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Abstract
Purpose: Fast and accurate auto-segmentation on daily images is essential for magnetic resonance imaging (MRI)−guided adaptive
radiation therapy (ART). However, the state-of-the-art auto-segmentation based on deep learning still has limited success, particularly
for complex structures in the abdomen. This study aimed to develop an automatic contour refinement (ACR) process to quickly
correct for unacceptable auto-segmented contours.
Methods and Materials: An improved level set−based active contour model (ACM) was implemented for the ACR process and was
tested on the deep learning−based auto-segmentation of 80 abdominal MRI sets along with their ground truth contours. The
performance of the ACR process was evaluated using 4 contour accuracy metrics: the Dice similarity coefficient (DSC), mean distance
to agreement (MDA), surface DSC, and added path length (APL) on the auto-segmented contours of the small bowel, large bowel,
combined bowels, pancreas, duodenum, and stomach.
Results: A portion (3%-39%) of the corrected contours became practically acceptable per the American Association of Physicists in
Medicine Task Group 132 (TG-132) recommendation (DSC >0.8 and MDA <3 mm). The best correction performance was seen in the
combined bowels, where for the contours with major errors (initial DSC <0.5 or MDA >8 mm), the mean DSC increased from 0.34 to
0.59, the mean MDA decreased from 7.02 mm to 5.23 mm, and the APL reduced by almost 20 mm, whereas for the contours with
minor errors, the mean DSC increased from 0.72 to 0.79, the mean MDA decreased from 3.35 mm to 3.29 mm, and more than one-
third (39%) of the ACR contours became clinically acceptable. The execution time for the ACR process on one subregion was less than
2 seconds using an NVIDIA GTX 1060 GPU.
Conclusions: The ACR process implemented based on the ACM was able to quickly correct for some inaccurate contours produced
from MRI-based deep learning auto-segmentation of complex abdominal anatomy. The ACR method may be integrated into the auto-
segmentation step to accelerate the process of MRI-guided ART.
© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Magnetic resonance imaging (MRI)−guided adaptive
radiation therapy (ART) is currently being introduced into
clinics by taking advantage of the emerging MR-Linac
technology.1,2 The MR-Linac is a hybrid system that inte-
grates an MRI scanner and a linear accelerator (Linac),
enabling superior soft-tissue contrast, functional informa-
tion, and real-time MRI-guided radiation therapy (RT)
delivery. In particular, the MR-Linac enables online adap-
tive replanning to account for patient interfraction changes
at each fraction, substantially improving RT delivery accu-
racy. However, one of the bottleneck problems in the clini-
cal practice of MRI-guided online adaptive replanning with
current technology is the impractically long time required
to segment the patient’s anatomy of the day, which can
exceed 30 minutes by conventional manual segmentation
in a tumor site with complex anatomy (eg, abdomen).3-5

In recent years, deep learning (DL) techniques, partic-
ularly the convolutional neural networks (CNNs), have
been successfully applied to automatically segment organs
from medical images including MRI.6-11 Although it has
been well documented that such auto-segmentations can
be more efficient compared with the time-consuming and
labor-intensive manual delineations, available MRI-based
auto-segmentation methods still have limited success,
particularly for complex structures such as those in the
abdomen. Fu et al6 reported their DL auto-segmentation
on MRI in the abdomen achieved average Dice similarity
coefficients (DSCs) of 0.953, 0.931, 0.850, 0.866, and
0.655 for the liver, kidneys, stomach, bowels, and duode-
num, respectively. Bobo et al7 described their CNN for
the multiorgan segmentation on abdominal MRI, with
DSCs of 0.556 and 0.691 in the stomach and pancreas.
Chen et al8 and Amjad et al9 reported similar results from
their DL auto-segmentation solutions. These previous
studies indicate that the DL auto-segmentation on MRI
for complex organs (eg, bowels) is generally unacceptable
for clinical use. Although improvements for the auto-seg-
mentation of complex structures can be anticipated with
continually developing robust DL algorithms and/or
larger training data sets, they cannot be guaranteed. The
unacceptable auto-segmented contours must be examined
and edited manually before their clinical use.

