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Abstract

Few if any natural resource systems are completely understood and fully observed. Instead,

there almost always is uncertainty about the way a system works and its status at any given

time, which can limit effective management. A natural approach to uncertainty is to allocate

time and effort to the collection of additional data, on the reasonable assumption that more

information will facilitate better understanding and lead to better management. But the col-

lection of more data, either through observation or investigation, requires time and effort that

often can be put to other conservation activities. An important question is whether the use of

limited resources to improve understanding is justified by the resulting potential for improved

management. In this paper we address directly a change in value from new information col-

lected through investigation. We frame the value of information in terms of learning through

the management process itself, as well as learning through investigations that are external

to the management process but add to our base of understanding. We provide a conceptual

framework and metrics for this issue, and illustrate them with examples involving Florida

scrub-jays (Aphelocoma coerulescens).

Introduction

Few if any natural resource systems are completely understood and fully observed. Instead, an

almost universal situation is for there to be uncertainty about the way a system works and its

status at any given time, which can limit effective management (Williams and Johnson [1]). A

natural approach to uncertainty is to allocate time and effort to the collection of data, on the

assumption that more information will facilitate better understanding and lead to better man-

agement. But the collection of more data, either through observation or investigation, requires

time and effort that could be put to other activities like conservation on the ground. An impor-

tant question is whether the use of limited resources to improve understanding is justified by

the potential to improve management (Doremus [2]). This question is often asked by manag-

ers but only infrequently if ever answered satisfactorily, though some authors (see, e.g.,

-MaAllister and Pikitch [3] and McAllister and Kirkwood [4]), have used expected resource

valuations to contrast different monitoring strategies.
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There is by now a well-developed theory and approach for the assessment of the value of infor-

mation in decision making. Raiffa and Schlaifer [5] provided one of the first seminal treatments

for the value of information (VOI), coining the name and developing many of its key expressions.

Since then many publications have offered descriptions of the value of information, (e.g., Quirk

[6], Dakins et al. [7], Yakota and Thompson [8–9], Canessa et al. [10], Williams and Johnson

[11]). Keisler et al. [12] provide a comprehensive review of applications of value of information

analyses. Several metrics for the value of information are recognized (Yakota and Thompson [8]):

• The expected value of perfect information utilizes an average of optimal model-specific val-

ues, averaged over the model likelihoods. The metric consists of this average net of the opti-

mal value in the presence of process uncertainty.

• The expected value of partial information concerns the value added by eliminating uncer-

tainty from a single source, assuming there is more than one source of uncertainty.

• Finally, the expected value of sample information expresses the potential gain in value from

the collection of less than perfect information, using a comparison of optimal valuation with

additional information against valuation in its absence. A general framework for the value of

information that includes perfect, partial and sample information in sequential decision

making for natural resources is described by Williams et al. [13].

The expected value of perfect information has been used in a growing number of applica-

tions in natural resource management (e.g., Conroy at al. [14], Mäntyniemi et al. [15], Wil-

liams et al. [13]), and several applications address the expected value of partial information

(e.g., Moore and Runge [16], Johnson et al. [17], Maxwell et al. [18], and Johnson et al. [19]).

On the other hand, the number of examples addressing the expected value of sample informa-

tion is more restricted (e.g., Runge et al. [20], Moore et al. [21], Grantham et al. [22]). Few

VOI applications in natural resources deal with dynamic resource systems, in which actions

are dependent both on the state of the system and the degree of uncertainty in system dynam-

ics (e.g., Shea et al. [23], Williams and Johnson [11,24], and Moore et al. [21]). Somewhat sur-

prisingly, there are almost no examples for dynamic systems that address the expected value of

sample information, even though many resource problems are fundamentally dynamic and a

typical monitoring situation involves production of less than perfect information.

In this article we address a change in value from sample information collected during the

investigation in dynamic decision making. We frame the value of information in terms of

learning through the management process itself, as well as learning through investigations that

are external to management but add to our base of understanding. Our objective is to extend

valuation to include dynamic decision making with sources of data that are both internal and

external to the management process. The framework developed here goes beyond current

treatments of the value of sample information in the literature, in its emphasis on management

and learning about dynamic natural resources.

