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Abstract: The purpose of this research is to predict the material performance of large format
foamed core composite structures, such as crossties or structural timbers, using only constitutive
properties. These structures are fabricated from recycled post-consumer/post-industrial waste
composed of High-Density Polyethylene (HDPE) and Glass Filled Polypropylene (GFPP). A technical
challenge in predicting the final part performance is the mathematical correlation between the
microstructural variations and the macroscopic responses as a function of fiber aspect ratio,
cell density, and constitutive properties of the polymer blend. The structures investigated have
a dense and consolidated outer shell and a closed cell foamed core. The non-linear shell and the
foamed core material properties are analyzed with micromechanics models, and the reference stress
of the shell and core is predicted using a modified Rule of Mixtures model. The predicted properties
are used as the inputs for a Finite Element Analysis (FEA) model, and the computational results are
compared to experimental four-point bend test results for sixteen samples performed on a 120-kip
compression stage. The results show that the mean of the characterized deflections from the four-point
bend tests did not show any variations for an isotropic and transversely isotropic model using a linear
analysis. This model was then extended to a non-linear analysis using the Ramberg–Osgood model
to predict the full crosstie four-point bend test behavior. The FEA model results show a deviation of
2.45 kN compared to the experimental variation of 3.58 kN between the samples measured.

Keywords: structure-property relations; modeling; micro-mechanics; foams; recycling; polyolefins

1. Introduction

Polymers, specifically polyolefins, are widely used in most household and industrial applications.
However, many researchers have found there are negative effects of high consumption and waste
generation (see, e.g., [1–3]). Therefore, finding new ways to reuse recycled polymers and polymer
matrix composites is essential to reduce the amount of waste. In the past decade, large format
recycled polymer composites have found applications in composite structures such as short bridges,
construction mats, railroad crossties (sleepers), and so on. The use of recycled polymer composite
crossties has increased, and thousands of composite crossties have been in service throughout the
world [4]. A typical polymer matrix composite crosstie is shown in Figure 1. Wooden crossties are
being replaced with composite crossties made of recycled High-Density Polyethylene (HDPE) and
Glass Filled Polypropylene (GFPP) because wooden ties have a shorter expected lifespan and require
chemically toxic preservatives such as creosote to increase their lifespan. There is a desire for an
alternative material because creosote is a known environmental hazard with various health issues,
and it has the potential to contaminate the water and soil when used in crossties[4]. Researchers have
extensively reviewed alternative materials for crossties and noted fiber polymer matrix composites as a
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reasonable alternative solution (see, e.g., [5–7]). Polymer matrix composite crossties have outstanding
durability, ease of manufacture, and high structural performance, and they also provide flexibility for
in situ crosstie replacements to replace hardwood timber crossties [5].

Figure 1. Example of a composite crosstie.

Short fiber composites are used extensively in a wide variety of manufacturing methods, such as
injection molding, extrusion molding, compression molding, and recently in additive manufacturing.
The presence of fibers in such applications has been studied by various researchers to understand
the effect of fibers on the overall material properties of the composite material. Researchers have
extensively studied and developed micromechanics models to predict an overall anisotropic stiffness of
a unidirectional fiber reinforced composite material (see, e.g., [8–11]). Tandon and Weng [12] modeled
an iterative method using the constitutive elastic properties of the matrix and the fiber to predict the
transversely isotropic stiffness of a unidirectional composite material by extending Mori and Tanaka’s
method [10]. Tucker and Liang [13] studied the related micromechanics models for fiber reinforced
composites with aligned fibers of uniform length and linearly elastic isotropic mechanical properties
and they have suggested the Mori–Tanka model to be reasonably accurate over the range of aspect
ratios used in the present study. Tucker and Liang also provided a modification of Tandon and Weng’s
explicit model by decoupling the plane-strain bulk modulus and major Poisson ratios and used a direct
solver without iteration, the full form of which is fully expressed in Zhang [14].

To model the stiffness properties of a chopped fiber composite, the geometric aspect ratio of
the individual fibers is essential. Therefore, an accurate understanding of the length and diameter
distribution of the as manufactured composite is necessary in the prediction of the stiffness properties.
The reduction in the fiber length distribution depends on process parameters such as back pressure,
speed of revolution, barrel temperature and the polymer melt shear rates [15]. In quantifying the fiber
length distribution, it was shown in [16] that over 800 fiber samples, properly selected from within a
sample set, are required to achieve an error less than 5%. Fiber measurements can be biased based
on improper sampling on the edges of the sample area, fiber breakage during sample preparation,
and improper discrimination for very short and very long fibers, the details of which are expounded
upon in Section 2.2. The weight-based aspect ratio gives preference to the contribution of the longer
fibers and is more appropriate for use in micromechanical predictions, whereas the number based
aspect ratio gives equal weight to fully intact fibers and the multiple sub-structures of a fiber that is
broken during manufacturing [16].

