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Abstract

Cardiovascular diseases (CVDs) are the primary cause of all death globally. Timely and

accurate identification of people at risk of developing an atherosclerotic CVD and its

sequelae is a central pillar of preventive cardiology. One widely used approach is risk predic-

tion models; however, currently available models consider only a limited set of risk factors

and outcomes, yield no actionable advice to individuals based on their holistic medical state

and lifestyle, are often not interpretable, were built with small cohort sizes or are based on

lifestyle data from the 1960s, e.g. the Framingham model. The risk of developing atheroscle-

rotic CVDs is heavily lifestyle dependent, potentially making many occurrences preventable.

Providing actionable and accurate risk prediction tools to the public could assist in athero-

sclerotic CVD prevention. Accordingly, we developed a benchmarking pipeline to find the

best set of data preprocessing and algorithms to predict absolute 10-year atherosclerotic

CVD risk. Based on the data of 464,547 UK Biobank participants without atherosclerotic

CVD at baseline, we used a comprehensive set of 203 consolidated risk factors associated

with atherosclerosis and its sequelae (e.g. heart failure). Our two best performing absolute

atherosclerotic risk prediction models provided higher performance, (AUROC: 0.7573, 95%

CI: 0.755–0.7595) and (AUROC: 0.7544, 95% CI: 0.7522–0.7567), than Framingham

(AUROC: 0.680, 95% CI: 0.6775–0.6824) and QRisk3 (AUROC: 0.725, 95% CI: 0.7226–

0.7273). Using a subset of 25 risk factors identified with feature selection, our reduced

model achieves similar performance (AUROC 0.7415, 95% CI: 0.7392–0.7438) while being

less complex. Further, it is interpretable, actionable and highly generalizable. The model

could be incorporated into clinical practice and might allow continuous personalized predic-

tions with automated intervention suggestions.

Introduction

Globally, cardiovascular diseases (CVDs) are the number one cause of all death [1, 2]. In 2016,

17.9 million people died of CVDs alone, accounting for 31% of all global deaths [1]. The direct
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costs of CVDs in the US for 2010 were $272.5b whereas indirect costs were $171.7b and are

expected to increase to $818.1b and $275.8b in 2030 respectively [3, 4]. Atherosclerosis alone is

responsible for 1.3% of all hospital stays with costs of $9b per year, while all atherosclerosis-

related diseases amount to $43.5b of hospital costs annually [5]. Individually, patients with

CVD incur more than twice the medical costs of age- and sex-matched patients without CVD,

largely because of the increased likelihood of subsequent hospitalizations. The greatest differ-

ences in total CVD costs usually occur when comparing patients with and without a secondary

CVD hospitalization [6].

All current guidelines on the prevention of CVD in clinical practice recommend the assess-

ment of total CVD risk since atherosclerosis is usually the product of a number of risk factors

[7, 8] and in recent years these guidelines have evolved to focus on the absolute risk of disease

as opposed to relative risk [7–10]. Clinician tools for CVD risk estimation must enable rapid

and accurate estimation of an individual patient’s absolute CVD risk [7], or for opportunistic

screening of high-risk patients from relevant populations [11]. Screening is the identification

of unrecognized disease or risk of disease in individuals without symptoms. In addition to

opportunistic screening, which is carried out without a predefined strategy (e.g. when the indi-

vidual is consulting a general practitioner (GP) for some other reason), tools can be used for

systematic screening, which is centrally organized strategic screening in the general population

or in targeted subpopulations, such as subjects with a family history of premature CVD or

familial hyperlipidaemia [7]. There is ongoing debate on the role of systematic centralized pop-

ulation based screening in CVD [10, 12] because of burdensome diagnostic testing following

the use of risk based screening tools [13]. A relatively new area of screening is self-screening,

carried out by proactive individuals using screening tools on mobile devices such as smart-

phones or smartwatches, which may use built in app-linked sensors or screening chat-bots

[14–16]. There is public demand for reliable, actionable, explainable and usable health infor-

mation tools [17], including for disease screening.

The risk to build up atherosclerotic plaque varies and is determined by multiple factors

such as genetics, environment and lifestyle [11, 18–21]. The risk of developing atherosclerotic

plaque can be reduced based on an individual’s behavioral risk factors, such as smoking, physi-

cal activity and nutrition [1, 11, 19, 20].

Most diseases, including atherosclerotic CVDs, have a complex pathophysiology that

involves multiple interacting molecular systems, making it insufficient to look only at an iso-

lated biological pathway or a subset of markers to predict disease risk [22]. A precision medi-

cine based approach is required, where multiple biological layers are considered (i.e., ‘multi-

omics’), alongside clinical and lifestyle data [22]. Such an approach has the potential to capture

all important interactions or correlations detected between molecules in different biological

layers, providing a holistic understanding of an individual’s current health status and enabling

the quantification of an individual’s absolute risk of atherosclerotic CVDs [23, 24].