Manual contour editing is generally labor-intensive and
time-consuming and can be subjective, inevitably introduc-
ing inter- and intra-observer errors. A desirable solution to
reduce or even replace the manual process is to automate
the contour editing. Several techniques have been proposed
for automatic contour refinement (ACR). One of these
techniques is the dense conditional random field (CRF)
model,12 which has been used as a postprocessing strategy
after the CNN auto-segmentation.13,14 By formulating the
final segmentation results using the soft label probability
maps computed from the CNN as a maximum a posteriori
inference problem, this method is capable of incorporating
the contextual information coming from both local and
global relationships between the image voxels.13 However,
the dense CRF model might not be suitable for correcting
the very inaccurate contours that need substantial editing.
Christ et al13 applied the dense CRF model after their
CNN auto-segmentation for the liver on CT and found
that the DSC improved from 0.931 to 0.943. Kamnitsas
et al14 also implemented dense CRF for final postprocessing
of their CNN models for brain lesion segmentation on
MRI, with a minimal (less than 0.01) increase in DSC.
Although these studies demonstrated that the dense CRF
model was very useful to smooth contour boundaries
between different structures and removed small isolated
wrong contours from the CNN predictions, the slight
improvements measured by the DSC failed to sufficiently
correct for the inaccurate contours of the complex abdomi-
nal organs. Another ACR technique is active contour mod-
els (ACMs),15,16 which include edge-based ACMs and
region-based ACMs. The edge-based ACMs use the image
gradient to identify the boundaries, whereas the region-
based ACMs use the image statistical information inside
and outside the contour to guide the evolution.15 In gen-
eral, the region-based ACMs show several advantages over
the edge-based ACMs because they are less sensitive to
image noise and are more able to identify weak bound-
aries.15 The region-based ACMs can be implemented by
the level set method, which provides more flexibility and
convenience, and have been used in a variety of image seg-
mentation tasks in combination with DL.16 However, the
segmentation accuracy of the ACM methods can strongly
rely on the parameters used in the models, which are usu-
ally chosen empirically. For the complex organs in the
abdomen, especially the bowels with large size and shape
variations, it is impractical to determine the appropriate
parameters by manual adjustment for each specific bowel
loop using the conventional methods.

To minimize or eliminate manual contour editing, and
thus to accelerate the segmentation process for MRI-
guided ART, this study aimed to develop an ACR process
based on an ACM method that does not require manual
parameter adjustment to quickly refine unacceptable DL
auto-segmented contours of the complex abdominal
organs, including the small and large bowels, pancreas,
duodenum, and stomach. Clinical MRI data were used to
test the ACM, and the performance of the ACR process
was evaluated based on clinical criteria.
Methods and Materials
This study was approved by the Institutional Review
Board of Medical College of Wisconsin.
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MRI data set

A total of 80 abdominal MRI scans acquired during
routine RT for 71 patients with abdominal cancers were
used for this study, including 65 scans from RT simula-
tion (MR-SIM) and 15 from MRI-guided ART with an
MR-Linac (MRL). The MR-SIM images were acquired on
a 3T scanner (Verio, Siemens, Germany) using an axial
T2-weighted half-Fourier singleshot turbo spin-echo
(HASTE) sequence17 with the following parameters: repe-
tition time (TR) = 2000 msec; echo time (TE) = 95»98
msec; flip angle = 150°»160°; matrix size = 320 £ 212 »
320 £ 288; pixel size = 1.0625 £ 1.0625 »
1.3125 £ 1.3125 mm2; and slice thickness = 3»5 mm.
The MRL images were the motion-average MRIs derived
from 4-dimensional (4D) MRIs acquired on a 1.5T MR-
Linac (Unity, Elekta Inc, Sweden) using either turbo field
echo or balanced turbo field echo sequences.3 The acquisi-
tion parameters were as follows: TR = 4.30»5.32 msec; TE
= 1.85»2.21 msec; flip angle = 25°»50°; matrix size =
256 £ 256 » 352 £ 352; pixel size = 1.5909 £ 1.5909 »
1.6406£ 1.6406 mm2; and slice thickness = 2.38»2.5 mm.