The use of foaming agents during manufacturing results in a non-uniform closed cell structure
using current manufacturing techniques as indicated in Figure 2. The overall behavior of the closed
cell composite depends on the shape, volume fraction, cell size distribution and material properties
surrounding the closed cells [17]. Micromechanics models to predict the effective stiffness for closed
cell foams have been studied extensively by various researchers (see, e.g., [18–21]). McLaughlin [22]
and Farber and Farris [19] have developed methods to predict shear and bulk modulus of a polymer
composite with spherical inclusions based on a differential scheme. Wang et al. [23] developed
a two-phase model, along with three-phase composite models for spherical inclusions based on
the Mori–Tanka method and obtained numerical results for normalized moduli. Zhang et al. [24]
studied high density polyethylene closed cell homogenous spherical foams prepared by compression
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molding, and they compared various models to calculate the elastic modulus. They concluded that
the differential scheme and empirical equations using power-law and the square power-law provide
reasonable estimates of the stiffness over a cell volume fraction ranging from 0 to 55%, a range that
encompasses the cell density considered in this research.

Figure 2. Cross-section showing the shell and foamed core regions of the crosstie.

Lo et al. [25] studied the effective stiffness for a transversely isotropic closed cell PVC foam using
a unit cell representation. This is done by substituting an apparent volume fraction for the actual
resin volume fraction. Gong et al. [26] studied the impact properties of Polypropylene (PP) foamed
composites at different temperatures (−80 to −20 °C and −20 to 20 °C) and showed the impact
properties of foamed PP are greater than the unfoamed PP in the lower temperature range −80 to
−20 °C. Therefore, it can be noted that material properties of the foamed composites vary based on
temperature. In this present study, all the tests were performed at room temperature.

Various researchers have studied recycled composite crossties/plastic lumber and its non-linearity
to understand the impact variations as a function of feedstock material on the resulting mechanical
properties and failure behavior. Martinez-Guerrero [27] studied the effects of viscoelastic creep
over a range of temperatures for recycled polymer crossties based on various blends of HDPE with
polyethylene terephthalate and polystyrene and concluded that the plastic lumber can be considered
as elastic under short term loading. Bajracharya et al. [28] studied plastic solid wastes consisting
of HDPE, PP and LDPE (Low Density Polyethylene) by manufacturing samples for coupon and
full-scale testing and measured their strengths based on tensile, flexure, shear, and compression testing.
They predicted the non-linear flexure behavior of the polymer specimens by using coupon testing
results and applying them to a finite element model (FEM) and compared the FEM results to a Fiber
Model Analysis (FMA). In a subsequent paper, Bajracharya et al. [29] extended the study by using
glass fibers to the plastic solid wastes and used the modified rule of mixtures and FMA to predict the
strength and elastic properties of glass fiber reinforced plastic solid composites by using constants to
account for orientation and fiber length factor. Lofty et al. [4] studied the performance and flexural
behavior of composite crossties made of HDPE using an FEM with model inputs based on tensile tests
from dog-bone specimen obtained from the manufactured crosstie.

This paper presents a methodology for modeling the performance of a foamed composite
crosstie using only constitutive properties and compares the predicted results with experimental
observations. The novelty of this approach is that the model predictions begin at the constitutive
level and includes the following: variation in fiber length, cell distribution, fiber packing density,
fiber orientation alignment, and the constitutive behavior of the fibers and the matrix. Model inputs for
the constitutive behavior of the matrix are obtained from tensile specimens of the neat polymer prior to
blending. Experimental testing is performed to quantify the fiber length, which is a model parameter.
The experimental validation of the predicted structural performance is accomplished using four-point
bend results of full-scale crossties. The experimental and predicted results that will be presented for
the stiffness and the corresponding linear deflection model are shown to be within 2% of each other.
To analyze the non-linear behavior of the tie, the elastic properties obtained from the fiber orientation
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modeling for the shell and the foamed core are used along with reference stress predictions at 0.2%
strain. The constructed model is then used to study the sensitivity to model parameter variations,
providing insight for improving the final processed product performance. The results presented in this
paper show that the most sensitive parameter is the volume fraction of the glass fibers followed by the
volume fraction of the closed cell foams.

2. Methodology

Thermoplastics have the benefit of being reheated above their melt temperature and remolded
into a new shape. In the present paper, we focus on the use of Polypropylene (PP) and Polyethylene
(PE) due to their extensive use in industry. They comprise close to 50% of all recycled polymers (see,
e.g., [30]), in part due to their ease of sorting based on their low density. From a structural perspective,
the modulus values for PP and PE are considered low in the range of 0.5–2 GPa based on the blend.
To increase the stiffness of the polymer, glass fibers are commonly used as a reinforcement because
they are inexpensive and easy to manufacture. To obtain various material and thermal properties
of the input materials for the micromechanical study, tensile tests were performed based on ASTM
D638-03 for the HDPE and the crosstie sections. A detailed fiber length analysis was performed to
measure the aspect ratio which served as an input to the micromechanical model. To incorporate the
material properties based on closed cells, foam density calculations were performed. To demonstrate
the approach, four-point bent tests were conducted and compared with a full finite element simulation.

