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It has been suggested that preserving liver grafts with
a technique called (dual) hypothermic oxygenated
machine perfusion ([D]HOPE) leads to better out-
comes after transplantation than if livers are stored on
ice, especially if an organ is of lesser quality. In this
study, we showed that DHOPE could be used to pre-
serve liver grafts for up to 24 h. This extended pro-
cedure could be used globally to facilitate
transplantation and expand the donor pool.
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Background & Aims: End-ischemic hypothermic oxygenated machine perfusion (HOPE) of the donor liver for 1–2 h mit-
igates ischemia-reperfusion injury during subsequent liver transplantation. Extended preservation time may be preferred to
facilitate difficult recipient hepatectomy or to optimize logistics. We therefore investigated whether end-ischemic dual
HOPE (DHOPE) could extend preservation time for up to 24 h using a porcine liver reperfusion model.
Methods: Following 30 min warm ischemia, porcine livers were subjected to 2 h static cold storage (SCS), followed by 2 h, 6
h, or 24 h DHOPE (n = 6 per group). Subsequent normothermic reperfusion was performed for 4 h using autologous blood.
Two livers preserved by 24 h SCS served as additional controls. A proof of principle confirmation was carried out in 2
discarded human livers subjected to extended DHOPE. Hepatocellular and cholangiocyte injury and function were assessed.
Oxidative stress levels and histology were compared between groups.
Results: Perfusion flows remained stable during DHOPE, regardless of duration. After normothermic reperfusion, livers
perfused for 24 h by DHOPE had similar lactate clearance, blood pH, glucose, and alanine aminotransferase levels, and
biliary pH, bicarbonate, and LDH levels, as livers perfused for 2 h and 6 h. Levels of malondialdehyde and high-mobility
group box 1 in serum and liver parenchyma were similar for all groups. Histological analysis of bile ducts and liver
parenchyma revealed no differences between the groups. Extended DHOPE in discarded human livers preserved
hepatocellular and cholangiocyte function and histology after reperfusion. In contrast, livers preserved by 24 h SCS were
non-functioning.
Conclusion: Extended end-ischemic DHOPE enabled successful preservation of porcine and discarded human donor livers
for up to 24 h. Extended DHOPE enables safe extension of preservation time, which may facilitate allocation and trans-
plantation from a logistical perspective, and further expand the donor pool.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Preservation using ex situ machine perfusion has gained
considerable interest as a method of increasing the utilization of
liver grafts for transplantation, albeit with several technical
variations.1 While normothermic machine perfusion (NMP)
enables hepatobiliary viability assessment and therapeutic in-
terventions prior to transplantation, hypothermic oxygenated
machine perfusion (HOPE) reconditions the graft by inducing a
hypometabolic state whilst restoring mitochondrial function
through delivery of oxygen.1 End-ischemic HOPE is a relatively
simple approach. Livers are preserved by static cold storage
(SCS) after procurement and are then subjected to machine
perfusion upon arrival at the recipient center. Dynamic
Keywords: hypothermic machine perfusion; liver preservation; extended preser-
vation; donation after circulatory death.
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preservation by HOPE for 1-2 h is sufficient to mitigate organ
damage and restore mitochondrial function and cellular energy
stores, resulting in postoperatively reduced graft failure.2

Previously, we have shown that a short period (2 h) of dual
HOPE (DHOPE) improved hepatobiliary function and decreased
injury to the liver graft and biliary tree in discarded human
livers.3,4 In a prospective cohort study, 2 h of end-ischemic
DHOPE was shown to be feasible and safe for resuscitating
donation after circulatory death (DCD) liver grafts with 100% 1-
year graft and patient survival after transplantation.5 Another
important finding was that DHOPE attenuates injury of the
biliary tree after transplantation of DCD liver grafts.6 In 2015,
our center initiated a large international multicenter random-
ized controlled trial comparing DHOPE to SCS for DCD liver
transplantation, with the first results expected by mid-2020.7