All MRIs were first standardized using a preprocess-
ing workflow developed based on MIM
(MIM Software Inc, Cleveland, Ohio),18 including the
following steps: (1) bias correction for magnetic field
inhomogeneity using a nonparametric nonuniform
intensity normalization algorithm19; (2) image denoising
using the anisotropic diffusion filter20 to smooth out
noise while preserving edge features; and (3) image
intensity normalization to the range 0 to 255. For the
ACR application described below, a contrast-limited
adaptive histogram equalization method21 was applied
to the MRIs to further enhance image contrast.
Auto-segmentation and data preparations

The obtained MRIs were then input into a DL auto-
segmentation research tool (Admire, Elekta Inc), previ-
ously developed based on a 3D deep CNN architecture (a
modified 3D-ResUNet)22,23 to generate auto-segmented
contours of the small bowel, large bowel, combined bow-
els, pancreas, duodenum, and stomach. To assess contour
accuracy, the auto-segmented contours were compared
with the ground truth contours delineated manually by
an experienced researcher and independently verified by
2 radiation oncologists.

Each slice of the MRI was cropped into multiple 2D
subregions based on the dilated initial auto-segmented
contours, which were generated by convoluting with a 2D
square kernel of size 25 £ 25. For the bowels, each
cropped subregion on a slice included at least a complete
loop of the initial contour; for the pancreas, duodenum,
and stomach, only 1 cropped subregion was obtained on
each slice. Based on the American Association of Physi-
cists in Medicine Task Group 132 (TG-132) report,24 con-
tours with a DSC <0.8 or a mean distance to agreement
(MDA) >3 mm are considered inaccurate. Only the sub-
regions with inaccurate contours were used as the initial
contours to test the ACR process described in the next
section. In addition to the initial contour, the ACM
method described in the next section used the probability
map (ie, the probability of each pixel belonging to the seg-
mented organ) generated from the DL algorithm. Mean-
while, using a trial-and-error method, we tested whether
adding a fudge factor to enhance low probability regions
in the probability maps would improve the ACR perfor-
mance, because those low-probability regions would be
often associated with contour inaccuracy. Fudge factors
ranging from 0.1 to 0.5 were tested. Based on the test
results, we observed that the best performance of the ACR
process occurred by increasing by 0.4 on the probability
map of each voxel, with the maximum probability set to
1.0. This fudge factor of 0.4 was included as a part of the
input data for the ACR.
Active contour model

An ACM method based on an improved level set25 was
implemented in this work for ACR. This method was
originated from the Chan-Vese model,26 a region-based
level set algorithm in which the contour evolves by mini-
mizing an energy functional. Because it is generally not
practical to manually adjust various ACM parameters for
a variety of complex inaccurate contours, we followed the
approach proposed by Hatamizadeh et al25 to generalize
the scalar parameters in the ACM to 2D parameter maps
using the probability maps obtained from the DL models.
In addition, we converted probability maps to signed dis-
tance maps to initialize the level set in the ACM. The con-
tours to be corrected were then evolved iteratively to
minimize the energy functional and better match to the
desired boundary. For the ACR application, the number
of iterations was set to be 600 because large changes were
expected for the initial inaccurate contours. More details
on the ACM method are provided in the Supplementary
materials and the relevant publications.25-27
Automatic contour refinement

Figure 1 shows the workflow of the proposed ACR
process based on the ACM algorithm. The process
includes the following 3 steps: (1) inputting the test image,
the DL auto-segmented contours, and the DL probability
map; (2) preprocessing the input data by cropping each
image slice into multiple 2D subregions and enhancing
the probability map with the determined fudge factor;



Figure 1 The 3-step workflow of the proposed automatic contour refinement process. Abbreviations: ACR = automatic
contour refinement; SDM = signed distance map.
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and (3) executing the ACM to correct or refine the con-
tours and postprocessing the obtained contours if any
obvious geometric inaccuracy is detected, eg, contour
smoothing of imperfect contours, removal of isolated
regions with low probability, and filling of empty holes.