2.1. Manufacturing and Testing

The composite structures studied in this paper are a blend of HDPE and GFPP formed into
a crosstie (sleeper) for use in the rail industry. The crosstie is manufactured using an extrusion
process where the recycled HDPE and GFPP are blended with carbon black and a blowing agent.
The compound, which consists of ~80% HDPE, ~19% of GFPP, carbon black and the blowing agent,
is mixed and melted under temperatures in excess of 200 °C and is pressurized using a screw assembly
to fill a mold cavity. This blowing agent forms a dense outer region called the shell region with few if
any cells. The inner region is composed of a series of closed cells created by the blowing agent and is
termed the core. The foamed core region has varying cell sizes with a cell density of approximately
26 ± 2.9%. Results will show that the resulting structural performance varies as a function of the
cell size and density. The recycled HDPE and GFPP are from residential and commercial waste
streams, and come from a moderately controlled feedstock, due to the nature of the recycling industry.
These variations are briefly studied in the present work and incorporated within the present model to
understand the impact on final part performance.

To characterize the input tensile modulus values for use in the modeling efforts of this work,
a batch of the HDPE feedstock without fibers was tested to obtain the modulus values. Dog bone
shaped tensile bars were made using a micro 12 cc injection molding machine (Xplore Instruments
BV, Sittard, Netherlands). HDPE was melted at 195 °C, and the mold was held at room temperature.
The fill and holding pressure were each 12 bar. The specimens were then tensile tested using a
100 series universal testing machine (TestResources. Inc, Shakopee, MN, USA) following ASTM
D638-03. The load-displacement curve obtained from the test was then used to calculate the elastic
modulus using the initial loading curve slope regression techniques based on the initial linear elastic
region. This displacement was measured using an extensometer. For the HDPE, the tensile tests were
performed at a constant crosshead speed of 50 mm/min. Six samples were tested to capture the mean
elastic modulus and the associated standard deviation of the neat polymer system.

Based on the stress-strain results obtained from the recycled HDPE tensile tests, the reference
stress of HDPE was measured at 0.2% reference strain. Even though the matrix material properties
consist of both HDPE and PP, the stress of HDPE is the dominant contributing factor for the composite
crosstie. When observed for a blend of up to 60% HDPE and 40% PP, the stress completely shifts
towards the material with the lower stress, in this case the HDPE [31]. As the PP constituent is ~10%
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of the total composite, the effect of PP on stress can be ignored. Based on the stress of the HDPE,
the stress of the composite σyc can be predicted using the modified rule of mixtures (see, e.g., [29]),

σyc = χ1χ2v f σf + (1− v f )σm (1)

where, χ1 is a constant taken to be 1/6 for randomly oriented fibers [32], χ2 is the fiber length factor,
v f is the volume fraction of the fibers, σf is the tensile stress of the fibers, σm is the reference stress
of the matrix. χ2 is based on the ultimate stress of the fiber σf , the weight average fiber length Lw,
critical fiber length Lc, the interfacial shear strength between fibers and matrix τ, and the radius of the
fibers r f [33] and is given as

χ2 =
Lw

2Lc

Lc =
r f σf

τ

(2)

Since the closed cell foams induced by the blowing agent reduces the overall stress of the foamed
core, it is necessary to predict the reference stress of the core based on the normalized foam density f ,
which is given by (see, e.g., [34])

f = (1−
ρ f oam

ρshell
) (3)

where, ρ f oam is the bulk density of the foamed composite core and ρshell is the density of the solid shell
composite. To predict the normalized stress of the foamed core σy f , the reference stress of the shell is
used with a square-power relationship as suggested by Zhang et al. [35] and is given as

σy f = σyc(1− f )2 (4)

To characterize the as manufactured spatially varying anisotropic moduli of the composite,
samples were sectioned from the manufactured composite. Samples were cut from a section of a
manufactured crosstie using a miter saw to measure the tensile modulus along vertical and horizontal
transverse directions and the longitudinal direction for the shell region. Seven samples from each of
the transverse directions, x2 and x3, and eight samples from the longitudinal direction x1, as shown in
Figure 3, were tested. The crosshead speed was reduced to 5 mm/min because the fiber reinforced
composite fails at a lower strain than that of the neat HDPE. Each sample was tested until failure,
and the corresponding tensile modulus of the tie in the three directions were recorded.