Previous studies in this area use a limited set of risk factors and outcomes for their analyses

[7, 25, 26]. In recent years, the knowledge of behavioral risk factors and of the pathophysiology

of atherosclerotic CVDs have advanced tremendously [11, 25]. Current absolute risk predic-

tion models have limited predictive capability as they have not been trained on all possible ath-

erosclerotic CVD outcomes [27–29], or they include outcomes which are unmodifiable such

as those related to pregnancy, accidents, or congenital factors [29].

Both SCORE (Systematic COronary Risk Evaluation) and SCORE2 [30, 31], are models for

predicting relative CVD risk, whereas we focus on predicting absolute CVD risk, which is why

we chose to omit those models from our analysis. Another related investigation, which also

used the UK Biobank (UKB) dataset, developed multiple Cox Proportional Hazard models for

10-year CVD risk prediction, with a reduced version requiring 47 risk factors and another
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version disregarding all cholesterol risk factors as well as systolic blood pressure, in order to

provide a simple approach for risk prediction in remote settings with limited testing resources

[32]. However, survival models such as the proportional hazard model are not designed to pro-

vide absolute risk estimates for individual patients.

Machine learning (ML) based approaches have many advantages compared to humans or

standard statistical algorithms, such as superior performance, being able to identify complex

non-linear patterns, the ability to encode diverse and high dimensional data types, being more

stable to outliers, allowing continuous model updates, versatility for different domains and

scalability [33–36].

However, classic disadvantages of ML based approaches are their lack of interpretability,

risk for inherent bias due to the used data, difficulty to acquire physician adoption, explaining

to physicians why a new risk model might be superior to existing ones, with all of these hinder-

ing widespread adoption of ML based risk prediction models [36, 37]. One example for ML

based CVD risk prediction is the AutoPrognosis based approach, where an ensemble of multi-

ple ML pipelines has also been applied on the UK Biobank dataset for 5-year CVD risk predic-

tion [29]. Further, using a purely ML-driven approach can lead to a model that requires too

many risk factors to compute risk, which is infeasible for routine clinical check-ups. Another

disadvantage of purely data-driven approaches is the inclusion of risk factors which might show

strong correlations but are unrelated to the pathophysiology of CVDs or are not actionable,

making them inapplicable in a clinical setting or as an actionable self-management tool [29].

The aim of this study was to use a large-data ML approach to develop an actionable absolute

risk prediction tool which considers the holistic health of an individual. Uniquely, we focused

on behavioral risk factors relating to all atherosclerotic CVD outcomes. Our goal was to have a

holistic understanding of an individual’s current health status, to better quantify their risk of

atherosclerotic CVDs, and to provide actionable advice. Our approach is novel in that we

employ a highly holistic understanding of an individual’s current health status, to better quan-

tify their risk of all atherosclerotic CVDs. By utilizing a comprehensive set of lifestyle factors, we

enable the subsequent suggestion of personalized and actionable advice relating to unhealthy

risk factors. Instead of using only a limited set of risk factors, we aimed to achieve this by taking

multiple biological layers into account, which include: (i) multi-omics data from blood samples

(e.g. lipidome and proteome); (ii) family history (e.g. genome), (iii) lifestyle data, (iv) clinical

data and (v) environmental data; along with (vi) an extensive set of risk factors and outcomes.

We used data from 464,547 participants of the UK Biobank study who did not have athero-

sclerotic CVD at their baseline visit. We created an automated pipeline to benchmark risk pre-

diction classifier algorithms against each other, then evaluated their predictive performances

in the overall population and tested the generalizability of the top-performing classifiers

through retraining and testing on different sub-populations. We explored the clinical implica-

tions of the proposed classifiers, with a focus on the top-performing models. This study does

not focus on the algorithmic aspects of the utilized classifiers.

Methodological details on the utilized classifiers can be found in the open-source documen-

tation of the respective algorithms of the scikit-learn [38] and xgboost [39] libraries and in the

supporting information (S4 Table).

Materials and methods

Baseline data from the UK Biobank was utilized to extract an extensive set of risk factors and

outcomes associated with the pathophysiology of atherosclerotic CVDs. A benchmarking pipe-

line was used to train and evaluate different standard and ML algorithms for the task of

10-year atherosclerotic CVD risk prediction. The performance was measured using AUROC
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and compared against the baseline models Framingham and QRisk3, which are widely used

and recommended models. We evaluated our best performing models further by analyzing the

most informative features and assessed model generalizability and created a reduced model.

Study design and participants

The UK Biobank is a long-term prospective large-scale biomedical database including over

500,000 participants aged 40–69 years (when recruited between 2006 and 2010). The database

is globally accessible to approved researchers undertaking research into the most common and

life-threatening diseases and continuously collects phenotypic and genotypic data about its

participants, including data from questionnaires, physical measures, blood, urine and saliva

samples, lifestyle data [40]. This data is further linked to each participant’s health-related rec-

ords, accelerometry, multimodal imaging, genome-wide genotyping and longitudinal follow-

up data for a wide range of health-related outcomes [40, 41]. The UK Biobank study protocol

is available online [42].

The North West Multi-Centre Research Ethics Committee approved the UK Biobank study

and all participants provided written informed consent prior to study enrollment. Our

research is covered by the UK Biobank’s Generic Research Tissue Bank (RTB) Approval and

was approved by the UK Biobank Access Management Team [43].