The performance of the ACR process was evaluated
based on the DSC, MDA, and 2 recently introduced met-
rics, surface DSC (sDSC)28 and added path length
(APL).29 The sDSC measures the surface overlap of 2 con-
tours instead of the volumetric overlap as measured by
DSC. The APL calculates the surface length of the ground
truth contour that is not captured by the initial (auto-seg-
mented) contour, which is the distance that the cursor
needs to travel when correcting the inaccurate contour.
Compared with traditional metrics (eg, DSC, MDA), the
sDSC and APL have been shown to be more clinically rel-
evant because they are better correlated with the contour
editing time.29 The values of the DSC, MDA, sDSC, and
APL were calculated for the initial and ACR (corrected)
contours with respect to the ground truth contours.
Because a distance difference of 2 mm between the
ground truth contour and the initial or ACR contour is
generally considered to be practically acceptable, a 2-mm
tolerance was assumed in the calculation of the sDSC and
APL. To measure the performance of the ACR at the dif-
ferent levels of contour inaccuracy, the inaccurate subre-
gions were further divided into 2 groups, a major error
group with subregions of initial DSC <0.5 or MDA
>8 mm and a minor error group with remaining subre-
gions of 0.5 ≤ DSC < 0.8 or 3 mm < MDA ≤ 8 mm. To
assess whether the improvements from the ACR were sta-
tistically significant, changes of the 4 accuracy metrics for
the contours obtained before and after the ACR were ana-
lyzed using the paired t test.
Results
The execution time to correct each inaccurate subre-
gion with the developed ACR was less than 2 seconds on
an NVIDIA GTX 1060 GPU. Table 1 compares the DSC,
MDA, sDSC, and APL values obtained before and after
the ACR for both the major and the minor error groups
of the small bowel, large bowel, combined bowels, pan-
creas, duodenum, and stomach, along with the P values
from the paired t test. The accuracies of the refined con-
tours in the major error group were significantly
improved for all organs (P < .001), with the best improve-
ment for the combined bowels and pancreas. For the
minor error group, the improvements as measured by the
APL were significant for all the organs (P < .001 for
decreases of the APL). However, these improvements as
measured by other metrics (DSC, MDA, and sDSC) were
mixed. A portion (3%-39%) of the corrected contours
become practically acceptable after the ACR process per
the TG-132 recommendation (DSC ≥ 0.8 and MDA ≤ 3
mm). The best correction performance was seen for the
combined bowels: (1) for the major error group, the mean
DSC increased from 0.34 to 0.59, the mean MDA
decreased from 7.02 mm to 5.23 mm, and more notably,
the APL was reduced by almost 20 mm and the improve-
ment was observed in 84% of the subregions; (2) for the
minor error group, the mean DSC increased from 0.72 to
0.79, the mean MDA decreased from 3.35 mm to
3.29 mm, and more than one-third (39%) of the corrected
contours became clinically acceptable after the ACR.
Among all the structures, the largest improvement was
seen in the major error group of the pancreas, where the
APL was reduced by approximately one-third after the
ACR. For the duodenum and stomach, although the
mean DSC, MDA, and sDSC were slightly changed after
the ACR, particularly for contours with minor errors, the
APLs decreased. The decreases in APLs for all the con-
tours in both major and minor error groups indicate that
the use of the ACR reduces the manual editing times
required to correct for all the unacceptable contours of all
the organs.