Figure 3. Samples taken from various sections of the crosstie to measure the longitudinal and transverse
tensile modulus.
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2.2. Fiber Aspect Ratio

The manufactured crosstie performance demonstrates a subtle sensitivity to variations in the
fiber modulus but is highly sensitive to changes in the fiber aspect ratio. Of interest, then, is the
resulting fiber breakage caused by the high shears during the manufacturing processes. Thus, the as
manufactured aspect ratio is of interest and an approach similar to that of [16] will be performed.
A Q50 Thermogravimetric Analyzer (TA Instruments, New Castle, DE, USA) was used to observe the
decomposition of GFPP in the presence of air and nitrogen, and typical results are shown in Figure 4.

Figure 4. Thermogravimetric Analysis comparison showing the decomposition of glass filled
polypropylene in Air and N2.

The onset degradation temperature of PP was measured to be 325 °C in the presence of air and
415 °C in N2. In addition, the Thermogravimetric Analysis (TGA) results indicate that there is a
complete burn off of the resin system with no loss of fiber mass at 600 °C in either air or N2: there is
no change in the weight % after the decomposition step. This was a potential concern, as it has been
shown that other fibers, such as Carbon and Kevlar, oxidize at elevated temperatures in the presence
of air [16]. Of additional interest, the graphs shown in Figure 4 confirm that there is no change in the
decomposition at the elevated temperatures, regardless of the presence of air or N2, and the fibers
make up ~59% of the mass of the polypropylene fiber composite.

To collect fibers for the length study, a 2 cm3 block of the solid shell region was sectioned and
heated to 600 °C in the presence of air to fully decompose the polymer matrix, leaving only fibers and
some ash residue in the crucible (see, e.g., [23]). The fibers were collected in a 200 mL beaker and
suspended in distilled and purified water. The water suspension was then sonicated using a Branson
450 digital sonifier (Branson Ultrasonics, Danbury, CT, USA) with a disruptor horn at 20% amplitude
until the fibers were detangled. Approximately 15 mL of fiber suspension was collected in a glass petri
dish and placed in an air convection furnace at 75 °C until all the water was evaporated.

The resulting fiber residue was imaged using a VR-3100 3D Measurement Macroscope (Keyence
Corporation of America, Itasca, IL, USA), and multiple macroscopic images were stitched together as
shown in Figure 5a. The length of every single fiber within the marked section of the petri dish image
was measured once regardless of the length. An example fiber length measurement from 2 fibers is
shown in Figure 5b. Diameter measurements were obtained using a JSM-6610LV Scanning Electron
Microscope (JEOL Ltd., Tokyo, Japan), and a typical image is shown in Figure 6. The number average
and weight average aspect ratio of the fibers were calculated from 970 samples for the length and 50
samples for the diameter. The choice of 970 fibers was made upon the suggestion by Sharma et al. [16]
where due to the asymmetry of the length distribution they found that over 800 fibers were necessary
to well characterize the length distribution. Conversely, only 50 fibers were used in the diameter
measurements due to the well behaved statistical nature of the diameter distribution as it was well
represented by a normal distribution. The full results along with the statistical justification is given in
Section 3.2.
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Figure 5. Steps for glass fiber measurements to determine the aspect ratio of the fibers (a) stitched
image showing fibers collected in a petri dish (b) example fiber length measurements.

Figure 6. Example of diameter measurements taken from a Scanning Electron Microscope.

2.3. Modeling the Solid Shell and the Foamed Core

The drastic difference in the length scales between the 100 µmv1 mm fibers and a 2.62 m
tie preclude a model from having a mesh over individual fibers. Thus, a continuous probability
distribution function ψ(θ, φ) of fiber orientation is used similar to the description given in [36],
where the orientation of an individual fiber can be represented by a unit vector as seen in Figure 7 and
defined as

p =

sinθ cosφ

sinθ sinφ

cosθ

 (5)

The cylindrical fiber ends are indistinguishable from each other, thus the probability of finding a
fiber along the angles θ and φ must be equal to finding a fiber in the opposite direction, therefore,

ψ(θ, φ) = ψ(π − θ, π + φ) or ψ(p) = ψ(−p). (6)

The fiber orientation distribution function description remains too cumbersome for modeling
an entire composite. To address this issue, Advani and Tucker [36] developed a modeling technique
using orientation tensors to express the average orientation of the fiber suspension. The second order
orientation tensor aij and the fourth-order orientation tensor aijkl are defined as

aij =
∫
S

pi pjψ(p)dS, aijkl =
∫
S

pi pj pk plψ(p)dS (7)

where, S is the surface of a unit sphere. The orientation tensor is symmetric by construction.
For example, aij = aji, and aijkl = aklij = ajikl = ailkj = ···.
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The integral over the unit sphere of the fiber orientation distribution function is 1. From this
property, the trace may be shown to be 1, i.e., a11 + a22 + a33 = 1. Similarly, the higher order
orientation tensor fully contains the lower ordered tensor, i.e., aij11 + aij22 + aij33 = aij. In this
paper, the orthotropic fitted (ORT) closure method developed by VerWeyst and Tucker [37] is used
to approximate the fourth order orientation tensor aijkl in terms of the second-order orientation
tensor aij. The ORT closure has been demonstrated by Montgomery-Smith [38] as one of the most
accurate approximations.

