
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



European Journal of Internal Medicine 103 (2022) 23–28

Available online 22 June 2022
0953-6205/© 2022 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

Review Article 

COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. 
Closing the loop on the "Spike effect" 

Fabio Angeli a,b,*, Gianpaolo Reboldi c, Monica Trapasso d, Martina Zappa a, 
Antonio Spanevello a,b, Paolo Verdecchia e,f 

a Department of Medicine and Surgery, University of Insubria, Varese, Italy 
b Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy 
c Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy 
d Dipartimento di Igiene e Prevenzione Sanitaria, ATS Insubria, PSAL, Sede Territoriale di Varese, Varese, Italy 
e Division of Cardiology, Hospital S. Maria Della Misericordia, Perugia, Italy 
f Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy   

A R T I C L E  I N F O   

Keywords: 
SARS-CoV-2 
COVID-19 
ACE2 
Vaccines 
Renin-angiotensin-aldosterone system 
Therapy 
Olygopeptodases 
POP 
PRCP 

A B S T R A C T   

The role of a dysregulated renin-angiotensin system (RAS) in the pathogenesis of COVID-19 is well recognized. 
The imbalance between angiotensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction between 
SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) receptors exerts a pivotal role on the clinical 
picture and outcome of COVID-19. 

ACE2 receptors are not the exclusive angiotensinases in nature. Other angiotensinases (PRCP, and POP) have 
the potential to limit the detrimental effects of the interactions between ACE2 and the Spike proteins. In the 
cardiovascular disease continuum, ACE2 activity tends to decrease, and POP/PRCP activity to increase, from the 
health status to advanced deterioration of the cardiovascular system. The failure of the counter-regulatory RAS 
axis during the acute phase of COVID-19 is characterized by a decrease of ACE2 expression coupled to unchanged 
activity of other angiotensinases, therefore failing to limit the accumulation of Ang II. 

COVID-19 vaccines increase the endogenous synthesis of SARS-CoV-2 spike proteins. Once synthetized, the 
free-floating spike proteins circulate in the blood, interact with ACE2 receptors and resemble the pathological 
features of SARS-CoV-2 ("Spike effect" of COVID-19 vaccines). It has been noted that an increased catalytic 
activity of POP/PRCP is typical in elderly individuals with comorbidities or previous cardiovascular events, but 
not in younger people. Thus, the adverse reactions to COVID-19 vaccination associated with Ang II accumulation 
are generally more common in younger and healthy subjects. Understanding the relationships between different 
mechanisms of Ang II cleavage and accumulation offers the opportunity to close the pathophysiological loop 
between the risk of progression to severe forms of COVID-19 and the potential adverse events of vaccination.   

1. Introduction 

The role of a dysregulated renin-angiotensin system (RAS) in the 
pathogenesis of the complications of Coronavirus Disease 2019 (COVID- 
19) is now well recognized [1–3]. Evidences from experimental and 
clinical studies have been accrued in this area of research [3]. Specif-
ically, the imbalance between angiotensin II (Ang II) and Angiotensin1-7 
(Ang1,7) caused by the interaction between Severe Acute respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2, as mediated by the binding of 
the Spike protein of the virus) and the angiotensin converting enzyme 2 
(ACE2) receptors exerts a pivotal role on the clinical picture and 
outcome of COVID-19 [1–4]. Moreover, the reduced catalytic efficiency 
of ACE2 resulting from viral occupation and down-regulation of these 
receptors appears to be detrimental in patients with baseline deficiency 
of ACE2 receptor activity (including patients with advanced age, car-
diovascular risk factors, and previous cardiovascular events) [1–3, 
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5–15]. 
Similarly, COVID-19 vaccines increase the endogenous synthesis of 

SARS-CoV-2 Spike proteins [16]. Once synthetized, the Spike proteins 
assemble in the cytoplasm, migrate towards the cell surface and pro-
trude externally with a native-like conformation [16]. 

Furthermore, the free-floating Spike proteins synthetized by cells 
targeted by vaccine and destroyed by the immune response massively 
circulate in the blood and systematically interact with ACE2 receptors 
expressed by a variety of cells, thereby promoting ACE2 internalization 
and degradation [16]. These reactions may result in pathological fea-
tures which resemble those of SARS-CoV-2, ultimately leading to 
platelet aggregation, thrombosis and inflammation ("Spike effect" of 
COVID-19 vaccines) [16]. 

