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Abstract

Academic researchers and many in industry often lack the financial resources available to scientists working in ‘‘big
pharma.’’ High costs include those associated with high-throughput screening and chemical synthesis. In order to address
these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often
substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and
comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not
yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem,
capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial
libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to
the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in
silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem
is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that
require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the
GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.
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Introduction

Though the pharmaceutical industry has been the traditional

steward of drug development, in recent years academic institutions

have played an increasingly important role as well. Formal

academic drug-discovery centers established at universities in

Belgium, Sweden, the United Kingdom, and the United States

have already made great contributions towards the development of

novel treatments for neglected and orphan diseases, projects that

are generally not financially appealing to industry [1]. Academia

may be particularly well suited for the earliest stages of drug

discovery, such as target and lead identification [2]. Fruitful

collaborations between academia and industry are also becoming

more commonplace.

Despite their growing interest in drug discovery, academic

researchers, as well as some in industry, often lack the financial

resources available to scientists working in ‘‘big pharma.’’ High

costs include those associated with high-throughput screening and

chemical synthesis. Fortunately, limited financial resources have

spurred innovation. Virtual screening, a computational technique

that can, in part, mimic high-throughput screening in silico, is one

example of this kind of innovation. Traditionally, high-throughput

biochemical screens have constituted and continue to constitute a

critical but expensive step in the earliest stages of drug

development. Vast and costly libraries of chemical compounds,

often in excess of 100,000 molecules, are screened against

identified targets of known pharmacological importance in an

attempt to identify potent ligands. Robotics and miniaturized/

parallelized biochemical assays make such large-scale screening

efforts possible. However, with some notable exceptions, the high

cost and man-power demands of high-throughput screens make

them inaccessible to many researchers.

Virtual screening aims to make high-throughput projects more

feasible. Computer docking programs attempt to position

candidate ligands within the binding pockets of crystallographic,

NMR, or theoretical protein structures in order to predict binding

affinity. While docking programs are powerful tools, they do have

shortcomings that limit applicability [3,4]. The programs depend

on accurate, atomistic, small-molecule and receptor models

(including important bound waters) that can be laborious to

prepare; they employ scoring functions that are optimized for

speed at the expense of accuracy, often making it difficult to

distinguish between nanomolar and micromolar inhibitors; and

they often ignore aspects of molecular flexibility that doubtless play

important roles in receptor-ligand binding.

Consequently, docking algorithms are not yet accurate enough

to assess the binding of a single ligand with certainty, but they can
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in many circumstances be used to enrich a pool of candidate

ligands for true binders [3,5,6]. The compounds of this enriched

pool of potential ligands, in number far fewer than the total

number of compounds in the original library, are then

experimentally validated to identify true binders. Virtual screening

methodologies have already been used to identify many ligands

[7,8]. A few examples include inhibitors of Trypanosoma brucei RNA

editing ligase 1 [9,10], Trypanosoma brucei UDP-galactose 49-

epimerase [11], and Homo sapiens stromelysin-1 [12].

The high costs associated with high-throughput screens are not

the only impediments to drug design. Chemical synthesis can also

be very costly and time consuming. The libraries of hundreds of

thousands of compounds required for high-throughput screens are

expensive to synthesize and/or to purchase commercially.

Additionally, following the identification of true ligands, drug

optimization requires chemical synthesis in order to improve

potency and other pharmacological and toxicological properties.

Dr. Barry Sharpless recently proposed a new chemistry

paradigm called ‘‘click chemistry’’ [13] that can help overcome

the financial impediments associated with chemical synthesis.

There are approximately 1060 possible drug-like compounds [2].

Any hopes of thoroughly exploring so large a chemical space must

be abandoned from the outset. Given that only an infinitesimally

small portion of all possible molecules can ever be synthesized, the

chemical reactions used to synthesize potential ligands might as

well be limited to those reactions that are ideal; only ‘‘click’’

reactions that are comparatively easy to perform, safe, and cheap

need be considered [14]. Using these ideal click-chemistry

reactions, academic researchers have produced inhibitors of a-

1,3-fucosyltransferase [15], HIV protease [16], acetylcholine

esterase [17,18,19], carbonic anhydrase II [20], influenza

neuraminidase [21], and protein tyrosine phosphatase 1B [22].