Figure 7. Unit vector representation.

The current study uses the Advani and Tucker [36] homogenization approach to calculate
the anisotropic stiffness based on the fiber orientation distribution obtained and the underlying
unidirectional composite stiffness tensor Cijkl . In the present study, we use the approach presented
by Tandon–Weng [12] to predict the elastic stiffness of a unidirectional composite from the matrix
properties, fiber properties and the fiber aspect ratio. The average material properties for the range of
Glass Fiber and Polypropylene are taken similar to those in [39]. Once the unidirectional stiffness tensor
Cijkl is calculated, the local effective anisotropic stiffness tensor

〈
Cijkl

〉
is obtained using the equation,〈

Cijkl

〉
= B1aijkl + B2(aijδkl + aklδij) + B3(aikδjl + ailδjk + ajlδik

+ajkδil) + B4(δijδkl) + B5(δikδjl + δilδjk) (8)

where δij is the Kronecker delta, and the Bi terms are expressed in terms of the underlying unidirectional
stiffness tensor as (see, e.g., [36]),

B1 = C1111 + C2222 − 2C1122 − 4C1212 B4 = C2233

B2 = C1122 − C2233 B5 = 1
2 (C2222 − C2233)

B3 = C1212 +
1
2 (C2233 − 2C2222)

(9)

For the present study, two orientation states are considered. The first is a fully random orientation
state given as a11 = a22 = a33 = 1/3. The second is a representative transversely isotropic state
given as a11 = 1/2, a22 = a33 = 1/4. This latter state matches the directional nature observed in the
structural testing caused by fiber alignment due to shearing [23]. Future work will utilize orientation
measurements similar to those of Vélez-García [40] to quantify the spatially varying orientation state,
but this is beyond the present scope. Once the fourth order orientation tensor is calculated for aij using
the ORT closure, Equations (8) and (9) are used to obtain the fourth order stiffness tensor. Then the
fourth order compliance tensor can be calculated using the inverse relationship < Sijkl > = < Cijkl >

−1.
The resulting effective elastic moduli can be calculated using the relationships

E11 =
1

S1111
, E22 =

1
S2222

, E33 =
1

S3333
(10)
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The closed cells in the foamed core depicted in Figure 2 will reduce the effective modulus relative
to that of outer solid shell region. The density of the foamed core composite is measured by weighing
six blocks of foamed composite assuming that the closed cells are spatially uniform in shape and size.
In this paper, we assume the material properties within the foamed region to be isotropic, spherical,
uniform in size, and uniform in spatial distribution. Using the < Cijkl > obtained from the solid
composite from Equation (8), the engineering elastic constants can be calculated. Zhang et al. [24]
reviewed a series of popular closed cell foamed models, and their results showed that the differential
scheme power law model given by McLaughlin [22] yields acceptable results for the density of the
present system. This model will be used to predict the closed cell foam core elastic modulus, which is
given as

E f = E11(1− f )n (11)

where, E f is the elastic modulus of the normalized foamed core and n is taken to be 1.96 based on the
Poisson’s ratio of 0.44 for the crosstie [24].

2.4. Four-Point Bend Testing

The manufactured crossties were tested using four-point bend tests for Modulus of Rupture
(MOR) and Modulus of Elasticity (MOE) based on ASTM D6109-13 [41], as depicted in Figure 8 and
only the MOE is reported in the present study. The span for the 2.62 m (103.2 inch) long tie was 1.52 m
(60 inch). The four-point bend test allows for a uniform load distribution within the interior span and is
a preferred test method recommended by the American Railway Engineering and Maintenance-of-Way
Association (AREMA). A custom Tinius Olsen universal mechanical test bench that has a capacity of
533 kN (120 kip) was used for the four-point bend flexural testing at a control rate of 12.7 cm/min
(5 in/min) and was loaded until failure. In total, sixteen samples were used in this study.

Figure 8. Representative four-point bend test (dimensions for experimental and FEA study).

The applied load and deflection of the crossties were measured during testing for each of the
crossties. For each of the crossties tested, the exterior dimensions were measured along with the shell
wall thickness. A typical load-deflection curve is shown in Figure 9. Using Equations given in ASTM
D6109, the stress S, and strain r, are calculated as,

S = PL/bd2

r = 4.70Dd/L2 (12)

where P is the total applied load on beam, L is the total span length on the beam, b is the width of the
beam, d is the depth of the beam and D is the measured deflection [41].

