR), which is equivalent to Pearson’s correlation coefficient (r) applied to bi-
nary data and is interpreted in the same way (Fig 3B). We also computed the correlation be-
tween OCULAR-ACTIVITY and high-wager (ϕHW), and between OCULAR-ACTIVITY and
advantageous-wager (ϕAW), all binary variables. Wagering d’ (Wd’) and meta-d’ are aggregate
measures computed on a set of trials, and so these variables could not be correlated with OCU-
LAR-ACTIVITY on a trial-by-trial basis. As previously noted, the probability that a given
wager is labeled as advantageous is partly determined by the subject’s willingness to place high
wagers (the wagering criterion). However, the lack of any relationship between OCULAR-AC-
TIVITY and high-wager argues against an explanation based solely on a shift in the wagering
criterion (see below). The results of these analyses are presented in Fig 3B.

Fig 3. Behavioral and eye-tracking results. (A) proportion correct (solid line w/ triangles), proportion of advantageous wagers (PAW, dashed line w/
squares), proportion of high wagers (dotted line w/ circles), and wagering d-prime (Wd’, dash-dot line w/ x’s). All measures are proportions, except forWd’,
which is scaled into the range [0,1] for clarity (see Methods). Each subject completed 24 trials at each contrast level. (B) Gray line at the top of panel B shows
the mean proportion of OA+ trials across subjects (scale on the right). Also shown are the mean correlation between OCULAR-ACTIVITY and
CORRECT-RESPONSE (solid line with triangles), the mean correlation between OCULAR-ACTIVITY and ADVANTAGEOUS-WAGER (dashed line with
squares), and the mean correlation between OCULAR-ACTIVITY and HIGH-WAGER (dotted line with circles). The mean correlation between
OCULAR-ACTIVITY and CORRECT-RESPONSE is significantly greater than zero (p = 0.03, two-sided signed-rank test). The mean correlation between
OCULAR-ACTIVITY and ADVANTAGEOUS-WAGER is significantly less than zero (p = 0.015, two-sided signed-rank test). The mean correlation between
OCULAR-ACTIVITY and HIGH-WAGER was not different from zero (p = 0.44, two-sided signed-rank test). Abbreviations: CD = “correct decision”, AW =
“advantageous wager”, HW = “high wager”.

doi:10.1371/journal.pone.0125278.g003
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Planned tests targeted at contrast level 2 (the contrast level of the dissociation between accu-
racy and wagering) revealed that OCULAR-ACTIVITY in the 1.5-sec interval following stimu-
lus onset was positively correlated with correct-response (p = 0.03, two-sided signed-rank test;
p< 0.05, permutation test; Fig 3B triangles) and negatively correlated with advantageous-
wager (p = 0.015, two-sided signed-rank test; p< 0.01, permutation test; Fig 3B squares).
There was no significant correlation between OCULAR-ACTIVITY and HIGH-WAGER
(-0.098, p< 0.1 signed rank test; Fig 3B circles), suggesting that the effect on advantageous wa-
gering relates to sensitivity rather than a change in criterion. Thus, at a near-threshold level of
color contrast, ocular activity was correlated with an increase in the probability of a correct
guess and a decrease in the probability of an advantageous wager.

Another way to approach these data is by grouping them into trials with extreme fluctua-
tions in gaze direction (OA+) and trials without (OA-), and then applying the original analyses
separately for each subset. Looking at these results, it is readily apparent that OA+ trials ac-
count for the gap between object recognition and wagering performance at contrast level 2
(Fig 4). Given that OA+ trials accounted for roughly 70% of trials on average across subjects, it
is reasonable to conclude that the decoupling of first- and second-order decision making is not
simply an effect of dichoptic color masking, but rather is an interaction between dichoptic
color masking and fixational eye movements.