Both virtual screening and click chemistry have, in part, the

same objective: to make drug discovery practical even when

financial resources are limited. Given their philosophical similar-

ities, it is curious that these two methods have not been coupled.

We here present a novel algorithm called AutoClickChem that can

simulate many click-chemistry reactions in silico. Like some other

freely available [23,24,25] and commercial software packages (e.g.,

CambridgeSoft’s ChemOffice Ultra [26], Tripos’ CombiLib-

Maker [27,28], ChemAxon’s Reactor [29], etc.), AutoClickChem

can be used to generate combinatorial libraries for virtual

screening. However, AutoClickChem is unique in that it

simultaneously satisfies the following criteria: 1) the program is

freely available under an open-source license; 2) a web-server

application has been implemented that permits use without

requiring installation; 3) the generated compounds can be easily

synthesized for subsequent testing in biochemical assays because

they are constructed according to the reactions of click chemistry;

4) there is no need to specify linker atoms a priori because reacting

functional groups are automatically detected; and 5) all structures

are automatically generated in three dimensions (Table 1).

Additionally, AutoClickChem is based on the pymolecule toolbox,

a framework that may facilitate the development of other python-

based programs that require the manipulation of molecular

models.

Design and Implementation
AutoClickChem. As input, AutoClickChem accepts PDB

models of two small molecules, the two desired reactants. The

program begins by automatically identifying functional groups

such as alkynes, azides, and epoxides that are known to participate

in any of a number of predefined chemical reactions, described in

detail Text S1. Once the relevant functional groups have been

identified, the program determines which reactions are possible

and begins to assemble models of the appropriate products.

The steps required to assemble the products associated with

each predefined chemical reaction are unique. As AutoClickChem

has been implemented in python and is open source, interested

readers can examine the source code to determine how each

reaction is programmed. Additional details can also be found in

Text S1. To illustrate the general procedure, we here describe how

AutoClickChem mimics the azide-alkyne Huisgen cycloaddition, a

representative reaction that has been called the ‘‘cream of the

crop’’ of click chemistry [13].

The azide-alkyne Huisgen cycloaddition combines an alkyne

and an azide (Figure 1A) into a 1,2,3-triazole product. As a first

step, AutoClickChem fragments the alkyne along its triple bond

and the azide along the bond connecting its proximal and medial

azide nitrogen atoms (Figure 1B). Note that the resulting fragments

Table 1. A comparison of several computer programs for virtual combinatorial-library generation.

Reference Free
Open
Source

Server
Application

Synthesizability of
Products

Auto-Identification of Reactive
Atoms/Groups

3D Products
Produced

AutoClickChem1 + + + + (click chemistry) + +

SmiLib2 [26] + + 2 2 2 2

SLF_Libmaker3 [24] 2 2 2 2 2 ?

ChemOffice Ultra4 [26] 2 2 2 2 2 2

CombiLibMaker5 [27,28] 2 2 2 ? ? +

ChemAxon
Reactor6

[29] + (for
academics only)

2 + (restricted) + (user-specified
reactions)

+ 2

1.autoclickchem.ucsd.edu.
2.gecco.org.chemie.uni-frankfurt.de/smilib/.
3.www.idealp-pharma.com.
4.cambridgesoft.com.
5.tripos.com.
6.chemaxon.com.
‘‘Free’’ means the software is available free of charge, ‘‘Open Source’’ means the source code can be freely modified, ‘‘Server Application’’ means the software is
available for use remotely over the internet (without installation), ‘‘Synthesizability of Products’’ means the software takes into account actual chemical reactions when
generating compounds in silico, ‘‘Auto-Identification of Reactive Atoms/Groups’’ means the program automatically identifies reactive atoms or chemical groups so that
the user need not manually annotate, and ‘‘3D Products Produced’’ means the program automatically generates models with 3D coordinates.
doi:10.1371/journal.pcbi.1002397.t001

AutoClickChem: Click Chemistry in Silico
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have atomic ‘‘handles’’ comprised of what were the alkyne carbon

atoms and the proximal azide nitrogen atom. The fragments are

then translated so that these handles are superimposed on top of

the corresponding atoms of a 1,2,3-triazole model (Figure 1C).