We excluded participants with atherosclerotic CVDs present before or during baseline, par-

ticipants who chose to leave the UKB study and participants who were lost due to various rea-

sons. The resulting cohort consisted of 464,547 participants. The last available date of

participant follow-up was March 5th, 2020.

Risk factor definition. We curated a list of all generally known risk factors and outcomes

for atherosclerotic CVDs from the medical literature and from validated risk prediction mod-

els. This preliminary list of risk factors was reduced through curation to focus on those factors

that were clearly involved in the pathophysiology of atherosclerosis and those that are modifi-

able through behavioral change. The curation was carried out by three medical doctors with

experience in diagnosing or scientifically modelling cardiovascular diseases. We consolidated

all relevant UKB columns into 203 risk factors and grouped them into six categories: demo-

graphics (e.g. age, biological sex, ethnicity), biomarkers (e.g. cholesterol, glucose, blood pres-

sure, heart rate), lifestyle (e.g. alcohol consumption, smoking, physical activity, sleep, social

visits), environment (e.g. exposure to tobacco smoke, work and housing and other socio-eco-

nomic related factors), genetics (e.g. family history of CVD, stroke, diabetes, high cholesterol,

high blood pressure) and comorbidities (e.g. heart arrhythmias, diabetes, acute & chronic kid-

ney injury, migraines, rheumatoid arthritis, systemic lupus erythematosus, severe mental ill-

nesses (schizophrenia, bipolar disorder, depression, psychosis), diagnosis or treatment of

erectile dysfunction, atypical antipsychotic medication). A categorized list of all risk factors

used in our analysis is provided in the supplementary data (S1 Table).

Outcome definition. In the same manner as described above, an initial list of atheroscle-

rotic CVDs was further reviewed and curated by the same team of medical doctors. All result-

ing CVDs of interest are associated with atherosclerotic plaque build-up, are modifiable and

relate to the collected risk factors only. Thus, we disregard brain haemorrhages due to acci-

dents and congenital and pregnancy-related CVDs, which are not actionable. The curated list

of all ICD-10 and ICD-9 outcomes meeting the above criteria consists of 193 total (125 unique)

CVD outcomes, e.g. coronary/ischaemic heart disease, heart attack, angina, stroke, cardiac

arrest, congestive heart failure, left ventricular failure, myocardial infarction, aortic valve ste-

nosis, cerebral artery occlusions, nontraumatic haemorrhages. A list with all outcome codes

used in our analysis is provided in the supplementary data (S2 Table). An atherosclerotic CVD
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event was defined as the first occurrence out of the following: any of the atherosclerotic CVD

outcome diagnosis codes, also as primary or secondary death cause during the 10-year follow-

up period.

Cohort follow-up. Follow-up time was set to 10 years as commonly used in other risk

models (see Table 2 in [7]) and counted from the date of initial assessment center visit. Indi-

viduals who died from other causes during their follow-up period or had a relevant CVD event

past their individual follow-up period, were marked as not having had a relevant CVD event.

Models used in comparison

Framingham risk score. The Framingham 10-year CVD absolute risk score is based on

the data of the two prospective studies, the Framingham Heart Study and the Framingham off-

spring study [27]. The cohort consists of 8491 participants, with 4522 women and 3969 men

who attended a baseline examination between 30 and 74 years of age and were free of CVD. A

positive CVD outcome was defined as any of the following: coronary death, myocardial infarc-

tion, coronary insufficiency, angina, ischemic stroke, hemorrhagic stroke, transient ischemic

attack, peripheral artery disease and heart failure.

Participants were followed up for 12 years where 1174 participants developed a CVD. Two

biological sex-specific risk models were derived, with one model using lipid measurements

and the other one Body Mass Index (BMI). The variables used were biological sex, age, total

cholesterol, HDL cholesterol, treated and untreated systolic blood pressure, smoking status

and diabetes status.

The Framingham risk calculators and model coefficients are publicly available [44]. We

imputed missing data using simple mean imputation.

QRisk3. The QRisk3 10-year CVD absolute risk score is based on a prospective open

cohort study using data from general practices (GPs), mortality and hospital records in

England [28]. The cohort consists of 10.56 million patients between the age of 25 and 84 years,

where 75% of the patients were used for training and 25% for validation. Patients with a pre-

existing CVD, missing Townsend score or using statins were removed from the baseline.

Patients were classified as having a positive CVD outcome when any of the following outcomes

was present during follow-up in the GP, hospital or mortality records: coronary heart disease,

ischaemic stroke, or transient ischaemic attack. QRisk3 used the following ICD-10 codes: G45

(transient ischaemic attack and related syndromes), I20 (angina pectoris), I21 (acute myocar-

dial infarction), I22 (subsequent myocardial infarction), I23 (complications after myocardial

infarction), I24 (other acute ischaemic heart disease), I25 (chronic ischaemic heart disease),

I63 (cerebral infarction), and I64 (stroke not specified as haemorrhage or infarction). The uti-

lized ICD-9 codes were: 410, 411, 412, 413, 414, 434, and 436. Participants were followed-up

for 15 years where 363,565 participants of the training set (4,6%) developed a relevant CVD.