With infrared eye-tracking equipment, small changes in pupil diameter can potentially
cause fluctuations in measured gaze direction, and thus what appear to be fixational eye move-
ments may in fact be tied to changes in pupil diameter. We therefore analyzed the pupil diame-
ter data for OA+ and OA- trials separately and found no difference in pupil diameter at any
time throughout the trial epoch (Fig 5A), consistent with an effect of fixational eye movements.
We also re-ran the entire analysis using pupil diameter as the primary covariate rather than
gaze direction and this analysis failed to turn up any significant effects. Nevertheless, to err on

Fig 4. Pattern of results for trials with relatively unsteady (OA+) and relatively steady (OA-) gaze directionmeasurements. For each subject, the
metrics shown in Fig 3A were computed separately for trials with and trials without detected ocular activity (OA; see Methods). These were then averaged
across subjects (N = 7). Labeling of lines is the same as in Fig 3A. OA+ trials accounted for approximately 70% of trials on average across subjects (Fig 3B).

doi:10.1371/journal.pone.0125278.g004
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the side of caution, we make no specific claim as to whether the effect is tied to small eye move-
ments, changes in pupil diameter, or a combination of both. We also found no significant dif-
ference in the proportion of high wagers at contrast level 2 forOA+ andOA- trials (0.373 +/-
0.1 SEM, and 0.412 +/- 0.08 SEM, respectively; p = 0.44, two-sided signed-rank test; Fig 5B), re-
inforcing our claim that the effect is tied to a change in type-2 sensitivity rather than an overall
shift in confidence.

Because advantageous-wager is determined jointly by correct-response and high-wager, it is
possible that an increasing correlation between OCULAR-ACTIVITY and correct-response
(ϕCR) might necessarily imply a decreasing correlation between OCULAR-ACTIVITY and ad-
vantageous-wager (ϕAW)—i.e. ocular activity may only have an effect on accuracy, with an ap-
parent effect on advantageous wagering as an artifact of the metric. How could an effect of
ocular activity on the probability of a correct response influence the correlation between ocular
activity and advantageous wagering? If the probability of a correct response increases, but the
probability of a high wager stays the same, then the increased number of correct responses will
not be met with a proportional increase in high wagers. Thus there will consistently be a few
additional correct responses paired with low wagers (considered not advantageous), drawing
the correlation coefficient downward.

To test whether or not this explanation could account for the negative correlation between
eye-movement and advantageous-wager at contrast level 2, we performed a simulation (see S1
Appendix for the computer code) in which we introduced a positive correlation between OCU-
LAR-ACTIVITY and correct-response (ϕCR) and between OCULAR-ACTIVITY and HIGH-
WAGER (ϕHW) equal to those observed in our data, and then checked the resulting correlation
between eye-movement and advantageous-wager (ϕAW). We recomputed ϕAW 1000 times,
with 100 trials in each surrogate experiment, keeping the same proportion of high wagers and
OA+ trials as that observed in the data. On each iteration we computed ϕAW twice, once with
ϕCR � 0.2 and ϕHW � -0.1 (the approximate observed values; Fig 3B), and once with both cor-
relations� 0. We used this to build a distribution of the expected shift in ϕAW driven solely by
the conjunction [ϕCR � 0.2 AND ϕHW � -0.1]. There was indeed a reliable shift in ϕAW as ex-
pected (Fig 5C), but the shift (-0.037 +/- 0.005 STD) was very small compared to the observed
value of -0.27 (star on the horizontal in Fig 5C) and could not account for the observed effect
(p< 0.001, permutation test).

Fig 5. Control analyses. (A) Time course of mean pupil diameter (sampled at 60 Hz) for trials with (OA+) and trials without (OA-) pronounced ocular activity.
There were no significant differences in measured pupil diameter at any point in time from -1.0 to +3.0 seconds relative to stimulus onset. (B) Mean proportion
of high wagers across subjects for OA+ and OA- trials. There was no difference in the proportion of high wagers at any contrast level, this ruling out criterion
artifacts as an explanation for the effect. (C) Expected shift in the correlation between OA+ and ADVANTAGEOUSWAGER (AW) driven solely by a an
increased correlation between OA+ and HIGHWAGER (HW) (narrow distribution to the right, near zero). Black star shows the observed result of -0.27, which
is too extreme to be accounted for in this way.