In what follows the value of information is described in a context of sequential decision

making under uncertainty, with future resource conditions and future understanding poten-

tially influenced by current decisions. We focus specifically on structural uncertainty, that is,

uncertainty about the processes that control resource dynamics. Partial observability (Williams

[25]), another recognized and important source of uncertainty, can also be addressed by con-

sidering additional resources to improve estimates of resource status. However, we emphasize

structural uncertainty in this paper, and point the reader to expositions in the literature on val-

uation under partial observability (Fackler [26], Williams and Johnson [24] and references

therein). We provide two examples of the value of sample information based on the manage-

ment of habitat for the Florida scrub-jay (Aphelocoma coerulescens).

Value of sample information in structurally uncertain resource systems
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Decisions, returns, and uncertainty

Among other things the value associated with sequential decision making under process or

structural uncertainty depends on the amount of that uncertainty. With greater understanding

one can make more informed (and higher valued) decisions; with less understanding progress

toward achieving resource goals and objectives is limited.

Here we assume a managed natural resource (e.g., a landscape, an amphibian population, a

butterfly colony, the number of vegetative organism in an area) that is subject to only partial

understanding. Uncertainty about how the resource system works is expressed by means of

different hypotheses (models) about the system and its responses to management actions.

Each model has a measurable likelihood of being the most appropriate, based on current infor-

mation and understanding (Williams et al. [27]).

We also assume a range of different management actions (e.g., different seeding mixes, har-

vest strategies, water control regimes, geographic locations), with time-specific actions influ-

encing the transition of the resource from its current state to a future state, and generating

returns that provide a basis for comparing different management actions. Once an action is

taken and a transition is made to a new state, another action is taken, and another return is

generated at that time. The trajectory of anticipated returns depends on which hypothesis

(model) is most appropriate, and therefore inherits the model uncertainty.

The challenge in such a situation is to recognize and measure the change in value resulting

from an increase in information and understanding. A broadly accepted measure of change is

given by a comparison of optimal valuation produced with additional information, against

optimal valuation in its absence (Raiffa and Schlaifer [5]). An understanding of the change in

value enables assessment of cost-effectiveness in targeting uncertainty with additional research

or monitoring.

Decision making under structural uncertainty

A framework for the expected value of sample information under dynamic decision making

applies to resources that are subject to management through time. Both resource status and

management interventions are seen as fluctuating through time, with the system state and

action at time t influencing system behavior going forward. Here we summarize the compo-

nents of learning-based management under structural uncertainty. The necessary notation is

highlighted in Table (1).

System dynamics. State transitions are described in terms of Markov decision processes

(MDP) (Puterman [28], Williams et al. [27]): If xt and at are the state and action at a particular

Table 1. Notation used to characterize dynamic decision making and valuation under structural uncertainty.

t Time index for a range of times constituting the time frame. The index is assumed here to take positive

integer values, from some time t0 through time T that may be infinite.

xt System state (e.g., size, density, spatial coverage). Because the system is assumed to change through time its

state is time-specific.

k Model index for k = 1,. . .,K models representing different hypotheses about system dynamics.

q
t

Vector (qt(1),qt(2),. . .,qt(K)) of model-specific probabilities, with qt(k) the probability that model k best

represents the system at time t.
at Action taken as a result of decision making. Because they are taken through time, actions are time-indexed.

At Policy that specifies a particular action for each system state and model state at each time starting at time t
in the time frame.

R(at,

xt)

Return corresponding to action at and system state xt.

https://doi.org/10.1371/journal.pone.0199326.t001
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time t and xt+1 is the state at the next time, then the probability of transition from xt to xt+1 is P
(xt+1 | xt,at).

Under structural uncertainty the decision process is not completely understood, i.e., the

transition probabilities in P(xt+1 | xt,at) are uncertain (Williams [29], Williams and Brown

[30]). Different Markovian models Pk(xt+1 | xt,at) are used along with model probabilities qt(k)

to account for structural uncertainty. The model state q
t
¼ ðqtð1Þ; qtð2Þ; . . . ; qtðKÞÞ evolves

through time as information accumulates via monitoring, and an average of model-specific

transition probabilities based on q
t

produces model-averaged transition probabilities

�Pðxtþ1jxt; at; qt
Þ ¼

X

k
qtðkÞPkðxtþ1jxt; atÞ:

Decision making. A policy At of actions over time frame {t,. . .,T} consists of actions

Aðxt; qt
Þ for each system and model state at each time t in the time frame. Policy At can be

characterized sequentially by action at at time t, followed thereafter by the remainder At+1 of

the policy over {t + 1,. . .,T}:

At ¼ fAðxt; qt
Þ;Atþ1g ¼ fat;Atþ1g:

Propagating uncertainty. The dynamics of the model state are driven by information

produced over time that is either internal or external to management. The source of informa-

tion for internal updating comes from within the management process itself, in the spirit of

adaptive management (Nichols and Williams [31]). Bayes’ theorem (Lee [32]) can be used for

updating uncertainty, based on system state transitions from xt to xt+1:

qtþ1ðkÞ ¼
qtðkÞPkðxtþ1jxt; atÞ

�Pðxtþ1jxt; at; qt
Þ
: ð1Þ

Uncertainty also can be updated with information from outside the management process,

that is, from experimentation or tracking that is effectively independent of decision making

(Williams [33]). In this case resource data zt are acquired through external investigation, with

Bayes’ theorem again used for updating uncertainty based on model-specific data distributions:

q0tðkÞ ¼
qtðkÞPkðztÞX

k
qtðkÞPkðztÞ

¼
qtðkÞPkðztÞ

�Pðztjqt
Þ
:

ð2Þ

Uncertainty updating with both sources of information factors into the expected value of

sample information with dynamic decision making.

Valuation. Strategy valuation for this problem is based on the accrual of returns R(at,xt)

through time, with each return incorporating the costs and benefits corresponding to action at

when the system is in state xt. A value function VðAtjxt; qt
Þ for decision making aggregates

returns starting at time t:

VðAtjxt; qt
Þ ¼ E

XT

t¼t
Rðat; xtÞjxt; qt

h i

; ð3Þ

where the expectation accounts for stochastic transitions among states as well as the structural

uncertainty represented by multiple models and their likelihoods. Step-wise updating of the

Value of sample information in structurally uncertain resource systems
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value function is given by

VðAtjxt; qt
Þ ¼ Rðat; xtÞ þ

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞVðAtþ1jxtþ1; qtþ1

Þ: ð4Þ

The expression VðAtjxt; qt
Þ serves as a value or objective function by which to compare and

contrast the effectiveness of different management strategies.

Learning-based management. Decision making with internal learning as described

above characterizes an adaptive approach to management (Williams [29]), whereby adjust-

ments to decision making occur as understanding improves with the ultimate goal of

improved management (Walters [34]). Adaptive management is promoted through a sequence

of (i) decision making and taking actions, (ii) followed by monitoring of system responses, (iii)
followed by assessment of data, (iv) followed by the integration of what is learned into future

decision making (Fig 1).

Adaptive management can be either active or passive, with active adaptive management

incorporating the potential for learning directly into the process of decision making (Williams

[35]). Optimal decision making is given by

V½xt; qt
� ¼ max

at

n
Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞV½xtþ1; qtþ1

�
o
; ð5Þ

where the updated model state q
tþ1

in V½xtþ1; qtþ1
� indicates the use of learning in identifica-

tion of strategy (see Appendix).

On the other hand, passive adaptive management can be described in terms of the absence

of an explicit accounting of learning in the choice of strategy (Williams [35]):

V½xt; qt
� ¼ max

at
fRðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞV½xtþ1; qt

�g; ð6Þ

where the prior model state q
t

in V½xtþ1; qt
� indicates an absence of learning in the identifica-

tion of decisions (see Appendix). In the development below, the expected value of sample

information is described in terms of both active and passive adaptive management.

Combining internal and external learning in EVSI
Under sequential decision making, an approach to the expected value of sample information is

to include information internal to the management process as above, along with experimen-

tally generated information from outside the management process. The value obtained can

Fig 1. Adaptive management, with a repeated sequencing through time of decision making and taking actions; followed by monitoring of system responses;

followed by assessment of data; followed by the integration of what is learned into future decision making.

https://doi.org/10.1371/journal.pone.0199326.g001
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then be compared with the value produced with internal learning only, to assess the net benefit

of the experimentation.

The learning process in this situation involves updating the prior model state q
t

to q 0
t

with

external information as in Eq (2), and then using the update in iterative valuation as in Eq (5).