In addition to graft reconditioning, viability assessment, and
potential therapeutic interventions, machine perfusion may also
have the potential to prolong preservation time. Traditionally,
graft preservation using SCS may keep good quality livers viable
for transplantation for several hours. Machine perfusion,
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however, may extend preservation times, particularly in
extended criteria donor (ECD) organs which are more vulner-
able to cold ischemia.8–10 Extended preservation by HOPE, for
example, could facilitate logistics for allocation and trans-
plantation. As a proof-of-concept, a human discarded liver has
been preserved for 86 h using ex situ NMP,11 and an initially
declined human liver has successfully been transplanted after
preservation for 26 h, of which 17.5 h was SCS and 8.5 h was
NMP.12 However, few data are available regarding extended
graft preservation by DHOPE, and, currently, the maximum re-
ported preservation time using HOPE is 8 h.10,13,14

We investigated the effects of extended preservation by
applying end-ischemic DHOPE in a porcine liver ischemia-
reperfusion injury model. Our endpoints included graft
viability after warm reperfusion and various markers of injury
during machine perfusion, and after warm reperfusion. In
addition, a proof of principle confirmation of end-ischemic
DHOPE preservation was carried out in discarded human livers.
Materials and methods
Porcine donation after circulatory death liver procurement
Livers from 5-month-old white female landrace pigs were
retrieved after circulatory death. Pigs were sacrificed by a
standardized procedure of electrocution followed by exsangui-
nation. Two liters of autologous blood was collected in a
container with 25,000 IU of heparin (heparin LEO 5000 IU/ml,
LEO Pharmaceutical Products, Denmark). Blood was then stored
in bags supplemented with the anticoagulant citrate-
phosphate-dextrose (Sanquin, Amsterdam, the Netherlands)
and cold stored (4�C) until subsequent use. Within 30 min after
circulatory death, livers were flushed by gravity via the portal
vein with 1 L of cold (4�C) NaCl 0.9% (Baxter BV, Utrecht, the
Netherlands) supplemented with 25,000 IU of heparin, followed
by 2 L of cold University of Wisconsin (UW) solution (Bridge to
Life, Ltd, London, United Kingdom). After portal flush, the aorta
was cannulated, and side branches were clipped followed by
cold arterial flush out with UW solution using a syringe. The
cystic duct was ligated, and the common bile duct was cannu-
lated with a bile cannula (8 Fr, Organ Assist, Groningen, the
Netherlands). Livers were static cold stored (4�C) in UW solution
for 2 h. The porcine livers used in the present study were
retrieved from a slaughterhouse (Kroon, Groningen, the
Netherlands) where humane circumstances are applied ac-
cording to national legislation. According to the Dutch law, no
institutional approval is needed when using a slaughterhouse
model.

Dual hypothermic oxygenated machine perfusion
After SCS, grafts were randomly assigned to either 2 h DHOPE
(DHOPE-2), 6 h (DHOPE-6), or 24 h DHOPE (DHOPE-24) (n = 6
per group). Machine perfusion was performed using the Liver
Assist device (Organ Assist, Groningen, the Netherlands).15

Livers were perfused with 2 L Belzer UW machine perfusion
solution (Bridge to Life, Ltd, London, United Kingdom),
oxygenated with 100% O2. Temperature was maintained be-
tween 8–10�C. Pressures were limited to 25 mmHg in the he-
patic artery and 3 mmHg in the portal vein. Perfusate samples
were collected from the arterial inflow cannula at the end of
preservation. Liver tissue samples were obtained after pro-
curement, at the end of DHOPE preservation, and at the end of
warm reperfusion.
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Ex situ normothermic oxygenated whole blood reperfusion
After extended DHOPE preservation for 2 h, 6 h, or 24 h, liver
grafts were flushed by gravity with 1 L of cold (4�C) saline so-
lution and 1 L of saline at room temperature. Livers were then
transferred to a second Liver Assist device and reperfused at
37�C with autologous whole blood. Whole blood was used
during this phase to simulate clinical transplantation. Sodium
bicarbonate (B. Braun Medical, Melsungen, Germany) was
added in the first hour after reperfusion to adjust to a physio-
logical pH. The blood was oxygenated with a carbogen mixture
of 95% O2 and 5% CO2 at 1 L/min. The portal vein was perfused
continuously at a pressure of 11 mmHg, and the hepatic artery
was perfused with a pulsatile flow at a mean pressure of 70
mmHg. Perfusate samples were taken before reperfusion, and at
5, 60, 120, 180, and 240 min after reperfusion. Arterial blood gas
samples were taken before reperfusion, and every 30 min
thereafter. Partial oxygen pressure, Hb, pH, glucose, and lactate
were measured using the i-STAT clinical analyzer (Abbot Point of
Care Inc., Princeton, NJ). Bile production was measured gravi-
metrically throughout reperfusion. Every hour, bile was
collected under mineral oil, as described previously,16 and
biliary pH, bicarbonate and lactate dehydrogenase (LDH) levels
were measured.