Next, the fragments are rotated about the handle atoms in order to

minimize the distance between the handle-adjacent atoms and the

corresponding atoms on the 1,2,3-triazole model (Figure 1D). The

positioned fragments are then rotated in order to reduce steric

hindrance (Figure 1E). Finally, redundant atoms are deleted, and

the fragment and 1,2,3-triazole model atoms are merged into a

single final structure (Figure 1F). For non-symmetric alkynes,

AutoClickChem generates both regioisomers.

The pymolecule toolbox. AutoClickChem is based in part

on the open-source pymolecule toolbox, a framework that facilitates

the manipulation of molecular models. We have used beta versions

of this toolbox to develop a number of other applications,

including HBonanza [30], BINANA [31], POVME [32], and

NNScore [33]. With AutoClickChem, the pymolecule toolbox has

matured. All supporting functions are now contained within a

single python file (pymolecule.py) that can be easily included in

other projects. Additionally, full documentation is available

describing each pymolecule definition.

The pymolecule toolbox contains three python classes: Point,

Atom, and Molecule. The Point class is used to create and

manipulate objects with three coordinates, x, y, and z, be they

points or vectors in three-dimensional space, and the Atom class

stores and manipulates atomic information. The details of these

classes are well documented in the source code.

However, the Molecule class, a useful class for manipulating

entire molecular structures, merits a more detailed description

because it is likely the class that will be most frequently accessed by

those developing pymolecule-based applications. First, the Molecule

class contains two python definitions, load_pdb and save_pdb, for

loading and saving PDB information from/to files.

Six additional Molecule definitions can be used to manipulate

the atomic coordinates of a molecular model. Two definitions are

used for model translation: translate_molecule translates all atomic

coordinates by a specified vector, and set_atom_location translates all

atomic coordinates such that a specified atom resides at a desired

coordinate. Three additional definitions rotate the molecular

model: rotate_molecule_around_pivot rotates all atomic coordinates

about a specified point, and rotate_molecule_around_a_line and

rotate_molecule_around_a_line_use_atom_indicies rotate all atomic coor-

dinates about a line segment defined by two terminal Point objects

or by the coordinates of two Molecule atoms, respectively. Finally,

the align_another_molecule_to_this_one definition aligns a second

molecule (molecule_to_align) to the current one. ‘‘Tethers’’ are

defined connecting pairs of atoms, where each of the constituent

Figure 1. A schematic showing how AutoClickChem mimics the azide-alkyne Huisgen cycloaddition. A) This cycloaddition combines an
alkyne and an azide into a 1,2,3-triazole product. B) As a first step, AutoClickChem fragments the alkyne along its triple bond and the azide along the
bond connecting its proximal and medial azide nitrogen atom. C) The fragments are then translated so that atomic ‘‘handles’’ are superimposed on
top of the corresponding atoms of a 1,2,3-triazole model. D) Next, the fragments are rotated about the handle atoms in order to minimize the
distance between the handle-adjacent atoms and the corresponding atoms on the 1,2,3-triazole model. E) The positioned fragments are then rotated
in order to reduce steric hindrance. F) Finally, redundant atoms are deleted, and the fragment and 1,2,3-triazole model atoms are merged into a
single final structure.
doi:10.1371/journal.pcbi.1002397.g001

AutoClickChem: Click Chemistry in Silico
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atoms belong to a separate molecular model. The molecule_to_align

model is then translated and rotated as necessary to minimize the

summed length of the defined tethers.

Several definitions return information about bond connectivity.

The number_of_neighors_of_element definition counts the total number

of atoms of a specified element bound to an atom of interest;

index_of_neighbor_of_element considers all the atoms bound to a

specified atom and returns the index of the first atom of the

specified element; hybridization determines the orbital hybridization

of a specified atom, based in large part on its connectivity;

in_same_ring determines if two specified atoms are contained in the

same ring system; and get_branch partitions a molecular model into

two by essentially ‘‘cutting’’ along a specified bond.

Finally, two definitions are used to manipulate multiple

Molecule objects. The merge_with_another_molecule definition merges

a second Molecule object with the current one, and the

distance_to_another_molecule function calculates the minimum dis-

tance between the atoms of the current Molecule object and a

second one.