However, ACE2 are not the exclusive angiotensinases in nature. 
Other angiotensinases involved in the processing of Ang II to Ang1,7 may 
exert a counterbalance influence in the detrimental interactions be-
tween Spike proteins (of both SARS-CoV-2 and vaccine-induced) and 
ACE2 receptors [17–20]. Understanding the relationships between 
different mechanisms of Ang II cleavage and accumulation offer the 
opportunity to draw a unique pathophysiological mechanism explaining 
the risk of both the progression to severe forms of COVID-19 and po-
tential adverse events following vaccination. 

2. Conversion of angiotensin II to angiotensin1,7 

In the last years, the knowledge of the RAS has expanded with the 
identification of different enzymes and peptides downstream of Ang II 
[21]. Ang1,7 forming enzymes do not only prevent and counteract Ang II 
overactivity but also foster Ang1,7 formation eliciting potentially bene-
ficial actions of the latter peptide. Specifically, the Ang II-Ang1,7 axis of 
the RAS encompasses three enzymes (carboxypeptidases) that form 
Ang1,7 directly from (by cleavage) Ang II: ACE2, prolyl carboxypepti-
dases (PRCP), and prolyl oligopeptidase (POP) [21]. 

POP is the main enzyme responsible for Ang II conversion to Ang1,7 
in the circulation and in the lungs, whereas Ang1,7 formation in the 
kidney is mainly ACE2-dependent [21]. POP cuts at the C-side of an 
internal proline and cleaves Ang I to form Ang1,7, and Ang II to form 
Ang1,7 [20–23]. 

Similarly, PRCP (serine carboxyprotease) cleaves the C-terminal 
amino acid of Ang II [24]. PRCP is ubiquitously expressed [25,26] and it 
plays versatile roles in cell proliferation, autophagy, oxidative stress, 
inflammation, vascular homeostasis, and various diseases (including 
hypertension, obesity, diabetes, and thrombosis) [27–29]. PRCP has 
protective effects on hypertension and thrombosis by stimulating the 
synthesis and release of nitric oxide and prostaglandin [28,30,31]. 

3. Changes in angiotensinases 

Older age, male sex, and the presence of comorbidities (including 
hypertension, chronic obstructive pulmonary disease, diabetes mellitus, 
and history of cardiovascular events) are significant risk factors for 
increased disease severity in COVID-19 [5–12]. Remarkably, all these 
conditions are associated with RAS dysregulation and ACE2 deficiency 
[13–15]. 

Conversely, studies indicate that increased plasma PRCP and POP 
levels are associated with aging, cardiovascular risk factors (including 
obesity) and dysfunction, atherosclerosis, renal disease, inflammation 
and diabetes [32,33]. In further support of an important role of these 
angiotensinases, significant correlations with several metabolic and 
cardiovascular parameters have been determined [34,35]. The devel-
opment of a sensitive immunoassay by Xu and co-workers has demon-
strated that plasma protein concentrations of PRCP are increased in 
obese patients and are even more elevated in patients with both obesity 
and diabetes [34]. Strong correlations with metabolic (including body 
mass index and blood glucose) parameters have been reported [34]. 
Similarly, Kehoe and co-workers showed that serum PRCP activity was 

increased with a rising body mass index (BMI) and they demonstrated a 
correlation with BMI, body weight, waist, hip circumference, and 
amount of total, visceral and subcutaneous abdominal adipose tissue 
[35]. Tabrizian and co-workers found PRCP protein to be highly 
elevated in human plasma with diabetes and that anti-diabetic agents 
reversed it [32]. PRCP activity and body weight decreases significantly 
after diet but even more pronounced after bariatric surgery which is also 
associated with several dietary guidelines and restrictions [35,36]. 
PRCP expression is affected by impaired tissues within the cardiovas-
cular system and associated with cardiovascular abnormalities and 
dysfunction. In a recent study, intraplaque PRCP was upregulated in 
unstable plaques compared to stable plaques, and PRCP transcript levels 
correlated positively with the reverse cholesterol transporters particu-
larly in carotid plaque samples [37]. Finally, endothelial dysfunction 
may also lie at the basis of the raised PRCP protein concentrations in 
plasma, since PRCP has been shown to be located on the membrane of 
endothelial cells and to regulate endothelial cell growth [27,34]. 