In combination, external and internal learning can accelerate the rate of learning, by allowing

the model state to be updated prior to its use in optimal valuation. Preposterior updating (Ber-

ger [36]) with probabilities for the data zt is given by

X

zt
�Pðztjqt

ÞV½xt; q
0

t
� ¼

X

zt
�Pðztjqt

Þmax
at

n
Rðat; xtÞ þ

X

x0tþ1

�Pðxtþ1jxt; at; q
0

t
ÞV½xtþ1; qtþ1

�
o
ð7Þ

(see Appendix), with the posterior model state q
tþ1

based on the prior model state q0t. Prepos-

terior updating provides a measurement of value before data zt are known and actions are

taken. The expected value of sample information is then expressed as the difference

X

zt
�Pðztjqt

ÞV½xt; q
0

t
� � V½xt; qt

�; ð8Þ

where q
t

is updated to q 0
t

based on data zt with distribution �Pðztjqt
Þ ¼

X

k
qtðkÞPkðztÞ (see Eq

(2)). The first term in Eq (8) is an average optimal valuation from Eq (7) resulting from the

updating of the model state with external data. The second term is an optimal valuation based

on the current system and model state. The difference expresses the marginal value expected

with new sample information. EVSI can be seen to be state-dependent, in that the value given

by the comparison in Eq (8) is conditional on the particular combination ðxt; qt
Þ of system and

model states. That is, different combinations of system and model states can produce different

values.

The use of passive adaptive management in EVSI proceeds in much the same way, except

that the updating of model state in the decision making process involves the use of q 0
t

rather

than q
tþ1

in the valuation:

X

zt
�Pðztjqt

ÞV½xt; q
0

t
� ¼

X

z0
�Pðztjqt

Þmax
at

n
Rðat; xtÞ þ

X

xtþ1

�Pðxtþ1jxt; at; q
0

t
ÞV½xt; q

0

t
�
o
: ð9Þ

As above, the difference between active and passive adaptive management is the incorpo-

ration of anticipated learning in active adaptive management, as reflected in the updated

model state q
tþ1

in the value term V½xtþ1; qtþ1
� in Eq (7).

A simple illustration of the use of internal and external information involves the adaptive

management on provincial lands of a particular ecological type, and an investigation under

fixed management is also being conducted on a nearby federal conservation area of the same

type. Assuming that monitoring and model state updating with Eq (2) occur somewhat earlier

on the federal lands, information from the updating can be made available to inform decision

making on the provincial lands. If the resource situation at the 2 locations is similar in the bio-

logical structures and environmental drivers, then folding what is learned on the federal lands

into learning-based decision making on the provincial lands (Eqs (5) and (6)) should increase

the rate of learning on the provincial lands, and lead to a more rapid improvement in their

management. EVSI at any point in the decision process is simply the comparison of an average

valuation
X

zt
�Pðztjqt

ÞV½xt; q
0

t
� that accounts for new information from the federal lands,

against the valuation V½xt; qt
� in the absence of any new information from that source. Using

EVSI allows one to recognize the potential for additional value to provincial land management

by monitoring on the federal lands.

Value of sample information in structurally uncertain resource systems
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Example: Habitat management for the Florida scrub-jay

The Florida scrub-jay is an endemic species that is designated as threatened under the En-

dangered Species Act (Root [37], Stith et al. [38]). Scrub-jays are restricted to Florida scrub

(hereafter, “scrub”), which is a rare habitat characterized by evergreen, xeromorphic shrubs

including oaks, repent palms (Serenoa repens, Sabal etonia), and ericaceous shrubs (Lyonia
spp., Vaccinium spp.) (Foster and Schmalzer [39]). Scrub is maintained by frequent fire, and

landscape fragmentation and fire suppression have resulted in many scrub communities that

are no longer capable of supporting scrub-jay populations (Breininger and Carter [40]). Pre-

scribed burning has thus become the primary management tool in reserves where the viability

of scrub-jays and other scrub species is an important objective.

Of the many scrub attributes affecting scrub-jay demography (Breininger et al. [41]), per-

haps the most important is scrub height (Breininger et al. [42], Breininger and Carter [40]).

Scrub height is classified as short (<120 cm), optimal (120–170 cm), or tall-mix (>170 cm)

(Breininger and Carter [40]). Short and optimal height scrub are further classified as open

(>50% of the scrub containing bare ground) or closed. Optimal-height scrub acts as a reliable

source habitat for jays, whereas the other classes always act as demographic sinks (Breininger

and Oddy [43]). The goal of a manager is to maximize the cumulative demographic perfor-

mance of scrub-jays over time, net the cost of conducting prescribed burns.