Examples illustrating how the pymolecule toolbox is used to

simulate click-chemistry reactions in silico can be found in Text S1.

Results

We here present a novel computer algorithm, called Auto-

ClickChem, capable of performing click-chemistry reactions in

silico. AutoClickChem can be used to produce large combinatorial

libraries of compound models for use in virtual screens. As the

compounds of these libraries are constructed according to the

reactions of click chemistry, predicted ligands can be easily

synthesized for subsequent testing in biochemical assays. Auto-

ClickChem is based in part on the pymolecule toolbox, an open-

source framework that may facilitate the creation of other python-

based applications requiring the manipulation of molecular

models.

Click Chemistry Reactions
Though the azide-alkyne Huisgen cycloaddition [34] is the

quintessential click-chemistry reaction, there are in fact many

reactions with high chemical yields, inoffensive byproducts, simple

reaction conditions, and physiologically stable/easily purified

products [13,14]. A description of the ‘‘click’’ reactions that

AutoClickChem can simulate in silico is given in Text S1; a useful

summarizing graphic is also provided (Figure S1).

By generating molecular models based on the reactions of click

chemistry, AutoClickChem facilitates interactions between com-

putational and synthetic chemists. When pursuing de-novo drug-

design projects, many computational chemists (ourselves includ-

ed!) are notorious for generating compounds that, while predicted

to be potent, are nevertheless difficult to synthesize. AutoClick-

Chem helps computational chemists stay within the realm of

synthesizability, thus facilitating the transition from in silico to ex

silico testing.

Generating a Virtual Library of Easily Synthesizable
Compounds

To demonstrate how AutoClickChem can be used to generate a

large virtual library of easily synthesizable compound models for

virtual-screening projects, we constructed a library from models of

compounds available commercially through hit2lead.com. In all,

939 suitable alkyne models and 1,220 suitable bromide models

were ultimately generated from selected hit2lead compounds.

AutoClickChem was first used to convert the 1,220 bromides into

1,215 azides. Next, these azide products were reacted with the 939

alkynes in silico to produce 2,281,770 1,2,3-triazole products. Any

of these products could in theory be easily synthesized in vitro via

the azide-alkyne Huisgen cycloaddition reaction [34]. When only

those models that satisfied all of Lipinski’s rule-of-five criteria were

considered [35], approximately 800,000 drug-like models re-

mained. Additional details describing the generation of this virtual

library can be found in Text S1.

When creating large virtual libraries, the ability to generate

products in three dimensions is particularly useful. While

programs certainly do exist for converting dimensionless molecular

representations (e.g., SMILES strings) into 3D structures, convert-

ing hundreds of thousands of models is computationally intensive.

With AutoClickChem, this extra step is unnecessary.

To demonstrate the diversity of the compounds generated, we

randomly selected fifty azide and fifty alkyne models from the

libraries described above. OpenBabel [36] was subsequently used

to characterize the corresponding 1,2,3-triazole products accord-

ing to molecular weight, the number of atoms, the partition

coefficient (logP), the polar surface area, and the molar refractivity

(Table 2). This characterization confirmed that the compounds are

diverse despite having been generated from a limited set of

reactants.

Though we recommend creating custom libraries specifically

designed for target proteins of interest, this large, diverse virtual

library may nevertheless serve as a useful starting point for any

virtual-screening project. A fast docking program like AutoDock

Vina [37] running on a 100-processor cluster should be able to

screen the whole library against a single protein structure in a

matter of days. The AutoClickChem-generated virtual library

herein described is freely available for download in several formats

on the AutoClickChem website at http://autoclickchem.ucsd.edu.

Optimization of Tacrine, a Known Acetylcholinesterase
Inhibitor

Having demonstrated how AutoClickChem can be used to

generate a large virtual library of easily synthesizable compound

models, we next show how the program can be used for ligand

optimization. To this end, we replicate in silico a recent study

Table 2. To demonstrate the diversity of the compounds generated, fifty azides and fifty alkynes were selected at random and
reacted in silico using AutoClickChem.