As controls, 2 porcine livers were preserved with SCS (4�C) in
UW-solution for 24 h, followed by 4 h of normothermic reper-
fusion with whole blood as described above.

Outcomes
Hepatocellular injury after warm reperfusion was assessed by
alanine aminotransferase (ALT) levels, using a standardized
laboratory method. Nuclear subcellular injury was measured by
release of high mobility group box-1 protein (HMGB-1) using a
specific ELISA (IBL International GmbH, Fujioka, Japan). Cell-free
DNA (cfDNA) was used as a marker of cell damage and necrosis
and measured as described previously.17 Tumor necrosis factor
alpha (TNFa) and interleukin 6 (IL-6) levels were measured by
ELISA (Biotechne, Abingdon, UK). Lipid peroxidation, a marker of
oxidative stress, was quantified by measurement of malondial-
dehyde (MDA) in the perfusate and liver biopsies.15 MDA levels
in liver parenchyma were corrected for the amount of protein
(Bradford assay, Bio-Rad, Hercules, USA). In addition, 8-
hydroxy-2-deoxy guanosine (8-OHdG) was measured (FineT-
est, Wuhan, China) as a product of oxidative damage of DNA by
reactive oxygen and nitrogen species. Soluble thrombomodulin
(sTM) was determined using a commercially available ELISA
(Biotechne, Abingdon, UK).18 Hepatic content of ATP was used as
an indicator of energy status of grafts before and after DHOPE.
For this purpose, liver biopsies were immediately frozen in
liquid nitrogen and later processed for ATP measurement, as
described previously.19

Histological analysis
Liver biopsies were fixed in formalin and embedded in paraffin.
We performed H&E staining to assess necrosis and von Wille-
brand factor (VWF) staining to assess endothelial activation.
Quantification of necrosis and VWF-positive endothelial cells
was determined in 3 random visual fields (20x). Biopsies of the
extrahepatic bile ducts were taken after procurement and at the
end of reperfusion. After H&E staining, biliary injury was
assessed using a modified scoring system as described by Op
den Dries et al.20 Scoring was conducted in a blinded fashion by
2 independent investigators.
2vol. 2 j 100092



Human protocol
Human application of extended DHOPE was performed as a
preclinical study using discarded human liver grafts. The do-
nors’ families gave consent for research. Donor livers were static
cold stored on ice after procurement and transferred to our
hospital. To mimic clinical practice at our center as closely as
possible, grafts were subjected to our clinically used DHOPE-
COR-NMP protocol.21 Extended 20 h end-ischemic DHOPE
preservation was applied using UW machine perfusion solution.
The timeframe of 20 h instead of 24 h was chosen for logistical
reasons. After DHOPE preservation, UW was changed to a
perfusion solution containing a hemoglobin-based oxygen car-
rier, as described previously.22 In accordance with our clinical
protocol, discarded human livers subsequently underwent 1 h
of controlled oxygenated rewarming (10�C to 37�C) followed by
normothermic (37�C) reperfusion and liver viability testing for
an additional 4 h.21

Statistics
All values are expressed as means ± standard error of the mean
(SEM) for n = 6 animals per group. Differences between the
groups were tested using the Kruskal-Wallis test unless stated
otherwise. A 2-sided p value less than 0.05 was considered to be
significant. Analyses were performed using IBM SPSS software
version 25 for windows.

For further details regarding materials and methods used,
please refer to the CTAT table.

Results
Ischemia times
There were no significant differences in warm and cold ischemia
times between the groups. Mean warm ischemia time was 24 ±
2 min for DHOPE-2, 22 ± 2 min for DHOPE-6, and 22 ± 1 min for
DHOPE-24 livers (p = 0.847). Mean cold ischemia time was 129 ±
11 min for DHOPE-2 livers, 122 ± 5 min for DHOPE-6 livers, and
122 ± 5 min for DHOPE-24 livers (p = 0.890).