The calculated MOE represents the equivalent geometric material properties, and it does not
differentiate the contribution in either the shell or the foamed core regions. The MOE is calculated by
measuring the linear portion of the load-deflection curve and dividing the flexural stress measured at
any point in the linear region. It is worth noting that the crossties tested in this study meet and exceed
the requirements for crossties based on AREMA requirements for both MOE and MOR as shown in [4].
Even though the load-deflection curve is non-linear as shown in Figure 9, the first study in the region
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of interest for the crosstie is taken to be the initial linear region. Within the linear region, the slope
of the load-deflection curve is used in calculating the MOE, and the average results are presented in
Section 3.4. This linear model was then compared to the FEA results modeled using isotropic and
transversely isotropic models to investigate the sensitivity of fiber orientation to the final part behavior.
The linear study was then extended to a non-linear isotropic model to predict the full force deflection
curve, as seen in the tested crossties.

Figure 9. Example load-deflection curve of a crosstie from a four-point bend test.

2.5. Finite Element Analysis

A finite element analysis of the full crosstie subjected to a four-point bend test was performed
to validate the modulus values. The model uses inputs based on the constitutive properties of the
polymer and fibers. There were distinct regions for the solid shell and the foamed core. The dimensions
of the crosstie were 0.229 m × 0.178 m × 2.62 m (9” × 7” × 103.2”). As there was some variation
in the shell thickness between crossties, the shell thickness was measured on every crosstie, and an
average value from the specimen of 0.81” was taken for the modeling efforts. An average deflection
was calculated for each of the applied forces, and the resulting slope of the load deflection curve was
then compared to the initial slope of the physical load deflection curve.

To model the full non-linear behavior of the crosstie, a method suggested by Ramberg-Osgood [42]
was used and is shown as,

ε(x) =
σ(x)

E
+ εre f (

σ(x)
σre f

)n (13)

where ε(x) is the strain at every stress σ(x), and εre f is taken at the 0.2% reference strain obtained from
the predicted reference stress σre f of the shell using Equation (1) and of the core using Equation (4).
The reference strain was chosen based on the recommendation of COMSOL (Version 5.4, COMSOL Inc.,
Burlington, MA, USA). The FEA results were similar with other selected reference strains, for example,
0.3% or 0.5% strain. The reference stress of the shell is obtained from the modified rule of mixtures and
the reference stress of the tested HDPE. The core reference stress is predicted using the square power
law equation based on the predicted shell composite reference stress. E is the elastic modulus and n is
the stress exponent. The stress exponent n is calculated by fitting the stress and strain parameters from
the tensile tests of the recycled HDPE to Equation (13) and is taken as 4 for all modeling efforts.

3. Results

3.1. Tensile Testing

Tensile tests conforming to ASTM D638-03 were performed to calculate the elastic modulus of raw
material HDPE and the manufactured tie. The elastic modulus values from 6 samples are presented in
Table 1. The x2 and x3 axis represents the cross section of the tie, and the x1 direction represents the
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direction of the mold filling as depicted in Figure 3. In the initial stages of the research, the crosstie’s
elastic modulus was assumed to be isotropic, but based on the modulus values seen in Table 1, there is
a clear directional bias to the modulus values. The modulus along x2 and x3, transverse to the mold
filling axis, are seen to be statistically similar.

Table 1. Experimental tensile testing results for HDPE and tie samples.

Material Solid Axis Direction Tensile Modulus (GPa) Std Dev (GPa)

HDPE 1.23 0.06
Tie x1 1.99 0.24
Tie x2 1.62 0.16
Tie x3 1.63 0.27

3.2. Fiber Aspect Ratio

The radius of the fiber was measured to be 8.56 µm ± 0.57 µm with a skewness of −0.19. The low
absolute value relative to 1 of the skewness indicates that the radius distribution is well represented
by a normal distribution. Thus, there will be little statistical change in the reported results when one
increases the number count in the data set and 50 samples well represents the overall nature of the
distribution. From the fiber length measurements, a weight average and number average aspect ratio
were calculated. The number average fiber length was measured to be 0.583 mm, and the weight
average fiber length was measured to be 1.004 mm, with a skewness from the data of 6.7. A skewness
greater than 1 indicates that a distribution is poorly represented by a normal distribution, and as the
skewness increases the number of samples required in the data set to properly capture the statistical
nature of the distribution also must increase. The histogram of the 970 fiber length measurements
is shown in Figure 10a. The number average and weight aspect ratio were measured to be 35 and
60, respectively, which are depicted in Figure 10a. The weight average aspect ratio was used in the
constitutive modeling based on the recommendation of Sharma et al. [16]. It can also be noticed that
the fiber lengths appear to be reasonably represented by a log normal distribution. A short study is
presented in Figure 10b for the modulus of the glass-fiber system with the properties of the matrix from
Table 2 as a function of increasing aspect ratio from 1 to 100 using the Tandon and Weng model [12].
It can be observed from Figure 10b the choice in number average and weight average makes a 3%
difference in the investigated composite. The small difference in modulus is due to the low volume
fraction of the glass fibers in the overall composite and would be more pronounced for higher fiber
packing densities.