One biological sex-specific risk model was derived.

The risk factors used in the final model were age, ethnicity, deprivation, systolic blood pres-

sure, BMI, total cholesterol/HDL cholesterol ratio, smoking status, family history of coronary

heart disease, diabetes status, treated hypertension, rheumatoid arthritis, atrial fibrillation,

chronic kidney disease, systolic blood pressure variability, diagnosis of migraine, corticoste-

roid use, systemic lupus erythematosus, atypical antipsychotic use, diagnosis of severe mental

illnesses, diagnosis or treatment of erectile dysfunction.

The QRisk3 risk calculator and model coefficients are publicly available [45], built into all

major NHS GP systems and included in the UK’s national guidelines (https://www.

healthcheck.nhs.uk/seecmsfile/?id=1687, accessed 10th November 2021). We imputed missing

data using simple mean imputation.
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Standard linear and ML models. Since the introduction of the classic CVD risk predic-

tion methods, the field of supervised machine learning has developed from classical statistics

with the sole purpose of maximizing predictive accuracy with modern statistical methods.

Therefore, in addition to using standard linear models, we tested the major ML approaches,

covering a wide spectrum of the possible ML design space, to evaluate which model type per-

forms best for our task. Based on our initial benchmarking pipeline results, we focused on

reporting the results of the initially best performing models: logistic regression, random forest

and XGBoost.

We compared regularized linear regression (with L1 penalty), random forests and gradient

boosting (xgboost implementation) for assessing the highest achievable Area Under the

Receiver Operating Characteristic Curve (AUROC) value, which we used for assessing the

trade-off between number of features and predictive performance of several simpler practical
risk predictors, as determined by an iterative feature elimination procedure outlined below. L1

regularization for logistic regression implements a strong penalty for non-zero feature weights,

resulting in a feature selection procedure that discards features that are likely to be non-predic-

tive. Random Forest is an ensemble method that fits many decision trees independently to a

subset of the data. We implemented both methods using their scikit-learn library implementa-

tion. Finally, we evaluated Extreme Gradient Boosting: Gradient boosting is an ensemble tree-

based machine learning method that combines many weak classifiers to produce a stronger

one. It sequentially fits a series of classification or regression trees, with each tree created to

predict the outcomes misclassified by the previous tree [46]. By sequentially predicting residu-

als of previous trees, the gradient boosting process has a focus on predicting more difficult

cases and correcting its own shortcomings. Extreme Gradient Boosting (XGB / XGBoost) is a

specific implementation of the gradient boosting process, and uses memory-efficient algo-

rithms to improve computational speed and model performance [39, 47].

For completeness, we briefly evaluated a number of other standard classifiers, but discarded

them due to excessive computational complexity or inferior performance so we do not report

their performances here: Decision Trees [48], Voting Classifiers, Multi-Layer Perceptrons with

2 layers and 200 and 150 neurons each (Neural Network) [49], stochastic gradient descent

implementing a support vector machine algorithm [50, 51], Ada Boost [52, 53], Gradient

Boosting [46], K Neighbors [54], Quadratic Discriminant Analysis [55] and Gaussian Naive

Bayes [38, 56].

Model development and benchmarking using pipeline

We built a benchmarking pipeline for automated and reproducible data extraction, normaliza-

tion, imputation, model training, tuning of model hyperparameters, classification, documenta-

tion and reporting.

We implemented all models using their respective scikit-learn library or xgboost library

implementation using the Python programming language [38, 39]. Details on the used Python

libraries, methods and parameters are provided in the supplementary data (S3 and S4 Tables).

Categorical values were one-hot encoded. Data normalization was performed by removing

the mean and scaling to unit variance. Data imputation was performed for all models using a

simple mean imputation. The models’ hyper-parameters were determined using grid search

and stratified k-fold cross validation using 3 folds was employed to avoid overfitting.

Finally, we assessed model performance mainly using the AUROC. Fig 1 visualizes an over-

view of all performed steps of our experimental setup.

Iterative feature elimination. We employed an iterative feature elimination procedure

based on the regularized logistic regression for finding the best trade-off between predictive

PLOS ONE Actionable absolute risk prediction of atherosclerotic cardiovascular disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0263940 February 11, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0263940


performance and number of risk factors, with the aim of creating a risk prediction algorithm

that is applicable in the clinical context. We used the standard L1 regularization (also known

as Lasso) proposed by [57]; it implements a strong penalty on non-zero feature weights of our

logistic regression model, resulting in a sparse feature set for prediction.

A logistic regression coefficient value β can be interpreted as the expected change in log

odds of having the outcome per unit change in the feature xβ. Therefore, increasing the feature

by one unit multiplies the odds of having the outcome by eβ. This means that we can interpret

the coefficients as feature importance values in the sense that the feature with the smallest coef-

ficient has the least importance on model predictions. Importantly, this holds only true in the

context of the parameters contained in the current model. Thus, we re-estimate the model

after each feature elimination round.