For the purposes of this example, we assume a management unit that is homogenous, with

one-year transition probabilities for each scrub class along with do-nothing and prescribed-

burn management actions (S1 File). We also allow for an intensive burn to ensure that the

entire management unit is effectively burned. Our null model posits that routine and intensive

burns are equally effective (or ineffective) at setting back succession, though an intensive burn

is more expensive due to the need to guard against greater threats to infrastructure and public

safety. Thus, an intensive burn is never optimal under the null model. The alternative model

posits that intensive burns are more effective at setting back succession than routine burns,

and thus would be used when their greater short-term cost is offset by greater demographic

performance of scrub-jays over the long term. The optimal, actively adaptive policy is depicted

in Fig 2, in which the optimal management action is a function of both scrub state (i.e., system

state) and the probability of the null model (i.e., model state). The optimal action can be an

intensive burn as long as there is at least some probability (� 0.002) of the alternative model

being correct. But even in those cases, an intensive (and more expensive) burn is only optimal

for the most fire-resistant states (short-closed, optimal-closed, and tall-mix). State and action-

specific transition probabilities and returns, and computational details for the actively adaptive

policy are provided in Supporting Information (S1 File).

In this example we assume that data external to the management process are available, and

we wish to know the contribution of the external data for improving the management process.

Suppose a researcher has the ability to observe the effect of an intensive burn at another site

prior to decision making for the management unit in question. We first calculated the

Expected Value of Perfect Information (EVPI; Johnson and Williams [44]) (see Appendix),

and then calculated EVSI for each combination of scrub state and probability of the null mode

according to Eq (9). Some authors (e.g., Walters [34], Moore and McCarthy [45]) have

observed that EVPI is often low in practice, which is the case in our scrub-jay example (Fig 3).

Expressed as a percentage gain in expected objective value, the value of eliminating model

uncertainty is always < 1%. This can actually be good news for a manager, in that there is little

incentive to eliminate model uncertainty; a management policy based on an average model

may be sufficient. As expected, values of EVPI are considerably higher than those of EVSI, and

are at a maximum in the interior of the model state. EVPI is uniformly higher for tall-mix,

Value of sample information in structurally uncertain resource systems
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which is the scrub state most resistant to fire. In contrast, EVSI is uniformly higher for short-

closed, suggesting that experimenting with intensive burns in this scrub state would provide

the greatest short-term gain in management performance. However, the advantage of observ-

ing a single intensive burn that is external to the management process provides little advantage

because both the null and alternative models have broad overlap in their transition probabili-

ties (see Supporting Information), and thus model discrimination is very difficult.

Constraints on the sequencing of monitoring

A somewhat different approach to EVSI with sequential decision making involves monitoring

that can be less frequent than decision making. Consider resource management in which

actions are chosen annually, whereas monitoring can be conducted either biennially or annu-

ally. Under these conditions one can meaningfully assess the value of the additional informa-

tion produced by annual rather than biennial monitoring. The question is how much value

would be added.

Fig 2. The optimal, actively adaptive management policy to maximize demographic performance of Florida scrub-jays.

Scrub states are: (1) short-open; (2) short-closed; (3) optimal-open; (4) optimal-closed; and (5) tall-mix. Pnull is the probability

of the null model, which posits that an intensive burn is no more effective at restoring optimal height scrub than a routine

burn. An intensive burn can be optimal for short-closed, optimal-closed, and tall mix scrub states, but only if the alternative

model, which assumes an intensive burn is more effective than a routine burn, has a probability� 0.002 (i.e,

Pnull = 1–0.002 = 0.998, or near certainty about the null model).

https://doi.org/10.1371/journal.pone.0199326.g002
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To determine the value produced by the additional monitoring, we compare valuation with

annual versus biennial monitoring. In any year t, valuation for annual monitoring is given by

Eq (4),

VðAtjxt; qt
Þ ¼ Rðat; xtÞ þ

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞVðAtþ1jxtþ1; qtþ1

Þ;

with optimal valuation shown in Eq (5):

V½xt; qt
� ¼ max

at

n
Rðat; xtÞ þ l

X

xt

�Pðxtþ1jxt; at; qt
ÞV½xtþ1; qtþ1

�
o
:

Because system status is observed every year, valuation in successive years t and t+1 have

the same form, with the value function for t+1 replicating that for year t simply by increment-

ing the time index by 1:

VðAtþ1jxtþ1; qtþ1
Þ ¼ Rðatþ1; xtþ1Þ þ l

X

xtþ2

�Pðxtþ2jxtþ1; atþ1; qtþ1
ÞVðAtþ2jxtþ2; qtþ2

Þ

Fig 3. Left panel: The Expected Value of Perfect Information (EVPI) for eliminating uncertainty about the most appropriate

model governing the effects of fire on habitat for Florida scrub-jays. Right panel: The Expected Value of Sample Information