Molecular Weight Number of Atoms logP PSA MR

Minimum 395.5 41 0.9 69.0 103.3

Maximum 593.6 92 6.5 219.0 168.8

Mean 6 Stan. Dev. 502.8629.2 74.669.6 3.861.1 117.0623.5 146.4613.5

‘‘logP’’ refers to the estimated partition coefficient, ‘‘PSA’’ refers to the polar surface area, and ‘‘MR’’ refers to the molar refractivity.
doi:10.1371/journal.pcbi.1002397.t002

AutoClickChem: Click Chemistry in Silico
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conducted by Krasinski et al. [18] that sought to optimize the

binding affinity of tacrine, a known inhibitor of acetylcholinester-

ase (AChE). AChE inhibitors are among the approved pharma-

cological treatments of Alzheimer’s disease, myasthenia gravis, and

glaucoma. Krasinski et al. started by creating an azide analogue of

tacrine. This azide was then mixed in the presence of the enzyme

with 23 acetylene reagents not known to bind AChE. Remarkably,

of the 46 possible 1,2,3-triazole products, only two formed in situ.

These two ligands were subsequently identified by HPLC-mass

spectrometry. The syn compounds (R)-TZ2PIQ-A5, TZ2PIQ-A6,

and (S)-TZ2PIQ-A5 were ultimately found to inhibit mouse AChE

with Kd values of 100, 410, and 500 fM, respectively.

To replicate this study in silico, AutoClickChem was used to

generate the same 46 compounds synthesized by Krasinski et al.

When alternate charged, tautomeric, ring-conformational, and

stereoisomeric states were considered, 1,416 small-molecule

models were ultimately produced. These were docked into a

crystal structure of mouse AChE (PDB ID: 1Q83) [38] using

AutoDock Vina [37], and subsequently rescored with the

AutoDock 4.0 scoring function [39], without redocking. Details

describing the docking protocol used can be found in Text S1.

AutoDock predicted that the binding affinities of the syn

compounds (R)-TZ2PIQ-A5, TZ2PIQ-A6, and (S)-TZ2PIQ-A5,

the three most potent inhibitors, would be 217.56, 218.43, and

217.74 kcal/mol, respectively. Remarkably, these three com-

pounds were among the four best ranked compounds of the virtual

screen. Additionally, compounds in the syn conformation tended to

be favored, in harmony with experiment.

Optimization of Analogues of a Known Protein Tyrosine
Phosphatase 1B Inhibitor

As a second demonstration of drug optimization, AutoClick-

Chem was used to replicate a recent study conducted by

Srinivasan et al. [22] wherein analogues of a known protein

tyrosine phosphatase 1B (PTP1B) inhibitor, a potential treatment

for type 2 diabetes, were optimized to improve binding affinity.

Srinivasan et al. began by attaching alkynes to 5 of the analogues.

Additionally, 14 aromatic azides were synthesized that were

thought likely to bind to a nearby secondary site. Copper (I) was

used to catalyze the azide-alkyne Huisgen cycloaddition so that

only the 1,4 regioisomers were produced [40]. Of the roughly 70

1,2,3-triazole compounds synthesized, one, called A13, was

particularly potent, with an IC50 of 4.7 mM against PTP1B.

To replicate this study in silico, we used AutoClickChem to

generate the same 70 compounds. When alternate charged,

tautomeric, ring-conformational, and stereoisomeric states were

considered, there were 108 small-molecule models. These were

docked into a crystal structure of PTP1B (PDB ID: 2F71) [41]

using AutoDock Vina [37], and subsequently rescored with the

AutoDock scoring function [39], without redocking. The best

inhibitor identified experimentally ranked 5th in our virtual screen,

placing it in the top 5% of all models docked.

As the inhibitors identified by Srinivasan et al. [22] were only

potent in the low micromolar regime, we next used AutoClickChem

to identify ligands with even higher predicted binding energies. The

same five alkyne analogues used previously were reacted in silico with

the 1,215 azides used to generate the large virtual library. The 14,580

resulting products were again docked with Vina and rescored with

the AutoDock 4.0 scoring function. In all, 214 compounds scored

better than A13 (211.07 kcal/mol). The best ligand (Figure 2) had a

predicted binding energy of 213.33 kcal/mol.