In each iteration, we re-estimated the logistic regression model on the remaining parame-

ters, and then discarded all parameters that were set to zero by the L1 regularization; finally,

we also discarded the parameter with the lowest non-zero absolute value.

As an additional step, we created a ranking of the relative feature importance value of each

feature by dividing its absolute coefficient weight by the sum of all absolute coefficient weights.

Statistical analysis. To reduce overfitting, we evaluated the classification performance of

all our benchmarked algorithms by using 3-fold stratified cross-validation and measuring the

Area Under the Receiver Operating Characteristic Curve. For the cross-validation, we used a

training set with 325,182 participants to train and derive our standard linear and ML models

and then assessed the AUROC performance on the held-out test set with 139,365 participants

using 203 risk factors respectively. We reported the AUROC and the 95% confidence intervals

(Wilson score intervals) for all models and performed a sensitivity analysis using Shapley

Additive Explanations (SHAP values) for the best performing linear model.

Generalizability. With 442,620 out of the 502,551 participants in the UK Biobank, the

cohort has a high proportion (88.1%) of participants with British White ethnicity. In an effort

to estimate a proxy for out-of-sample generalizability, we re-trained the two best models, XGB

and logistic regression with L1 regularization, only on Whites and tested their performance on

Fig 1. Overview of experimental setup of proposed approach.

https://doi.org/10.1371/journal.pone.0263940.g001
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a non-White test set. The white-only training set consists of 378,836 participants (81.5%). The

non-White test set consists of 85,711 participants (18.5%).

Results

Characteristics of the training and test populations

Of 502,551 patients in the UK Biobank, we filtered out 7.6% who already experienced a rele-

vant CVD outcome (during or before baseline) and the participants being lost or who with-

drew from the biobank. This resulted in 464,547 participants who met the inclusion criteria.

28,561 (6.1%) of those participants developed at least one of the relevant CVD outcomes dur-

ing their 10-year follow-up period. We used a common 70% of the data as a training set and

30% as a hold-out test set. Table 1 shows the overlap of our atherosclerotic CVD outcome defi-

nition with the CVD outcome definition used in the related work approach by Alaa et al. [29]:

Prediction accuracy

The resulting prediction accuracy of the benchmarked models is depicted in Table 2. We used

both Framingham 10-year CVD risk versions, with and without lipids, as well as QRisk3 as

baseline models to assess the performance of predicting someone’s 10-year risk of developing

an atherosclerotic cardiovascular disease based on a holistic set of risk factors, with a focus on

actionable risk factors and outcomes. The best performing model was XGB with an AUROC

of 75.73%, only marginally higher than the logistic regression model with L1 regularization

(75.44%) and substantially better than the Random Forest model (66.90%).

Fig 2 shows the AUROCs of the best performing models XGB and from logistic regression

with L1 regularization, which is the simplest model tested and amongst the top two best per-

forming models. Logistic regression comes with the advantages of being interpretable by pro-

viding reasoning for its classifications, and being a simple and robust method [36].

In order to better evaluate the clinical implications and significance of our results, we com-

pared the results of our benchmarked models with our baseline models Framingham and

Table 1. CVD outcomes statistics according to definition in current study and the comparator study definition by

Alaa et al. [29].

Statistic measured Number

No. of atherosclerotic CVD outcomes that developed in 10-year follow-up according to

definition in current study

28,561

No. of CVD outcomes that developed in 10-year follow-up according to comparator study

definition

28,242

No. of CVD outcomes after 10-year follow-up that overlap in the current study and

comparator study definition

456,184 out of 464,547

(98%)

No. of CVD outcomes identified in the current study but not in comparator studies 4,341

No. of CVD outcomes included in comporator studies, but not in current study 4,022

https://doi.org/10.1371/journal.pone.0263940.t001

Table 2. Performance of all tested classifiers including baseline models.

No. Algorithm Name AUROC and 95% confidence intervals

1 Extreme Gradient Boosting (XGB) 0.7573 (0.755–0.7595)

2 Logistic regression with L1 regularization 0.7544 (0.7522–0.7567)

3 QRisk3 0.725 (0.7226–0.7273)

4 Framingham Lipid & BMI 0.680 (0.6775–0.6824) & 0.681 (0.6788–0.6837)

5 Random Forest 0.6690 (0.6666–0.6715)

https://doi.org/10.1371/journal.pone.0263940.t002
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QRisk3. Table 2 shows that both our XGB and logistic regression classifiers achieved superior

performance compared to the baseline models. Apart from the Random Forest model, all

tested models had a higher AUROC than both baseline Framingham (68.0% and 68.1%) and

QRisk3 (72.5%) models.

The difference in AUROC performance of the Framingham score in our experiments in Fig

2 compared to Alaa et al. [29] is explainable by their use of an older UK Biobank version with

40,000 fewer baseline patients with their last available date of participant follow-up being Feb-

ruary 17, 2016. The UK Biobank version we used includes biochemistry data which was

released May 1, 2019 including cholesterol and additional questionnaires data. Additionally,

more diagnosis data was made available over time. These dataset differences may help explain

the difference in AUROC.

Figs 3 and 4 show the AUROCs of all baseline models on imputed and unimputed data

respectively.