(EVSI) resulting from the use of an experimental, intensive burn. Scrub states are: (1) short-open; (2) short-closed; (3)

optimal-open; (4) optimal-closed; and (5) tall-mix. Pnull is the probability of the null model, which posits that an intensive

burn is no more effective at restoring optimal height scrub than a routine burn.

https://doi.org/10.1371/journal.pone.0199326.g003
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and

V½xtþ1; qtþ1
� ¼ max

atþ1

n
Rðatþ1; xtþ1Þ þ l

X

xtþ1

�Pðxtþ2jxtþ1; atþ1; qtþ1
ÞV½xtþ2; qtþ2

�
o
:

The situation is somewhat different for biennial monitoring, where the system state is

observed in a given year t, not observed in the subsequent year t+1, observed again in year t+2,

and so on. Because the observed states xt to xt+2 can be combined with model-specific transi-

tion probabilities to determine model state q
tþ2

by Bayes’ theorem (Williams and Johnson

2017), one to compute a 2-step value function

VðAtjxt; qt
Þ ¼ Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
Þ�

n
Rðatþ1; xtþ1Þ þ l

X

xtþ2

�Pðxtþ2jxtþ1; atþ1; qtþ1
ÞVðAtþ2jxtþ2; qtþ2

Þ
o
;
ð10Þ

which in turn can be maximized over At = {at,at+1,At+2} to produce V½xt; qt
� for each combina-

tion ðxt; qt
Þ. For a year t in which biennial monitoring occurs, the valuation in Eq (10) can be

shown to be identical to valuation in Eq (4) for annual monitoring (Williams and Johnson

[46]). It follows that there is no difference in value between the monitoring scenarios, i.e., no

value is added in switching from biennial to annual monitoring in a year t in which biennial

monitoring occurs.

On the other hand, for year t+1 when biennial monitoring does not occur, there is a differ-

ence in the valuations for annual and biennial monitoring, because xt+1 and q
tþ1

are not identi-

fied in the latter scenario. However, xt+1 and q
tþ1

are related stochastically to xt and q
t
, which

are known through monitoring. Averaging over the transition probabilities �Pðxtþ1jxt; at; qt
Þ

produces a valuation for year t+1,

�V ðAtþ1jxt; qt
; atÞ ¼

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞVðAtþ1jxtþ1; qtþ1

Þ; ð11Þ

and using a�t , a�tþ1
and A�tþ2

from the optimization of VðAtjxt; qt
Þ in Eq (10) produces the opti-

mal valuation

�V ½xt; qt
; a�t � ¼

X

xtþ1

�Pðxtþ1jxt; a
�

t ; qt
ÞV½xtþ1; qtþ1

� ð12Þ

for year t+1 (Williams and Johnson [46]). The change in valuation for the 2 monitoring sce-

narios is therefore given by a comparison of the valuation V½xtþ1; qtþ1
� for annual monitoring,

and the average valuation �V ½xt; qt
; a�t � for biennial monitoring:

V½xtþ1; qtþ1
� � �V ½xt; qt

; a�t �: ð13Þ

This measure of value, which is directly related to an increase in the frequency of monitor-

ing, can prove useful to managers in determining whether to reduce annual to biennial moni-

toring, or to expand biennial to annual monitoring.

Example: Habitat monitoring for the Florida scrub-jay

The Florida scrub-jay management problem described above can be used to illustrate the

effect of an increased monitoring frequency. We calculated actively adaptive management pol-

icies for annual and biennial monitoring schemes (Table 2). The marginal value in Eq (13) var-

ies depending on system and model state; in fact it is negative for some states (McDonald and

Smith [47]). Because an average of the optimal values V½xtþ1; qtþ1
� is compared against an
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PLOS ONE | https://doi.org/10.1371/journal.pone.0199326 June 29, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0199326


optimal value for one particular state xt+1 that may be included in that average, Eq (13) may be

negative or positive, depending on both the transition probabilities �Pðxtþ1jxt; a�t ; qt
Þ and the

associated optimal valuations in Eq (12). Consider, for example, a system and model state

combination ðxtþ1; qtþ1
Þ that can be reached from ðxt; qt

Þ. If V½xtþ1; qtþ1
� is large but the corre-

sponding probability �Pðxtþ1jxt; at; qt
Þ is small, the comparison in Eq (13) may be positive. On

the other hand, a small value V½xtþ1; qtþ1
� coupled with a small probability �Pðxtþ1jxt; at; qt

Þ

may produce a negative value.