Figure 10. Glass fiber characteristics (a) Fiber length distribution (b) Effect of aspect ratio on the
elastic modulus.
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3.3. Material Properties Prediction

The constitutive properties of the matrix and fibers are given in Table 2 and are used to create
the predicted isotropic modulus for a random orientation state and transversely isotropic modulus
for a representative transversely isotropic orientation state as presented in Table 3. The overall matrix
Young’s modulus was calculated using the rule of mixtures to account for the modulus of HDPE
and PP. The isotropic orientation state is given as a11 = a22 = a33 = 1/3 with all other aij values being
zero, and the transversely isotropic orientation state a11 = 1/2, a22 = a33 = 1/4 with all other aij values
being zero. These orientation states, along with the constitutive properties of Table 2, are used in
Equation (8) to achieve the effective stiffness tensor. Observe from Table 3 that the predicted modulus
of an isotropic orientation state is less than the measured longitudinal moduli for the transversely
isotropic orientation state. Comparing the model moduli of Table 1, it is clear that the transversely
isotropic orientation state is more appropriate, with an error less than 2.5% for each of the moduli.

Table 2. Micromechanics input material properties.

Material Property Value

Matrix modulus 1.29 GPa
Fiber modulus 70 GPa
Aspect ratio 60
Volume fraction 3.33%
Poisson’s ratio of the fiber 0.23
Poisson’s ratio of the matrix 0.45

Using the predicted composite material properties and the measured volume fraction of the closed
cells, the foamed closed cell material properties were predicted based on the micromechanics models
presented in Section 2.3. Six different density measurements of the solid composite and the closed cell
foamed composite were taken and a volume fraction of the closed cell was calculated to be 26 ± 2.9%
of the solid shell composite.

To calculate the stress of the solid shell and the core, the stress measured from tensile testing
of the recycled HDPE material is used at a 0.2% reference strain. The stress measured was 8.3 MPa,
as shown in Figure 11a. The interfacial shear stress τ was taken as 15 MPa, and the glass fiber strength
σf was taken as 3450 MPa, as suggested in [29]. This produced a predicted stress of the shell and
core of 12.48 MPa and 6.83 MPa, respectively. These values were then compared to the experimental
reference stress measured from the tensile test results of the shell and core and are shown in Figure 11b.
Notice the predicted reference stress for the shell and core follow the trends seen in the tensile tests of
the shell and core samples given in Table 4.

Figure 11. Reference stress at 0.2% reference strain obtained from (a) stress-strain curves from HDPE
tensile tests (b) stress-strain curves for the shell and core.
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3.4. Finite Element Analysis

Two studies were performed to analyze the sensitivity of isotropic and transversely isotropic
material properties for the domain depicted in Figure 8 and discussed in Section 2.3. The first study was
the isotropic properties from the micromechanics results, and the second study was the transversely
isotropic results for the moduli and Poisson’s ratio, presented in Table 3.

Table 3. Modulus values from micromechanical predictions used in FEA modeling.

Model Solid Axis Direction Material Properties

Isotropic Modulus x1 − x2 − x3 1.73 (GPa)
Transversely Isotropic Modulus x1 1.95 (GPa)
Transversely Isotropic Modulus x2 1.66 (GPa)
Transversely Isotropic Modulus x3 1.66 (GPa)

Core Modulus 0.96 (GPa)
Poisson’s ratio 0.44

Figure 12 shows the 4-point bend test simulation with the deformation for a 111 kN (25,000 lb)
force. From Figure 12, it is clear that the largest deflection occurs at the center. The experimental results
and the model predictions for maximum deflection as a function of loading are presented in Figure 13a
for a loading up to 45 kN for both the isotropic and transversely isotropic models. The results from
the isotropic and transversely isotropic model results do not deviate substantially in this study as the
change in the longitudinal modulus values are not substantially different. The slope of isotropic and
transversely isotropic models is calculated and compared to the slope calculated from the experimental
testing results. The MOE calculated from FEA is 1.67 GPa and 1.63 GPa, for isotropic and transversely
isotropic modulus, respectively, which is quite similar to the experimental observations of an MOE of
1.64 GPa.

Figure 12. Representative load-deflection simulation with finite element analysis in COMSOL.