doi:10.1371/journal.pone.0125278.g005
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It is also conceivable that a small change in wagering behavior might drive a larger change
in the correlation between OCULAR-ACTIVITY and advantageous wagering (ϕAW; note that
the correlation with correct-response would not be affected). To test whether or not this expla-
nation could account for the negative correlation between OCULAR-ACTIVITY and advanta-
geous-wager at contrast level 2, we took the actual data from each of the 7 eye-tracker subjects,
shuffled each subject’s face/house responses, keeping the same total number of high and low wa-
gers, and then computed the phi correlation between OCULAR-ACTIVITY and advantageous-
wager (ϕAW) as before (see Fig 3B). We repeated this procedure for 1000 random shufflings in
order to produce a distribution of ϕAW under the null hypothesis of “chance-level accuracy, ob-
served level of high-wagers”. The percentage of values in the distribution that were more ex-
treme than or equal to the obtained result (-0.27) gives an estimate of the probability of the
obtained result under the null hypothesis. One value in the resampling distribution (n = 1000)
was more extreme than the obtained phi correlation, so the obtained value is significant at
p< 0.002.

Post-hoc analysis
We chose a-priori to test for an effect of ocular activity during the period of time when the
stimulus was on the screen. However, the time course of the effect with respect to stimulus and
response times can be informative as to the nature of the interaction, and this is not revealed
using a fixed time window. Therefore we also performed a systematic post-hoc analysis of the
data at different points in time before and during the time of stimulus onset by repeating the
analysis in a sliding window. Recall that in the planned analyses ocular activity was computed
based on velocity measurements within the 1.5-second time window following stimulus onset
(Fig 3B). For the post-hoc analysis we chose to use a 1-second window in order to strike a bal-
ance between temporal resolution and sensitivity to the experimental effect (results with a
0.5-second window were noisier, but qualitatively similar). We simply repeated the analysis
presented in Fig 3B within a 1-second sliding window centered at every time point from -1.5 to
+1.5 seconds, spaced at 100-ms intervals. The resulting time course, computed for color con-
trast level 2, is presented in Fig 6. We tested for a difference between ϕCR and ϕAW at each time
sample using a two-sided signed-rank test and then used a cluster-size permutation test to con-
trol for multiple comparisons (p< 0.05 sample-wise threshold). At contrast level 2 the differ-
ence between ϕCR and ϕAW was significant, and their signs opposite (ϕCR > 0 and ϕAW < 0),
for windows centered at 0.5 to 1.4 seconds post-stimulus onset (p< 0.01 corrected; black stars
in Fig 6), consistent with an interaction between ocular activity and processing of the visual
stimulus (visual stimulation lasted from 0 to 1.333 sec; gray bar at bottom of Fig 6). Thus fixa-
tional eye movements and/or changes in pupil diameter that occurred while the stimulus was
on the screen were associated with increased type-1 sensitivity and decreased type-2 sensitivity.

Discussion
With video eye-tracking equipment, because the outline of the pupil is used to infer the direc-
tion of gaze, fluctuations in gaze-direction may be confounded with small changes in pupil di-
ameter. However, we carefully analyzed the pupil diameter measurements in our data and
found no evidence of any systematic difference in pupil diameter that might explain the effect,
and we found no significant effects when we ran the analysis using pupil diameter as the prima-
ry covariate. Therefore the results are consistent with an effect of very small stray eye move-
ments made while fixating. It is now well established that fixational eye movements [31],
which include microsaccades as well as drift and tremor, play a role in visual perception by en-
hancing high spatial frequencies [32] and by counteracting neural adaptation in the visual
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system [33–36]. Without them, steady fixation would cause a static visual scene to fade from
view [37, 38].

Our results suggest that type-1 and type-2 decision processes may become decoupled at
near-threshold levels of color contrast, where the difference between discrimination accuracy
(ACC) and the proportion of advantageous wagers (PAW) is greatest, and that this decoupling
is revealed by ocular activity (fixational eye movements, a change in pupil diameter, or a com-
bination of the two) during the time that the stimulus is being presented. According to signal
detection theory (SDT) type-2 sensitivity is expected to vary linearly purely as a function of
type-1 sensitivity [15], and because type-1 sensitivity (reflected in task performance) may be
higher on trials with more ocular activity, this presents itself as a possible confound. However,