More data from annual monitoring should produce increased value on average over the

long term, a result borne out from long-term simulations that account for the likelihood of

occurrence for different states (S1 Fig). Nonetheless, the advantage of annual monitoring over

biennial monitoring appears to be very small in this example, probably because of the strong

relationship between states in successive years. This confirms the intuitive result that there is

little to be gained from the frequent monitoring of slowing changing ecosystems.

Discussion

There is a long record of advances in understanding the processes influencing resource

dynamics, in modeling resource behaviors, in the recognition of resource patterns, and in

methodologies for resource monitoring and estimation. On the other hand, decision making,

including a framework for valuation, continues to lag behind natural resources science, despite

the growth in operations research and decision science (Schwartz et al. [48]). A technical

framework is needed for the evaluation of costs and consequences of resource decisions, so as

to allow a comparative assessment of alternative strategies. With such a framework it then

becomes possible to assess the limitations of uncertainty on decision making, and the value of

eliminating that uncertainty.

Table 2. Optimal actions (a�) and cumulative values (V) over 2000 time steps for managing habitat for Florida scrub-jays under annual and biennial monitoring

schemes. The Expected Value of Sample Information (EVSI) is the difference in expected performance between the two monitoring schemes. Scrub states xt are: (1) short-

open; (2) short-closed; (3) optimal-open; (4) optimal-closed; and (5) tall-mix. Model state qt is the probability of the null model, which posits that an intensive burn is no

more effective at restoring optimal height scrub than a routine burn. Optimal actions a� are: (1) do nothing; (2) routine burn; and (3) intensive burn. Sometimes the bienn-

ual-monitoring policy a�tþ1
jxt; qt; a�t has actions that differ from those for the annual-monitoring policy a�t because in the t+1 years monitoring information is unavailable

in the former policy and actions have to be conditioned on the system state, model state, and action for the previous year t.

Scrub state

xt
Model state

qt
Annual monitoring Biennial monitoring EVSI

a�t V[xt,qt] a�tþ1jxt ; qt ; a�t �V ½xt ; qt ; a�t �
1 0.0 1 763.23 1 768.45 -0.22

1 0.5 2 702.35 3 703.41 -1.06

1 1.0 2 640.56 2 640.87 -0.31

2 0.0 1 768.19 3 768.87 -0.68

2 0.5 3 702.35 3 705.11 -2.77

2 1.0 1 640.46 2 640.94 -0.47

3 0.0 1 769.51 3 768.93 0.58

3 0.5 1 703.53 1 702.82 0.71

3 1.0 1 641.78 2 641.08 0.70

4 0.0 3 768.60 1 768.36 0.24

4 0.5 3 702.57 3 704.53 -1.96

4 1.0 2 640.74 2 640.43 0.31

5 0.0 3 766.48 3 766.74 -0.26

5 0.5 3 700.22 3 702.77 -2.55

5 1.0 2 638.71 2 638.85 -0.13

https://doi.org/10.1371/journal.pone.0199326.t002
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In this paper we offer an assessment framework for strategy valuation that builds on adap-

tive management and the value of information. The general goal is to facilitate the assessment

of monitoring in the decision making process, through the consideration of additional value

accruing to additional sampling information. The expected value of sample information serves

as a metric by which managers can explicitly compare the benefit of extended data collection

against associated opportunity and other costs, thereby facilitating smart decision making

based on the efficiency of the additional effort. Advances have been made in recent years in

the value of information with one-time decision making. In this paper we expand on that

work, to address the relatively common occurrence in natural resources of sequential decision

making and monitoring over an extended time frame.

In the above treatment of internal and external monitoring we focused on the marginal

value of external data collection, on the assumption that it could supplement an ongoing pro-

cess of internal monitoring. It should be noted that an analogous assessment is possible,

whereby external investigation is ongoing and it is internal monitoring that is considered to be

supplemental to it. Framing the issue in this way would allow managers to consider whether to

implement (or continue) internal monitoring as part of the management process based on the

marginal value of doing so, or to rely on externally collected data only.

As to the cadence of monitoring, we note that it is possible to extend the period between

monitoring events so that monitoring occurs less frequently than every other year. Consider

the prospect of triennial monitoring, in which a monitoring effort is mounted every 3 years.