The model can be easily extended to investigate the input of final part performance based upon
changes in the material parameter inputs. Specifically, in the present work we studied the effect of
aspect ratio on the final part material properties and coupled that with the effect of change in the mass
fraction of the fibers. The results of this study can be seen in Figure 13b. For the given aspect ratio
and mass fraction of the glass fibers, the elastic modulus given is shown with a marker ‘x’. The mass
fraction is varied from 5–20% and the aspect ratio is varied from 1–100. From this study, if the MOE of
the crosstie was needed to be increased, one could do this by increasing the volume fraction of the
aspect ratio by a predictable amount. As seen in Figure 10b, with the increase in aspect ratio, there is
only a small increase in E11 , whereas the increase in E11 is far more sensitive to a change in the fiber
volume fraction.
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Figure 13. (a) Model validation of linear elastic load-deflection with finite element analysis (b) effect of
elastic modulus with change in aspect ratio and volume fraction of fibers.

To extend the linear FEA model and study the non-linear behavior of the crosstie,
the Ramberg–Osgood method given in the COMSOL non-linear structural module was used.
The Ramberg–Osgood method uses three parameters, which are, reference stress, reference strain,
and Young’s modulus, to fit the stress-strain curves.

Therefore, as seen in Table 4, the Young’s modulus values, which were obtained from
micromechanics models along with the reference stress predicted at 0.2% reference strain, were used
and the results are shown in Figure 14. It can be seen that the finite element analysis results follow a
similar trend when compared to the experimental average results.

Table 4. Material inputs for the non-linear FEA model.

Material Property Result

Shell Tensile Modulus 1.73 (GPa)
Reference Stress 12.48 (MPa)
Reference Strain 0.002

Core Tensile Modulus 0.96 (GPa)
Reference Stress 6.83 (MPa)
Reference Strain 0.002

Figure 14. Non-linear FEA model using the Ramberg–Osgood model in comparison with the
experimental four-point bend test average.
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To quantify the effectiveness and have a reasonable agreement between the model and
experimental results, an error defined as the difference in the average experimental load-deflection
curve and the FEA load-deflection curve, is defined as,

Errmodel =

∫ dmax
0 |Lexp(x)− Lmodel(x)|dx

dmax
(14)

where the error is normalized using the maximum deflection, and in this study is calculated at
dmax = 8 cm. This result is then compared to the error between each individual experimental test and
the average load-deflection curve is defined as

Errexp,i =

∫ dmax
0 |Lexp(x)− Li(x)|dx

dmax
(15)

The experimental error is then averaged over the range of samples as,

Errexp =
ΣErrexp,i

No. o f samples
(16)

The experimental average of the load-deflection curve for the crosstie up to 111 kN (25,000 lbf)
yields an Errmodel of 2.45 kN. This value can be interpreted as the average error between the model
prediction and the average of the experimental results. This error is then compared to Errexp, which is
the sample to sample variability and is 3.58 kN. Therefore, the model prediction as presented is within
the bounds of the experimental variability.

4. Conclusions

In this paper, a composite structure made of recycled HDPE, GFPP, carbon black, and foaming
agents using extrusion molding is discussed. This structure is a solid composite in the outer shell
with a foamed inner core. Based on the material properties of the raw materials and fiber aspect
ratio, the engineering material properties of a spatially varying composite structure is predicted
using various fiber orientation and micromechanical models. Samples were cut from the crosstie
along the cross section and in the longitudinal direction, and tensile tests were performed on the
sectioned samples. The predicted transversely isotropic modulus values agree with the measured
elastic modulus values.

A finite element analysis simulation was developed to measure the load-deflection of the crosstie
based on the ASTM D6109-13 four-point bend test. Both isotropic and transversely isotropic material
behaviors were modeled based on the predicted properties. Sixteen crosstie test specimens were tested,
and an experimental average load-deflection was measured. All the ties were tested until failure and
the modulus of elasticity (MOE) of the tested crossties exceeded the minimum requirements based on
AREMA. The MOE of the developed model and the experimental four-point bend test were within 2%
error for both the isotropic and transversely isotropic micromechanical models.

The linear FEA model was then extended to predict the full non-linear load-deflection curve using
the Ramberg–Osgood model. It was seen that there is an agreement to the experimental four-point bend
tests and the non-linear FEA results with an error bounded by 2.45 kN against the mean load-deflection
curves, which themselves had a deviation bounded by 3.58 kN between samples. Lastly, the usefulness
of the developed model was demonstrated by studying variations in the final part properties as a
function of fiber aspect ratio and volume fraction of glass fibers. This method can be further modified
to include localized varying material properties in the core due to varying cell sizes and distributions.
Finite element models can also be implemented to account for both transient analysis due to the
viscoelastic nature of the polymer matrix and spatial variations due to local variability within the
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foamed core. This technique can be easily extended to model over multiple crossties under in-situ
loading conditions within the transportation industry.
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