Both Framingham versions perform nearly identically on imputed and unimputed data

whereas QRisk3 performs worse on unimputed data.

Feature elimination vs. predictive performance

Fig 5 shows how the performance of the best logistic regression model depends on the number

of risk factors used. Discarding the risk factors stepwise leads to a relatively unchanged and sta-

ble model performance until around 170 iterations of feature elimination. This indicates that

for predicting an individual’s 10-year atherosclerotic CVD risk, many features provide only

marginal value and a small subset of features provides substantial informative value. After

around 170 iterations, there was a marked decline in model performance associated with fur-

ther reductions in utilized features.

Table 3 shows in more detail the dependence of the model performance on the number of

features. Utilizing only 25 (88%) out of the 203 total risk factors still leads to a reasonable

AUROC performance, with a high reduction in utilized features. Compared to the model per-

formance with an AUROC of 75.44% when using all 203 risk factors, the model still achieves

74.15% (95% CI: 0.7392–0.7438) with the 25 most informative risk factors.

Fig 2. AUROC of logistic regression with L1 regularization and XGBoost.

https://doi.org/10.1371/journal.pone.0263940.g002
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We also assessed the performance for fewer features. To reach the same performance as

QRisk3 of 72.5% AUROC, 16 features would be necessary. The two most informative features

were age and biological sex. To reach a similar performance as Framingham (68.0%), just two fea-

tures were necessary (68.98%). It is worth noting, however, that both Framingham and QRisk3

were trained and tuned on other datasets and have different CVD definitions and objectives.

Generalizability of results

We assessed the generalizability of our models by re-training the two previously best perform-

ing models only on a White cohort and then testing them on a non-White cohort. Table 4 and

Fig 3. AUROC curves of baseline models on imputed data.

https://doi.org/10.1371/journal.pone.0263940.g003

Fig 4. AUROC curves of baseline models on unimputed data.

https://doi.org/10.1371/journal.pone.0263940.g004
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Fig 6 show the results for logistic regression and XGB. The logistic regression model has an

AUROC of 75.86% in the generalizability experiment, compared with an AUROC of 75.44%

in the previous experiment. XGB has an AUROC of 76.26% in the generalizability experiment

and 75.73% in the previous experiment. These results show only marginal differences to the

results of the previous experiments.

Predictive ability of individual variables in UK Biobank

Table 5 shows the relative regression feature weights of the 25 most informative risk factors in

descending order. A full list is provided in the supplementary materials (S5 Table). Based on

our previous manual curation of risk factors and outcomes, we can see that the most informa-

tive risk factors are distributed across 5 categories (Table 6), with the lifestyle category contrib-

uting the most risk factors. The two most informative features were age and biological sex. We

provided a sensitivity analysis using SHAP values of the best performing logistic regression

model for all risk factors in the supplementary materials (S1 Fig).

Fig 5. Performance of best logistic regression model depending on number of features. AUROC performance of

best performing logistic regression model with L1 regularization (continuous blue line) compared to number of

features utilized in each iterative feature elimination step (orange line), dotted blue horizontal line showing intersection

of 25 features with iterative feature elimination step, allowing for extrapolation to model performance.

https://doi.org/10.1371/journal.pone.0263940.g005

Table 3. Performance of best logistic regression model depending on number of features.

Number of Features AUROC

203 75.44

40 75.01

25 74.15

20 73.32

17 72.76

10 70.88

2 68.98

https://doi.org/10.1371/journal.pone.0263940.t003
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Discussion

Using data gathered from the large longitudinal cohort UK Biobank study, we developed a

pipeline to benchmark several classification models for predicting a subject’s 10-year absolute

risk of developing an atherosclerotic CVD. We used an extensive set of physician curated risk

factors and outcomes methodology, employing a holistic view of the subject’s current health

status rooted in a precision medicine approach. The models were trained and evaluated using

data from 464,547 UK Biobank participants, spanning 203 CVD risk factors for each subject.

Using a simple logistic regression model with a holistic set of risk factors significantly

improved the accuracy of atherosclerotic CVD risk prediction compared to currently available,

widely used and recommended models such as Framingham and QRisk3. Both of these exist-

ing models rely on a limited set of risk factors and outcomes and do not focus on modifiable

lifestyle factors. Further, our best performing logistic regression model utilizes new CVD risk

predictors showing high predictive power, namely: social visits, walking pace and overall

health rating. The frequency of social visits could be indicative of someone’s current mental

health status, which has been shown to be a relevant CVD risk factor [58, 59]. These and other

non-laboratory risk factors could be collected by means of a questionnaire or passively

deduced using data analytics from data sources such as GPS, calendar and sensors [26, 60]

from e.g. smartphones, smartwatches and fitness trackers.

Table 4. Model performance when trained on Whites and tested on non-Whites.

Model AUROC on generalizability experiment Previous AUROC results

Logistic Regression with L1 regularization 75.86% 75.44%

XGBoost 76.26% 75.73%

https://doi.org/10.1371/journal.pone.0263940.t004

Fig 6. AUROC of logistic regression with L1 regularization and XGBoost when trained on Whites and tested on

non-Whites.

https://doi.org/10.1371/journal.pone.0263940.g006
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Additionally, our best performing models, XGBoost and logistic regression, showed mar-

ginal differences when trained and tested on particular sub-populations, which is indicative of

good generalizability to other ethnicities.