A computing form for valuation would mirror that shown above, except it would need to

account for state transitions over 3 years. Again, the valuations for annual and triennial moni-

toring would be equivalent for years in which monitoring occurs, but would differ in years

when there is no monitoring. However, there would be different valuations for the non-moni-

toring years, leading to a differential value-added for annual monitoring that would depend on

the out-year under consideration.

When using EVSI to explore the value of additional information to resolve uncertainty, it is

important not to misinterpret results (Johnson et al. [49]). One such misinterpretation is to

conclude that a low value of EVSI means monitoring is unneeded. As indicated above, EVSI is

a comparison of an average of optimal values produced with additional sample information,

versus the optimal value that is attainable in the absence of additional information (Eq 10). As

such it is effectively a marginal analysis, addressing the value of additional monitoring that

contributes to an ongoing if imperfect monitoring effort that informs decision making. Moni-

toring is required for the state-based information on which the optimal resource decision

making depends, and the question here is whether additional monitoring is justified by the

potential increase in value that would be produced. A decision to increase or decrease the

monitoring effort relies on the answer to this question. Whether to terminate monitoring alto-

gether is a quite different question, one that is not addressed by examining the effect of a mar-

ginal change in monitoring effort (Williams and Johnson [24]).

Finally, we emphasize that as potentially useful as the value of information is, and in particular

EVSI, these metrics only partially characterize the benefit to be derived from the decision frame-

work presented above. Management objectives, potential actions, sources of uncertainty, and fore-

casts of resource responses provide a decision making “architecture” for post-decision monitoring

and assessment that can track resource responses and evaluate progress toward objectives. A tech-

nical assessment of the value of the information produced can certainly contribute in informing

management. However, the metrics are certainly not the only, and possibly not even the most

relevant, measures of value for the decision framework. Among other things, a systematic and

structured accounting of the elements of decision making can facilitate collaboration and shared

decision making, lowering the potential for contentiousness and conflict among stakeholders
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(Nichols et. al [50]). The value of information can certainly contribute to, but should not obscure,

these and other benefits accruing to a structured process of decision making.

Appendix

• We first consider optimal valuation with internal monitoring. Action taken at each time

maximizes the sum of current return and expected future value. Two decision making

approaches are active adaptive management and passive adaptive management, and strategy

valuation applies to both.

Active adaptive management

Expected future value is based on updated model state q
tþ1

:

V½xt; qt
� ¼ max

At
VðAtjxt; qt

Þ

¼ max
fat ;Atþ1g

n
Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞVðAtþ1jxtþ1; qtþ1

Þ
o

¼ max
at

n
Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞV½xtþ1; qtþ1

�
o
:

Passive adaptive management

Expected future value is based on current model state q
t
:

V½xt; qt
� ¼ max

At
VðAtjxt; qt

Þ

¼ max
fat ;Atþ1g

n
Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞVðAtþ1jxtþ1; qt

Þ
o

¼ max
at

n
Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt
ÞV½xtþ1; qt

�
o
:

The expected value of perfect information (EVPI) can be calculated with either approach.

EVPI compares the average optimal valuation, assuming complete understanding, against

optimal valuation under structural uncertainty:

EVPI ¼
X

k
qtðkÞVk½xt� � V½xt; qt

�:

EVPI is necessarily non-negative (Williams and Johnson 2015b).

• Next we consider optimal valuation with internal and external monitoring. Here we utilize

preposterior averaging of optimal adaptive valuations:

Step 1. Update q
t

to q 0
t

using external data zt as in Eq (2).

Step 2. Use q 0
t

in the optimal valuation in Eq (5).

Step 3. Average the optimal valuations in step 2 over the data zt that produce q 0
t
:

X

zt
�Pðztjqt

ÞV½xt; q
0

t
� ¼

X

zt
�Pðztjqt

Þmax
At

VðAtjq
0

t
Þ

¼
X

zt
�Pðztjqt

Þmax
at

n
Rðat; xtÞ þ

X

x0tþ1

�Pðxtþ1jxt; at; q
0

t
ÞV½xtþ1; qtþ1

�
o
:

Supporting information

S1 Fig. Trajectories for annual and biennial monitoring for two different models. Model 0

assumes routine and intensive burns are equally effective in setting back succession. Model 1

assume intensive burn is more effective.

(TIF)
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S1 File. Transition probabilities of Florida scrub and comparison of annual and biennial

monitoring.
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