To demonstrate the contour quality improvements
with the ACR, the scatter plots of the 4 contour accuracy
metrics for each organ and each error group obtained



Table 1 Performance of the automatic contour refinement process

Organs

Error groups of
initial DL auto-
segmentation
based on DSC
and MDA

Percentage of
subregions with
improved DSC and
MDA after ACR

Percentage of
subregions with
DSC ≥0.8 and
MDA ≤3 mm
after ACR

Mean DSC
change after
ACR

Mean MDA
change (mm)
after ACR

Mean sDSC
change after
ACR

Mean APL
change (mm)
after ACR

Small bowel Major errors 956/1218 (78%) 104/1218 (9%) 0.33! 0.55* 8.10! 6.42* 0.28! 0.42* 101.75! 83.89*

Minor errors 1116/2150 (52%) 534/2150 (25%) 0.70! 0.75* 3.92! 3.98
(P = .049)y

0.54! 0.57* 98.10! 90.72*

Large bowel Major errors 654/898 (73%) 76/898 (8%) 0.34! 0.54* 9.13! 7.85* 0.29! 0.43* 81.68! 65.26*

Minor errors 955/1689 (57%) 500/1689 (30%) 0.72! 0.76* 3.94! 4.03
(P = .056)y

0.56! 0.60* 70.25! 60.04*

Combined bowels Major errors 753/900 (84%)z 105/900 (12%)z 0.34! 0.59* 7.02! 5.23* 0.31! 0.49* 96.64! 76.86*

Minor errors 1706/2925 (58%)z 1144/2925 (39%)z 0.72! 0.79* 3.35! 3.29
(P = .047)

0.58! 0.64* 100.72! 94.83*

Pancreas Major errors 160/204 (78%) 23/204 (11%) 0.32! 0.55* 6.87! 4.70* 0.24! 0.44* 76.51! 51.27*

Minor errors 416/767 (54%) 216/767 (28%) 0.70! 0.73* 3.55! 3.51
(P = .550)

0.47! 0.52* 65.40! 50.82*

Duodenum Major errors 184/302 (61%) 9/302 (3%) 0.33! 0.49* 6.71! 6.08* 0.27! 0.37* 66.58! 52.37*

Minor errors 295/808 (37%) 143/808 (18%) 0.69! 0.69
(P = .397)y

3.43! 4.13*,y 0.53! 0.51*,y 51.31! 44.77*

Stomach Major errors 54/111 (49%) 6/111 (5%) 0.44! 0.56* 9.97! 9.78
(P = .546)

0.27! 0.33
(P = .001)

84.97! 72.89*

Minor errors 234/601 (39%) 99/601 (16%) 0.78! 0.77
(P = .558)y

4.21! 4.90*,y 0.46! 0.45
(P = .032)y

96.71! 90.40*

Abbreviations: ACR = automatic contour refinement; APL = added path length; DL, deep learning; DSC = Dice similarity coefficient; MDA = mean distance to agreement; sDSC = surface Dice similarity
coefficient.
* Indicates a paired t test P value <.001.
y Metrics changes had minimal or no improvement.
z The best percentage numbers achieved in combined bowels.
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Figure 2 Comparisons of various contour accuracy metrics (DSC vs MDA, DSC vs sDSC, and DSC vs APL) for the A,
small bowel, B, large bowel, C, combined bowels, D, pancreas, E, duodenum, and F, stomach before and after the ACR
process. Note that the axes of the DSC and sDSC were reversed so contours with higher quality would shift toward the ori-
gin for all plots. Abbreviations: ACR = automatic contour refinement; APL = added path length; DSC = Dice similarity
coefficient; MDA = mean distance to agreement; sDSC = surface Dice similarity coefficient.
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before and after the ACR process are shown in Figure 2.
For most contours, except for the duodenum and stomach
contours with minor errors, the contour accuracy was
improved after the ACR; as shown in the figure, after the
ACR, more data points shifted toward the origin of each
plot (eg, a higher DSC or sDSC and a lower MDA or
APL). Figures 3 and 4 compare the contours of the initial
DL auto-segmentation, ACR, and ground truth for repre-
sentative MR-SIM and MRL cases, respectively. As is
shown, the ACR process improved contour accuracy even
for the very irregularly shaped contours of the complex
organs.