Flows during DHOPE
The perfusate temperature was maintained at 10�C throughout
all perfusions. In addition, portal venous and hepatic arterial
flows remained stable in all livers throughout the preservation
period. Mean arterial flow at the end of DHOPE was 104.8 ± 29.2
ml/min in the DHOPE-2 group, 104.3 ± 35.2 ml/min in the
DHOPE-6 group, and 149.3 ± 41.7 ml/min in the DHOPE-24
group (p = 0.676). Mean portal flow at the end of DHOPE was
311.7 ± 49.6 ml/min in the DHOPE-2 group, 282.0 ± 72.2 ml/min
in the DHOPE-6 group, and 193.3 ± 16.3 ml/min in the DHOPE-
24 group (p = 0.219).

Liver graft and bile duct viability after extended DHOPE
Warm reperfusion was used to assess liver graft viability after
extended preservation by 24 h DHOPE. Portal (Fig. 1A) as well as
arterial (Fig. 1B) flows steadily increased in all liver grafts upon
reperfusion. There were no significant differences between the
groups. In all groups, all livers cleared lactate (Fig. 1C). Perfusate
pHwas adjustedwithin the first hour after reperfusion by adding
bicarbonate. There were no significant differences in the amount
of added bicarbonate between the groups. After the first hour, no
further corrections were needed, and pH remained stable during
all liver perfusions (Fig. 1D). Starting 1 h after reperfusion,
perfusate glucose levels gradually decreased in all livers (Fig. 1E).
JHEP Reports 2020
All livers produced sufficient quantities of bile, without dif-
ferences in cumulative bile production (Fig. 2A). In addition, bile
duct viabilitywas assessed during 4 h of NMP. In all groups, biliary
pH and bicarbonate increased during 4 h of warm reperfusion.
Levels of biliary pH, bicarbonate and LDH were similar in all
groups at the end of reperfusion (Fig. 2B-D). In this porcinemodel
ofDCD livers,weobservedextensive loss ofbiliaryepithelial lining
immediately after procurement (30 min of warm ischemia). This
was consistent with previous findings.20 At the end of warm
reperfusion, bile ducts of all livers displayed signs of bile duct
injury. Histological comparison of bile ducts revealed similar
injury at the end of reperfusion in all groups (Fig. 2E, Fig. S1).

Next, we investigated the degree of hepatocellular injury
after DHOPE preservation for 2 h, 6 h and 24 h. We analyzed
several markers for cellular injury at the end of 4 h of reperfu-
sion. Levels of ALT (Fig. 3A; p = 0.687), HMGB-1 (Fig. 3B; p =
0.690), or cfDNA (Fig. 3C; p = 0.229) in the perfusate were not
elevated by extended DHOPE preservation. Histological analysis
of liver parenchyma revealed that DHOPE preservation for up to
24 h did not result in more necrosis after reperfusion compared
to shorter preservation times (p = 0.396) (Fig. 3D and E).

Since livers were perfused for up to 24 h with an oxygenated
solution, we investigated markers for oxidative stress at the end
of DHOPE preservation and after 4 h warm reperfusion.
Extended preservation was not associated with increased levels
of MDA in the perfusate at the end of DHOPE (Fig. 4A; p = 0.312),
nor in blood at the end of warm reperfusion (Fig. 4B; p = 0.308).
Extended DHOPE preservation was also not associated with
increased levels of MDA in liver biopsies at the end of DHOPE
(p = 0.125), nor at the end of reperfusion (p = 0.604) (Fig. 4C).
Perfusate 8-OHdG measured at the end of warm reperfusion
was similar in all groups (p = 0.172) (Fig. 4D).

Extended DHOPE preservation was not associated with
increased release of inflammatory cytokines TNF-a and IL-6.
Mean TNF-a was 334.4 ± 55.8 pg/ml for DHOPE-2, 252.3 ± 57.8
pg/ml for DHOPE-6, and 347.3 ± 123.2 pg/ml for DHOPE-24
preserved livers, respectively (p = 0.692) (Fig. 5A). Mean IL-6
was 13.9 ± 5.5 pg/ml for DHOPE-2, 23.9 ± 8.7 pg/ml for
DHOPE-6, and 19.7 ± 8.2 pg/ml for DHOPE-24 preserved livers,
respectively (p = 0.578) (Fig. 5B).