In the sequence of cardiovascular events, which begins from a cluster 
of cardiovascular risk factors consisting of diabetes mellitus, dyslipide-
mia, hypertension, smoking and visceral obesity (cardiovascular disease 
continuum) specific changes of angiotensinanes levels and activities 
may be postulated. Specifically, in the cardiovascular disease continuum 
[38] ACE2 activities decrease; on the other hand, POP and PRCP levels 
increase from the health status to advanced deterioration of the car-
diovascular system (Fig. 1, upper panel). 

4. Angiotensin II accumulation in the acute phase of SARS-CoV-2 
infection 

The failure of the counter-regulatory RAS axis, characterized by the 
decrease of ACE2 expression and generation of the protective Ang1,7, 
appears to be strictly implicated in the development of severe forms of 
COVID-19 [1,2,4,39,40]. More specifically, ACE2 internalization, 
downregulation and malfunction predominantly due to viral occupa-
tion, dysregulates the protective RAS axis with increased generation and 
activity of Ang II and reduced formation of Ang1,7 [1,2,4]. 

This has been corroborated by the findings of recent investigations 
supporting the evidence of the development of an “Ang II storm” [41] or 
“Ang II intoxication” [42] during the SARs-CoV-2 infection [2–4,43–45]. 

For example, Wu and co-workers investigated plasma Ang II levels in 
patients infected by SARS-CoV-2 and critically ill patients not infected 
by SARS-CoV-2 were used as controls [46]. They found increased Ang II 
levels in 90.2% of COVID-19 patients, and in 100% of those who were 
critically ill [46]. There was a direct association between plasma Ang II 
levels and COVID-19 severity [46]. Similarly, a clinical investigation 
aimed to predict disease severity in SARS-CoV-2 infected patients in 
Shenzen, demonstrated that Ang II levels in the plasma samples were 
significantly increased and linearly associated with viral load and lung 
damage in critically ill patients [47]. Moreover, the degree of ACE2 
deficiency (more pronounced in specific conditions including older age, 
cardiovascular disease and risk factors) are associated with more severe 
forms of COVID-19 [1,2,8,11,12,48,49]. Accrued evidences in the field 
showed that specific conditions associated with ACE2 deficiency and 
RAS dysregulation [13–15] (including older age [48,50–52], male sex 
[53], the presence of diabetes [54,55], lung disease [56], and history of 
cardiovascular events [57–61]) are well established risk factors for 
increased disease severity in COVID-19 (2-1) [5–12] (Fig. 1, middle 
panel). 

POP and PRCP, are involved in blood pressure (BP) regulation and 
inflammatory pathways, which are both disturbed in COVID-19 [21,62, 
63]. Bracke and co-workers specifically studied whether the specific 
plasma activities of these peptidases are dysregulated in COVID-19 pa-
tients at the time of hospital admission or during their hospital stay [64]. 
They demonstrated that PRCP activity remains stable during intensive 
care unit stay and does not differ from the median PRCP activity in 
healthy controls. Furthermore, they supported the hypothesis [65] that 
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the elevated POP levels observed in plasma of patients COVID-19 orig-
inates from cell damage associated with acute lung injury or even 
multiple organ failure. 

The important take-home message of these studies is that the activity 

of these two carboxypeptidases remains substantially unchanged during 
the acute phase of SARS-CoV-2 infection, therefore failing to limit the 
accumulation of Ang II which results from ACE2 deficiency (Fig. 1, 
middle panel). 
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Fig. 1. Mechanisms implicated in the development of 
Angiotensin II storm during the SARS-CoV-2 infection 
and after vaccination. Changes in Angiotensinases 
levels and activities are also depicted. See text for de-
tails. 
Legend: A II=angiotensin II; A1,7=angiotensin1,7; 
ACE2=angiotensin coverting enzyme 2; POP= prolyl 
oligopeptidase; PRCP= prolyl carboxypeptidases; 
RAS=renin-angiotensin system; SARS-CoV-2= severe 
acute respiratory syndrome coronavirus-2.   
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5. Angiotensin II accumulation after COVID-19 vaccination (the 
"Spike effect") 

COVID-19 vaccination was the most efficient strategy to come out of 
the current phase of the pandemic. However, some concerns regarding 
the safety of SARS-CoV-2 vaccines have been recently raised, mostly 
based on thromboembolic events [66–69], myocarditis and myoper-
icarditis [70–75], and raised BP [76,77] following vaccination. 