Additional details on the performance of the ACR for
MR-SIM images and MRL images, respectively, are pro-
vided in Supplementary Tables S1 and S2. In general, the
performance of the ACR for the MR-SIM scans was better
than that for the MRL scans. Comparisons of the accuracy
metrics for these 2 data sets before and after the ACR are
shown in Supplementary Figures S1 and S2.
Discussion
In this study, an automatic contour refinement process
was developed based on an improved ACM algorithm to
quickly correct for inaccurate contours generated by DL
auto-segmentation. The effectiveness of the ACR process
was demonstrated for complex abdominal structures
including the bowels, pancreas, duodenum, and stomach.
The ACR process can be implemented as a step after DL
auto-segmentation to minimize subsequent manual edit-
ing effort, substantially accelerating the recontouring dur-
ing MRI-guided ART, particularly for tumor sites with
complex anatomy (eg, the abdomen).



Figure 3 Comparisons of representative initial DL auto-segmentation (yellow), ACR (red), and ground truth (green) con-
tours for the small bowel, large bowel, pancreas, duodenum, and stomach on MR-SIM data. Images shown are rescaled for
better display (they do not reflect their original sizes). Abbreviations: ACR = automatic contour refinement; DL = deep
learning; MR-SIM, magnetic resonance scans from radiation therapy simulation.
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Figure 4 Comparisons of representative initial DL auto-segmentation (yellow), ACR (red), and ground truth (green) con-
tours for the small bowel, large bowel, pancreas, duodenum, and stomach on MRL data. Images shown are rescaled for
better display (they do not reflect their original sizes). Abbreviations: ACR = automatic contour refinement; DL = deep
learning; MRL = magnetic resonance imaging and linear accelerator.
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Figure 5 Comparison of the sample probability maps and the contours of the initial DL auto-segmentation (yellow), ACR
(red), and ground truth (green) of the small bowel (A) and stomach (B), showing the limitations of the ACR process.
Images shown are rescaled for better display (they do not reflect their original sizes). Abbreviations: ACR = automatic con-
tour refinement; DL = deep learning.
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Although DL-based segmentation methods have
enabled the organ auto-contouring and achieved great
success in many clinical applications, the current auto-
segmented contours of challenging organs, such as the
bowels, can still be clinically unacceptable.6-9 Inevitably,
manual editing needs to be performed subsequently to
make the contours acceptable. The manual editing is gen-
erally time-consuming and labor-intensive, especially for
inaccurate contours with irregular shapes (eg, complex
abdominal organs). The presented ACR process can effi-
ciently improve contour accuracy by reducing contour
errors (eg, converting contours with major errors to those
with minor errors) or even making a portion of the inac-
curate auto-segmented contours practically acceptable.
Thus, the adoption of the ACR will reduce the workload
for manual editing, which is clearly indicated by the
reduction of the APL. For the contours with major errors,
average improvements of more than 0.2 increases in the
DSC and 20-mm reductions in the APL after the ACR
were seen for bowels and pancreas. For the contours with
minor errors, more than 25% of the unacceptable bowel
and pancreas contours became acceptable after the ACR.
Although there were no obvious improvements for the
duodenum and stomach contours if measured by other
metrics, their APLs were reduced after the ACR, as seen
in Table 1.

The ACR workflow was fast, with the execution time
less than 2 seconds for each subregion and less than 4
minutes for each MRI set. By decreasing the number of
iterations from 600 to 400 during the ACR execution, the
processing time for each MRI set can be reduced to less
than 2 minutes, with minimal effect on the ACR perfor-
mance (eg, the average DSC and sDSC decreased <0.01,
the average MDA increased <0.1 mm, and the average
APL increased <1 mm). The time may be further short-
ened by applying smaller iteration numbers.