As there was little performance difference between the best performing models, we primar-

ily discuss the simplest model, logistic regression with L1 regularization. This model has the

inherent benefit of offering reasoning for its predictions through analyzing the learned coeffi-

cients for every risk factor and having feature selection performed by the L1 regularization.

Table 5. Relative regression feature weights of 25 most informative risk factors from best logistic regression

model.

Feature number Risk factor name Relative informative value descending

1 Age 0.0938

2 Biological sex 0.0485

3 Systolic blood pressure 0.0284

4 Social visits: About once a week 0.0277

5 Social visits: 2–4 times a week 0.0273

6 Walking pace: Brisk pace 0.0268

7 Total cholesterol HDL ratio 0.0267

8 Total cholesterol 0.0239

9 LDL cholesterol 0.0235

10 Familial CVD 0.0218

11 Social visits: About once a month 0.0203

12 Sleep problems: Not at all 0.0188

13 Alcohol with meals: Yes 0.0184

14 Smoking 0.0184

15 Social visits: Almost daily 0.0178

16 No. of cigarettes daily 0.0163

17 Hypertension 0.0160

18 Walking pace: Steady average pace 0.0154

19 Waist circumference 0.0150

20 Alcohol with meals: It varies 0.0141

21 Social visits: Once every few months 0.0139

22 Overall health rating: Excellent 0.0134

23 Other Heart Arrhythmias 0.0129

24 Overall health rating: Poor 0.0123

25 Sleep problems: Several days 0.0122

https://doi.org/10.1371/journal.pone.0263940.t005

Table 6. Categorization of the 25 most informative risk factors into categories from the best logistic regression

model.

Category Risk Factors

Demographics Age, Biological sex

Biomarkers Waist circumference, systolic blood pressure, total cholesterol, LDL cholesterol, total cholesterol

HDL ratio

Comorbidities Hypertension, sleep problems: not at all, sleep problems: several days, other heart arrhythmias

Family History Familial CVD

Lifestyle

Factors

Social visits: about once/week, social visits: 2–4 times/week, social visits: about once/month, social

visits: almost daily, social visits: once every few months, smoking, no. of cigarettes daily, alcohol

with meals: yes, alcohol with meals: it varies, walking pace: steady average pace, walking pace:

Brisk pace, overall health rating: excellent, overall health rating: poor

https://doi.org/10.1371/journal.pone.0263940.t006
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With L1 regularization, less important risk factors’ coefficients are minimized and also set to

zero, which then leads to entire removal of these features from the model, and fewer risk fac-

tors needed for an accurate prediction.

Using iterative feature elimination, we identified a subset of the 25 most relevant risk factors

providing a similar performance compared to using all 203 risk factors. The 25 most relevant

risk factors are distributed across five different categories, suggesting that different biological

layers contribute to the risk of atherosclerotic CVD. This result confirms that it is insufficient

to assess only one biological layer for accurate risk prediction, supporting our initial model

development approach [61]. Our approach takes into account multiple biological layers by

using multi-omics as well as clinical and lifestyle data with the aim to capture all potential

interactions or correlations detected between molecules in different biological layers [22].

Multi-omics data generated for the same set of samples can provide useful insights into the

interaction of biological information at multiple layers and thus can help in understanding the

mechanisms underlying the complex biological condition of interest.

In our model, the lifestyle category contributed the most risk factors, suggesting that accu-

rate prediction relies upon continuous daily lifestyle data and not just periodic snapshots of

clinical data. The causal relationships between the risk factors considered in our model and

atherosclerotic CVDs have been demonstrated by other studies [11, 19, 21, 25].

Innovative approaches are needed in order to tackle the increasing prevalence and mortality

of CVD-related diseases [2], and the associated healthcare systems’ financial burdens. This is

particularly true in low and middle income countries where CVD prevalence has also been

increasing and is expected to increase as a consequence of an aging and growing population

[2]. Our atherosclerotic CVD prediction model has the potential to support healthcare systems

by identifying more people at risk earlier and more accurately than currently available models

and intervening with personalized behavior change programs. Currently available models, like

Framingham and QRisk3, have limited predictive capability for atherosclerotic CVDs as they

were not trained on all of them and do not provide actionable results.

There is potential for novel disruptive approaches to affordably improve CVD outcomes.

Areas where this may have an impact is in novel approaches to screening, lifestyle coaching

and prevention [2]. Screening will become more accessible and widespread by more (near-)

medical-grade sensors being integrated into smartphones and smartwatches, enabling contin-

uous monitoring of relevant behavioral CVD risk factors, as well as biomarkers such as heart

rate, blood pressure and blood glucose. By gathering a wider spectrum of relevant risk factors

for cardiovascular disease automatically and continuously, an ongoing and personalized car-

diovascular disease risk prediction could be enabled. Through linking personalized informa-

tion on an individual’s CVD risk with app-based programs for sustained behavioral

modification, it may be possible to lower the incidence and mortality of CVDs [62]. Combined

with a companion smartphone-based app, an AI or healthcare provider-generated personal-

ized intervention program could be provided and targeted at those people who need it the

most.