It has been recently suggested that Spike proteins produced upon 
vaccination have the native-like mimicry of SARS-CoV-2 Spike protein’s 
receptor binding functionality and prefusion structure [16,78]. 
Free-floating Spike proteins released by the destroyed cells previously 
targeted by vaccines may interact with ACE2 of other cells, thereby 
promoting ACE2 internalization and degradation [16,79]. This mecha-
nism may enhance the imbalance between Ang II overactivity and 
Ang1-7 deficiency through the loss of ACE2 receptor activity, which may 
contribute to trigger inflammation, thrombosis, an increase in BP, and 
other adverse reactions ("Spike effect" of COVID-19 vaccines) [80,81]. 
Moreover, the detrimental effects of other angiotensinases (POP and 
PRCP) deficiency on BP, thrombosis and inflammation are well sup-
ported. In an experimental model of acute hypertension, BP response 
was altered in the genetic absence of POP (as attributed to the dimin-
ished Ang II degradation and Ang1,7 formation) [21,82]. Similarly, 
global PRCP deficiency is associated with a moderate rise in BP and 
alteration in the heart and kidney [29]. The PRCP gene variant promotes 
disease progression in hypertensive patients [83]. PRCP depletion also 
induces vascular dysfunction with hypertension and faster arterial 
thrombosis [84]. Very low PRCP activity was found in resting and 
thrombin-activated blood platelets [35]. Additionally, activation or 
overexpression of the Ang II receptor type 2 (AT2) receptor was found to 
increase PRCP expression [85]. 

Of note, loss of ACE2 activities due to the interaction between these 
receptors and free-floating Spike proteins is observed across all the strata 
of the cardiovascular disease continuum [16] (Fig. 1, lower panel). On 
the other hand, an increased catalytic activity of POP and PRCP is not 
typical in the young, but more pronounced in elderly individuals with 
comorbidities or previous cardiovascular events (Fig. 1, upper panel). 
Thus, the adverse reactions to COVID-19 vaccination associated with 
Ang II accumulation are reasonably expected to be more common in 
younger and healthy subjects (Fig. 1, lower panel). 

Such a hypothesis ("Spike effect" of COVID-19 vaccines) is well 
documented by clinical studies and epidemiological data. In a study 
published in October 2021 in JAMA Internal Medicine, researchers 
identified 15 cases of post-vaccination myocarditis [70]. All cases 
occurred in men with a median age of 25 years [70]. 

Among 530 cases of post-vaccination myocarditis reported to Vac-
cine Adverse Events Reporting System as of June 2021, approximately 
65% of patients were aged 12–24 years [86]. 

Schultz and co-workers reported findings in five patients who pre-
sented with venous thrombosis and thrombocytopenia 7–10 days after 
receiving the first dose of the ChAdOx1 nCoV-19 adenoviral vector 
vaccine against COVID-19 [87]. The patients were health care workers 
who were 32–54 years of age [87]. Other reports also suggested that 
individuals with vaccine-induced immune thrombotic thrombocyto-
penia (VITT) were younger (< 55 or 60 years) [88,89]. Furthermore, in 
the December 2021 report from the Advisory Committee on Immuni-
zation Practices, rates were similar between males and females in most 
age brackets, with the exception of females ages 30–49 years, in whom 
rates were higher [90]. 

An Italian prospective survey showed that among 113 health care 
workers who received COVID-19 vaccine, 6 subjects (5.3%) showed a 
rise in systolic or diastolic BP at home ≥ 10 mmHg during the first five 
days after the first dose of the vaccine when compared with the five days 
before the vaccine (the BP rise required an intensification of BP- 
lowering treatment in 4 subjects) [81]. Age of patients with a signifi-
cant raise in BP following COVID-19 vaccination ranged from 35 to 52 

years [81]. 
Tran and co-workers [91] performed a cross-sectional survey 

including 1028 subjects (899 had one ChAdOx1nCoV-19 dose and the 
rest received 2 doses). Abnormal BP after vaccination was recorded in 52 
subjects [91]. Importantly, age of participants was a significant factor 
affecting raise in BP as the increase of age was associated with the 
decrease of self-reported adverse events [91]. 