The ACM method that uses probability maps to define
the per-pixel parameters and to initialize the contour evo-
lution eliminates the need of the manual adjustment for
the parameters, which is one of the major limitations with
the traditional ACM methods.16 For our purpose of cor-
recting a large variety of contour inaccuracies for the
complex abdominal organs, it would be impractical to
determine and adjust ACM parameters for each specific
case during the correction. Instead of fixing scalar param-
eters, the ACM method implemented in the ACR process
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establishes 2D parameter maps using the probability maps
produced from the CNN models, which provide clues for
the contours to be adjusted based on the actual organ
boundaries. Therefore, the performance of the ACR
depends on the quality of the probability maps from the
DL auto-segmentation. This may explain why a better
ACR performance was achieved for the combined bowels
compared with the small bowel and large bowel sepa-
rately, because the adopted CNN models had some diffi-
culty in differentiating the small and large bowels.30,31

The ACR performed better for the MR-SIM scans
compared with the MRL scans. This is primarily owed to
the motion artifacts in the MRL sets, which were motion
average images derived from 4D MRIs.3 In contrast, the
MR-SIM sets were acquired with a respiration trigger. In
addition, the quality of the probability maps for the MRL
sets was poorer compared with those for the MR-SIM
sets, because a smaller number of MRL sets was used in
the training of the DL auto-segmentation model. The
poor probability maps affected the ACR performance for
the MRL sets. Nonetheless, the ACR still achieved very
promising results, particularly for the contours with major
errors (as shown in Table S2).

There are 2 major limitations in this study. First, the
achievable accuracy by the ACR process is limited by the
accuracy of the probability maps from the DL auto-seg-
mentation. For example, if a probability map mislabels a
background region as a part of an organ or wrongly
includes a region of another organ, the ACR process
would unlikely be able to correct for the contour. As an
example, Figure 5A shows that the probability map inac-
curately labeled some background pixels as small bowel
(the values of these pixels on the probability map was
equal or close to 1); the contour evolution would still be
initialized and performed based on these incorrect
regions, making it hard to correct these mistaken pixels.
This could be a problem in a region with complicated
anatomy (eg, the bowels and duodenum) where it is dif-
ficult to distinguish the organ from its surrounding
background. Second, the ACR process relies on a
region-based ACM, which has an intrinsic limitation in
handling contours with inhomogeneous intensities.
Figure 5B illustrates an example of a stomach contour
where the ACR method failed to encompass the bright
region, even though the probability map gave some
hints. These 2 limitations explain why the ACR method
was ineffective in correcting some inaccurate contours
of complex organs.

Clearly, more robust methods for automatic contour
refinement are needed. It is anticipated that as more
advanced DL auto-segmentation algorithms and/or larger
training data sets become available, the accuracy of the
auto-segmentation will be continually increased. Demand
for correcting the auto-segmented contours may be pri-
marily for complex structures such as abdominal organs.
The presently developed ACR process may still be appli-
cable.

This study on ACR is a part of our effort to develop a
4-step segmentation pipeline for MRI-guided ART,
including (1) auto-segmentation of MRI based on DL22;
(2) auto-check of the obtained auto-segmented contours
to detect their inaccuracies32; (3) auto-refinement of the
detected inaccurate contours; and (4) manual editing
using robust tools for the uncorrectable contours. Such a
segmentation pipeline would effectively address the cur-
rent slowness in the recontouring process, making MRI-
guided daily online adaptive replanning more practical.
Conclusion
This work demonstrates the feasibility of using an
improved ACMmethod to automatically refine inaccurate
contours from the DL auto-segmentation of the complex
abdominal organs, including the bowels, pancreas, duode-
num, and stomach. This automatic contour refinement
process is fast and efficient without the need for manual
parameter adjustment. The developed ACR method can
be integrated into the recontouring process to improve
segmentation accuracy, minimize the subsequent tedious
manual editing, and accelerate the execution of MRI-
guided ART.
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