Fig 6. Time course of the effect at contrast level 2. In Fig 3B the correlations between CORRECT RESPONSE and OCULAR ACTIVITY (ϕCR) and
between ADVATAGEOUSWAGER and OCULAR ACTIVITY (ϕAW) were computed separately at each contrast level using a fixed 1.5-sec time window
starting at stimulus onset (0). In the figure above wemapped the time course of the effect at contrast level 2 using a 1.0-second time window centered on the
times shown on the horizontal axis. Stars on the horizontal axis show a series of window positions for which the difference between ϕCR and ϕAWwas
significant (p < 0.01 corrected, signed rank test, N = 7), and the horizontal bar at the bottom shows the time of visual stimulation (from 0 to 1.333 sec). The
effect was largest for windows centered at from 0.5 to 1.0 seconds post-stimulus-onset, consistent with an interaction between small eye movements and
stimulus processing. The apparent difference before stimulus onset was not statistically significant.

doi:10.1371/journal.pone.0125278.g006
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the default correlation between type-1 and type-2 sensitivity is predicted to be positive, whereas
the effect that we report here is of the two diverging in opposite directions. Therefore the ob-
served effect does not yield to a trivial explanation purely in terms of changes in type-1 perfor-
mance, but rather suggests that the two types of decision making are dissociable and may be
subserved by distinct mechanisms.

One might reasonably ask why the effect manifests at a particular level of stimulus contrast
and not others. One possible explanation, alluded to earlier, is that, due to floor and ceiling ef-
fects, small eye movements may disrupt dichoptic fusion only when the contrast is near thresh-
old: If the contrast is too low, then no amount of perturbation will cause the contours to
become visible, and if the contrast is a too high, then the contours may be visible even if gaze is
highly stable. Thus, floor and ceiling effects may mask any such effect at anything other than a
near-threshold level of color contrast where contours are mostly invisible when gaze is stable,
but become slightly visible when gaze is unstable.

In light of prior evidence it would not be at all surprising to find that fixational eye move-
ments [32, 34] and/or changes in pupil diameter [39] might influence task performance. The
novel finding here is that, in the context of dichoptic color masking and near-threshold visibili-
ty, ocular activity appears to have an opposite relationship with first-order (type-1) and sec-
ond-order (type-2) visual information processing. Several questions are raised: Is the effect
specific to dichoptic color masking, or does it generalize to other manipulations such as low lu-
minance contrast, pattern masking, or low color contrast with binocular viewing? Does the ef-
fect depend on the presence of both luminance and chromatic information in the image (we
matched luminance using the minimization of subjective flicker, so a slight difference in lumi-
nance between figure and ground may have remained)?

It is worth noting, in this context, that recent evidence shows an enhancement of visual sen-
sitivity during smooth-pursuit eye movements for chromatic-, but not for luminance-defined
stimuli [40]. In addition, evidence from saccadic suppression suggests that eye movements se-
lectively suppress the magnocellular (M) pathway, leaving the parvocellular (P) processing rel-
atively spared, or even enhanced during saccades [41, 42], and saccadic suppression has also
been shown to occur during microsaccades [43, 44]. These observations suggest the intriguing
possibility that first-order and second-order visual-perceptual decisions may rely on the M and
P pathways to differing degrees, as may be the case for other visual-perceptual faculties. For ex-
ample, recent research suggests a specific impairment of the M pathway in autism [45–49] and
dyslexia [50–52]. In particular, Gori, Cecchini (52] found that among dyslexics, there was a se-
lective impairment of the M pathway in those with poor phonological decoding, but not those
with poor lexical decoding, suggesting a division of function. Thus monitoring eye movements
while presenting threshold-level stimuli might also find relevance in autism and dyslexia
research.

In summary, we have identified a novel property of near-threshold sensory perception, in-
volving an interaction between ocular activity and visually-informed decision making. Al-
though we cannot fully rule out small changes in pupil diameter as a factor, we point out that
the main claim of the paper—evidence for a dissociation between type-1 and type-2 decision
making—is supported regardless of whether the effect is tied to fluctuations in pupil diameter
or fixational eye movements, or both. Further studies are needed to tease apart the relative con-
tribution of fixational eye movements and changes in pupil diameter and determine how either
or both of these might interact with sensory processing leading to their observed relationships
with accuracy and confidence judgements. Such an approach could be highly informative vis-
à-vis the boundary between conscious and non-conscious sensory information processing, and
could be very useful as a tool in the study of perception and uncertainty monitoring.
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