6. Conclusion 

A wealth of evidence clearly suggest that the RAS plays an important 
role in the pathophysiology of COVID-19 [1,2,4]. It is now well known 
that ACE2, a zinc-metalloproteinase, and its catalytic product Ang1,7 
provides significant cardiovascular protection during the acute phase of 
the infection [1,2,4]. More specifically, the biological importance of 
conversion of Ang II to Ang1,7 in COVID-19 is two-fold: by lowering Ang 
II its potentially detrimental actions may be prevented; in addition, 
Ang1,7 is being formed and this peptide has tissue-protective actions that 
are generally opposite to the unwanted chronic effects of excessive Ang 
II [21]. However, pre-existing ACE2 deficiency (as documented for 
elderly patients, diabetes mellitus, lung disease, hypertension, and 
chronic disease) contributes to an unfavorable outcome in SARS-CoV-2 
infection [1,2,48]. 

Interestingly, other angiotensinases (POP and PRCP) participate in 
the angiotensin cleavage pathway, sharing substrate specificity with 
ACE2, the entrance receptor for SARS-CoV-2 [63]. 

The relative activity of each of the Ang1,7 forming enzymes and their 
changes in the cardiovascular continuum disease, need to be taken into 
consideration in the pathogenesis of COVID-19 and adverse reactions 
following COVID-19 vaccination. The changes in the angiotensin 
cleavage pathway by ACE2 are not obligatorily accompanied by similar 
changes in other angiotensinases levels and activities. 

In the acute phase of SARS-CoV-2 infection, ACE2 expression and 
activity are reduced among subjects at high cardiovascular risk; more-
over, POP and PRCP exhibit ineffective counterbalance properties to 
avoid Ang II accumulation. These mechanisms explain the increased risk 
of severe COVID-19 among patients with specific phenotypes of ACE2 
deficiency [3,8,11,12,48]. 

After vaccination, the free-floating Spike proteins released by the 
cells targeted by vaccines may interact with ACE2 of other cells, thereby 
promoting ACE2 internalization and degradation [16,79], Ang II accu-
mulation, and adverse reactions ("Spike effect" of COVID-19 vaccines) 
[16]. However, current knowledge supports the hypothesis of the pro-
tective effect of an enhanced expression of other angiotensinases on 
COVID-19 vaccines injury. The relative over-expression of POP and 
PRCP among subjects with cardiovascular risk factors or previous car-
diovascular events may limit the detrimental effect of ACE2 deficiency 
on Ang II accumulation. Conversely, the relative deficiency of POP and 
PRCP among young and healthy subjects does not counterbalance ACE2 
internalization, downregulation and malfunction due to free-floating 
Spike proteins interactions, resulting in an increased risk of Ang II 
accumulation, and adverse reactions ("Spike effect" of COVID-19 
vaccines). 

Gaining a greater understanding of angiotensinases’ multi-faceted 
biological functions could open up novel therapeutic avenues. Indeed, 
these findings may have important implications for therapeutic purposes 
when targeting Ang1,7 formation from Ang II in the circulation and 
specific organs. For each of these Angiotensinases, specific pharmaco-
logical inhibitors are available, allowing more functional studies and 
investigations on their potential as therapeutic targets [64]. 

As recently highlighted [4], compounds with insurmountable inhi-
bition of ACE2, blocking or attenuating the binding of the viral Spike 
protein to the pocket of the ACE2 receptor, have the potential to prevent 
viral internalization. However, pharmacological inhibition of ACE2 
should be modulated without blocking the crucial protective properties 
of this enzyme [4]. Moreover, protein engineering approaches to 
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identify binders to viral entry proteins may offer an alternative thera-
peutic strategy to ameliorate the potential detrimental effects of the 
interaction between ACE2 and Spike proteins [16]. The use of vaccines 
encoding mutated Spike proteins with conformational change might 
partly lose adherence to ACE2 receptors [92,93] and reduce Ang II 
accumulation. 

Future studies are needed to fully evaluate these mechanisms and the 
role of inhibitors of Ang II accumulation preventive therapy. Moreover, 
the exact role of other processes involved in the production of Ang1,7 
needs to be more clearly evaluated. Indeed, Ang1,7 can be formed 
directly from Ang I. Combined ACE/Neprilysin inhibition decreases 
Ang1,7 formation from Ang I infusion suggesting a critical role of 
Neprilysin on the formation of Ang1,7 directly from Ang I [94]. 
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