Finally, we investigated the degree of endothelial injury after
prolonged DHOPE preservation. Levels of sTM were not affected
by prolonged DHOPE (p = 0.985) (Fig. 5C). Intensity of VWF
staining did not reveal more activation of endothelial cells on
histological analysis (Fig. 5D and E).

24 h SCS preserved livers
As a control group, 2 porcine livers were preserved by SCS for 24
h. Subsequent warm reperfusion was performed for 4 h to
investigate viability. Macroscopically, both livers preserved by
24 h SCS depict large, patchy dark and greyish areas. During 4 h
of warm reperfusion of these grafts, perfusion flow rates grad-
ually decreased, bile production was absent, pH was decreased
to <7.0, and lactate in the perfusate reached >8mmol/L at the
end of reperfusion. Fig. 6A and B depict a porcine liver with
macroscopically normal appearance after 24 h of DHOPE pres-
ervation and 4 h of subsequent NMP. In contrast, Fig. 6C shows
normothermic reperfusion after 24 h preservation by SCS,
demonstrating severe hemorrhagic injury. Because of the severe
degree of injury after 24 h SCS preservation (i.e., non-
functioning grafts), a further increase in the number of livers
in the 24 h SCS group was deemed futile.
3vol. 2 j 100092
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Human preclinical experience in extended DHOPE
Finally, we investigated whether the observations in our porcine
model could also be applied to clinical liver transplantation.
Therefore, we perfused 2 discarded human donor livers using a
protocol currently used at our center (Fig. 7A).21 The first liver
was from a 71-year old DCD donor, with a BMI of 29, history of
smoking, macroscopic hepatic steatosis of 40%, 121 min be-
tween withdrawal of life support and death, a warm ischemia
time of 16 min, and 668 min of SCS. The second graft was from a
59-year old donation after brain death donor, with a BMI of 31, a
history of smoking and hypertension, and a SCS time of 466 min.
This liver was discarded by another transplant center because of
a macroscopic appearance of poor perfusion, and subsequently
rejected for transplantation nationwide. These human liver
grafts were preserved by traditional SCS during transportation
from the donor center and then subjected to extended DHOPE
for 20 h. After 1 h of gradual controlled oxygenated rewarming
followed by an additional 4 h of normothermic reperfusion,
both grafts met the viability criteria that we use in our practice
(Fig. 7B). Fig. 7B shows data from our prospective clinical trial, in
which the green margins depict livers that were deemed viable
after 2.5 h normothermic reperfusion.21 The purple and blue
lines represent both human livers included in this study. After
2.5 h of reperfusion, both livers met the viability criteria, based
on lactate clearance, the delta of biliary and arterial pH, the
biliary/arterial glucose ratio, and the delta of biliary and arterial
bicarbonate. Hepatic ATP content was increased 3–5-fold during
20 h of DHOPE preservation (Fig. 7C). Perfusate levels of HMGB-
1, TNF-a, IL-6, and cfDNA remained low in both livers during the
entire period of DHOPE (Fig. 7C). At the end of reperfusion,
histology of the extrahepatic bile ducts, the intrahepatic bile
JHEP Reports 2020
ducts as well as the liver parenchyma revealed remarkable
preservation with only minor cholangiocellular and hepatocel-
lular injury (Fig. 7D).
Discussion
In this study we have shown that in a porcine DCD model with
30 min of warm ischemia, livers preserved by DHOPE remained
viable for at least 24 h, whereas 24 h preservation by SCS
resulted in non-viable grafts.23,24 DHOPE for up to 24 h appears
to be feasible to extend ex situ liver graft preservation times.

The results described in this paper provide evidence that
DHOPE may substantially extend liver preservation times. These
findings are important for several reasons. First, extendedDHOPE
could remove logistical constraints to organ allocation. It may be
useful to extend preservation times in cases of suboptimal livers
that are more difficult to allocate. Second, this technique can be
favoredwhen livers need to be transported across regions of large
countries (e.g. the United States), or between countries (e.g.
Eurotransplant). At the same time, it may reduce transportation
costs when livers can be shippedwith commercial flights instead
of chartered jets. Lastly, storage time can be prolonged in cases of
logistical issues at the recipient center (lack of operating roomsor
medical teams), or to schedule transplantation surgery the next
day instead of during the night, since the latter has been associ-
ated with a greater risk of morbidity and mortality.25