The predicted binding pose of the best-scoring ligand is plausible

(Figure 2). The 5-phenylisoxazole-3-carboxylic-acid portion of the

ligand, first identified as a PTP1B inhibitor by researchers at Abbott

Laboratories, was correctly positioned in the appropriate pocket as

judged by x-ray crystallography [42]. This molecular fragment is

predicted to participate in electrostatic, hydrogen-bond, and p-p
stacking interactions with the protein receptor (Figure 2). The 1,2,3-

azole ring is likewise predicted to participate in a hydrogen-bond

interaction, as well as in a T-stacking interaction. Finally, the 2-

nitrofuran azide fragment extends a nitro group near two arginine side

chains, potentially facilitating additional receptor-ligand electrostatic

interactions. A hydrogen bond with the furan oxygen atom is also

predicted, further improving molecular recognition.

Interestingly, the top predicted ligand identified using Auto-

ClickChem is similar to another ligand whose binding pose was

recently characterized by x-ray crystallography (Figure 2, shown in

purple) [41]. Both ligands span the same two pockets, and both

position functional groups with negative charges (carboxylate,

nitro, and sulfonate groups) at the same two locations.

In summary, we herein presented a computer algorithm called

AutoClickChem that can simulate the reactions of click chemistry

in silico. AutoClickChem can be used to generate large combina-

torial libraries of easily synthesizable compound models for use in

virtual screening. Additionally, the algorithm may prove useful in

rational drug design and drug optimization. To demonstrate its

utility, we used AutoClickChem to generate a large virtual library

of easily synthesizable, drug-like, 1,2,3-azole compounds for use in

virtual screens. Additionally, we reproduced two experimental

applications of click-chemistry inhibitor optimization in silico.

We have also described the pymolecule toolbox, a python-based

framework that facilitates the development of programs that

require the manipulation of molecular models. Beta versions of

pymolecule have been used to create a number of other useful

python scripts; we are hopeful that the pymolecule toolbox, now well

documented and consolidated into a single file (pymolecule.py),

will be helpful to other computational chemists as well.

Availability and Future Directions
While implementations of AutoClickChem and the pymolecule

toolbox are available from the PLoS Computational Biology website,

we recommend visiting http://autoclickchem.ucsd.edu to obtain the

latest versions. Additionally, AutoClickChem has been implemented

as an opal web service [43] and a server application at http://

autoclickchem.ucsd.edu, enabling use without requiring installation.

The authors have plans to incorporate AutoClickChem into

future projects as well. For example, the next generation of the

AutoGrow algorithm [44] is currently being developed; among

many improvements, the program will be extended using

AutoClickChem. The original AutoGrow algorithm generated

novel ligands by swapping hydrogen atoms with new molecular

fragments. Unfortunately, this often produced molecular models of

compounds that are difficult to synthesize. Newer versions of

AutoGrow will add molecular fragments via the reactions of click

chemistry, facilitating subsequent synthesis.

In time, we expect to add new features to pymolecule as well. Beta

versions of the pymolecule toolbox have already been used in several

projects; as new needs arise in the context of future projects,

appropriate additions will be made to the public version of

pymolecule as well.

We encourage others to modify the AutoClickChem and pymolecule

source code. As both these resources are python implemented,

extending the source code is not difficult. For example, users could

extend AutoClickChem to include additional reactions. Some may

also wish to expand the pymolecule toolbox by adding new functionality

(e.g., rmsd-alignment definitions, the ability to read formats other than

PDB, etc.) as needs arise in their own projects. We encourage users to

AutoClickChem: Click Chemistry in Silico
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contact the authors with any significant modifications so they can be

included in future versions of the software.

Supporting Information

Figure S1 The click-chemistry reactions that can be simulated in

silico using AutoClickChem.

(PDF)

Text S1 Contains additional details describing the pymolecule

toolbox, the creation of the large virtual library of easily synthesizable

compounds, and the docking protocol used in the current work.

Further descriptions of each of the chemical reactions built into

AutoClickChem are also provided, with extensive references.

(DOC)

Text S2 Compressed file of the AutoClickChem source code.

(TAR)

Text S3 Compressed file of the pymolecule source code.

(TAR)

Text S4 Compressed file of the AutoClickChem Rocks roll

source code.

(TAR)
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