A system and method gathering personal health data and predicting an individual’s athero-

sclerotic CVD risk is handling sensitive health data (e.g. laboratory values) and must adhere to

local regulations and best practices in data transfer, processing and storage to ensure data pri-

vacy and security.

Many studies have shown that digital health interventions are cost effective for managing

CVD (for a review see [63]). One report found that a community-based prevention program

could have a mean return on investment (ROI) on medical cost savings of $5.60 for every $1

spent within a 5 year timeframe by improving physical activity and nutrition and reducing

tobacco usage [64]. A review of 11 in-home cardiac rehabilitation programs for the secondary

PLOS ONE Actionable absolute risk prediction of atherosclerotic cardiovascular disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0263940 February 11, 2022 14 / 20

https://doi.org/10.1371/journal.pone.0263940


prevention of CVD found that social support, goal setting, monitoring, credible instructions

and literature resources are all effective behavior change techniques to reduce behavioral risk

factors for CVD [65].

The improvement achieved by our models might be partially attributed to being trained

and assessed on the UK Biobank dataset, whereas the baseline Framingham model was derived

from a different population. The population and many of the data sources used in the QRisk3

model are similar, being the general UK population and using their GP, hospital and mortality

records. However, our risk model generation approach and QRisk3’s approach were designed

with different aims and objectives and the modelling strategy was different. For these reasons,

direct comparison between the models is limited. Notable differences between the approaches

include a more limited set of risk factors included in Framingham and QRisk3’s and a focused

and wider range of atherosclerotic CVDs included in our approach.

The results from our generalizability sub-analysis indicate that our XGB and logistic regres-

sion models might generalize well to other ethnicities and do not overfit to our cohort, how-

ever, this needs to be further evaluated with more data from diverse ethnicities.

Our results show that our models have improved performance over the baseline models

Framingham and QRisk3 (Table 2). This is because the selection of the appropriate disease

modelling approach, classifiers and careful tuning of the model’s hyperparameters are crucial

steps for realizing the potential benefits of ML. Our pipeline automates some of these steps

which makes the tuning and discovery of new disease risk models easily accessible for clinical

research. Our prospective cohort modelling approach, which is rooted in precision medicine,

is the first to generate an atherosclerotic CVD absolute risk prediction tool based upon a com-

plete definition of atherosclerotic CVD outcomes and a holistic set of risk factors.

Limitations

The UK Biobank only admitted participants for their initial signup from the ages 40 and up.

This might limit the applicability of the risk score for younger populations and further tests

with data from younger populations need to be conducted.

There are many missing data values related to the potential risk factors for many partici-

pants. Having more unimputed data of relevant CVD risk factors could improve the predictive

performance of all our benchmarked classifiers and could also lead to changes in the classifier

ranking from Table 2 and relative risk factor importances in Table 5. However, the use of

imputed data is highly unlikely to have an impact on our conclusion that a holistic set of risk

factors and an exhaustive atherosclerotic CVD outcome definition could improve atheroscle-

rotic and actionable CVD risk prediction.

An additional limitation of our study is that the UK Biobank dataset consists of participants

of predominantly (88%) British ethnicity, with an even larger portion having a White back-

ground (91%). Therefore, further assessments of the influence of the ethnicity predictor need

to be carried out to enable a generalizable tool. Previous work in this area indicates that the

development of plaques seems to be independent of ethnicity [21].

A further limitation of this UK-focused dataset is that socio-economic and other environ-

mental factors differ between countries. This is another potential bias that needs to be further

evaluated with datasets from other countries with different socio-economic characteristics.

Disease risk prediction models which include subjective non-laboratory risk factors, such

as the self-reported health rating and usual walking pace, should be cautiously evaluated to

minimize self-reported bias. These risk factors have been found to be good predictors of over-

all CVD risk in another study using UK Biobank data [29].
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Conclusions

We benchmarked multiple classifiers to predict an individual’s 10-year risk of developing an

atherosclerotic CVD, using a holistic set of risk factors and a specific definition of atheroscle-

rotic CVDs. Our reduced logistic regression with L1 regularization classifier, a simple and

interpretable model, is amongst our best prediction models, includes actionable lifestyle fac-

tors, has great predictive power and requires 13 unique features. Our experiments showed that

a two feature-questionnaire is as accurate as the Framingham models and a 16 feature-ques-

tionnaire is as accurate as QRisk3 for 10-year atherosclerotic CVD risk prediction. Both pre-

diction models, XGBoost and logistic regression, generalize well to non-White people, which

might indicate that our models generalize well to other (western) countries. Framingham and

QRisk3, which are well established and validated absolute risk prediction models, do not per-

form as well on predicting individuals’ 10-year risk of developing an atherosclerotic CVD.

With our logistic regression model, we created a promising new interpretable, actionable and

accurate risk prediction tool that could assist individuals and public health in CVD risk

reduction.
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