Up tonow, it has been shown that short-term (1–2 h) (D)HOPE
prior to transplantation is an effective approach to mitigate
ischemia-reperfusion injury by slowing down mitochondrial
respiration.2 The present study shows that DHOPE can also be
used to extend preservation times. Only a few studies
4vol. 2 j 100092
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investigated extended cold perfusion of donor livers.8,26 Belzer
and colleagues were the first who managed to preserve and
transplant good quality canine livers after 72 h hypothermic
machine perfusion (HMP).8 More than a decade later, Xu et al.
published a study on 24 h preservation by HMP in a rat reperfu-
sionmodel, but without very good results.26 At the end of 30min
reperfusion, LDH was higher in the HMP group than the SCS
group, indocyanine green clearance was similar between the
groups, and hepatic hyaluronic acid uptake showed severely
impaired hepatic sinusoidal endothelial cells after 24 h of HMP. In
contrast to our study, Xu and colleagues did not use an oxygen-
ated perfusion solution. It has been shown that complete absence
of oxygen during HMP triggers hepatocyte cell death via mito-
chondria, and fails to prevent reperfusion injury.2 The liver is a
metabolically high-demanding organ, even under hypothermic
conditions. Therefore, active oxygenation is needed, especially in
grafts with more preservation injury, such as DCD livers.2,27,28

A potential disadvantage of HMP is the risk of undesired
endothelial injury (shear stress) in the liver sinusoids caused by
higher vascular resistances in the cold.29 In our experiments, we
have observed stable perfusion flows during the entire preser-
vation period of 24 h. This is in contrast to what other authors
JHEP Reports 2020
have described for extended HMP.26,30–32 If machine settings are
adjusted at portal pressures <−3 mmHg and arterial pressures
<−25 mmHg, shear stress can be avoided.2,33 In this study, using
low perfusion pressures, we did not observe activation of
endothelial cells, indicated by VWF staining as well as low levels
of sTM. sTM is released from the vascular endothelium when
liver sinusoids are injured by, for example, graft preservation.34

Levels of sTM have also been correlated with elevated liver
enzymes and increased adherence of leukocytes in liver tissue.18

Research groups world-wide are pushing the boundaries of
organ preservation times. More recently, the feasibility of
extended preservation by NMP was demonstrated.11,35,36 The
group from Cleveland even shows 86 h liver perfusion by NMP
in a non-transplantation model.11 Normothermic conditions
allow testing of organ viability, but it also bears a risk of severe
injury as the organ is much more metabolically active.37 In
addition, normothermic perfusion requires more intensive la-
bor, since the liver produces waist products and the composi-
tion of the perfusate needs to be continuously monitored and
adjusted. Hypothermic perfusion can be advantageous since the
organ is in a hypometabolic state with less production of waste
products. In addition, compared to NMP, it prevents graft loss if
5vol. 2 j 100092
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Research article
the perfusion system fails (the graft would still be preserved in
SCS). This study shows that temperature can be maintained at
10�C without interventions, it does not require an oxygen
JHEP Reports 2020
carrier (e.g. blood), and no adjustments of the perfusate needed
to be done, making it a relatively easy and substantially cheaper
approach compared to NMP.
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Clearly these results must be assessed in the context of what
is an experimental study using porcine livers. We did not
confirm our findings in a transplantation model, but an ex-situ
whole blood reperfusion model was used to test liver viability,
as done previously by others.15,38–40 In addition, it was recently
shown that 2.5 h of normothermic reperfusion is sufficient to
JHEP Reports 2020
assess hepatobiliary viability.21 It is generally accepted that the
pig liver is a very rigorous model of organ preservation, with
maximum successful SCS preservation times that are substan-
tially shorter than those regularly achieved in clinical practice.35

In combination with our preliminary results on the 2 discarded
human liver grafts, these are grounds for optimism that
7vol. 2 j 100092
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Research article
comparable results may be achieved in the clinical setting.
Although the results of the current study are encouraging,
experimental work with subsequent transplantation to validate
this approach remains necessary. Until then, extended DHOPE
should only be performed within a research setting.
JHEP Reports 2020
In conclusion, this is the first study to show successful
extended preservation by DHOPE of DCD porcine and human
livers. If confirmed to the clinical setting, extended DHOPE could
be used globally to facilitate transplantation logistics and
expand the donor pool.
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