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Stroke is one of the leading causes of death and disability worldwide. Brain injury after
ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative
stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation,
neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors
are associated with dysfunctional energy metabolism after stroke. Mitochondria are
organelles that provide adenosine triphosphate (ATP) to the cell through oxidative
phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly
changing and that they maintain the normal physiological functions of the cell through
continuous division and fusion. Mitochondrial dynamics are closely associated with
various pathophysiological mechanisms of post-stroke brain injury. In this review,
we will discuss the role of the molecular mechanisms of mitochondrial dynamics in
energy metabolism after ischemic stroke, as well as new strategies to restore energy
homeostasis and neural function. Through this, we hope to uncover new therapeutic
targets for the treatment of ischemic stroke.

Keywords: energy metabolism, ischemic stroke, molecular mechanisms, mitochondrial dynamics, therapeutic
target

INTRODUCTION

Stroke is an acute cerebrovascular disease resulting in cerebral blood circulation disorders due to the
sudden rupture or occlusion of blood vessels in the brain. Stroke is associated with high morbidity,
mortality, and rates of disability (GBD 2016 Stroke Collaborators, 2019), and can be classified as
either ischemic or hemorrhagic. Currently, stroke has become the second leading cause of death
globally (Lindsay et al., 2019), and is the primary cause of death in China (Wang Y. et al., 2020).
It has been a difficult endeavor to save more lives and improve neurological recovery after stroke.
As such, this challenge emphasizes the growing need for therapeutic agents that can mitigate brain
injury and promote neurological recovery after stroke.

Energy metabolism is an important basis for cellular function, as it is the process by which cells
utilize nutrient substances, such as sugars and fats, and produce adenosine triphosphate (ATP).
Additionally, ATP is broadly used in cellular activities, and is necessary for ensuring a normal cell
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lifespan. Mitochondria, which are commonly considered the
powerhouse of the cell, are a major site of oxidative metabolism
in eukaryotes, and are where sugars, fats, and amino acids are
ultimately oxidized to release energy (Cardoso et al., 2010). The
state of cellular energy metabolism is closely associated with
mitochondrial dynamics, which refers to the dynamic process
of mitochondrial fusion and division. Mitochondria maintain a
steady state in the mitochondrial network through continuous
fusion-division, thus maintaining the normal physiological
function of cells (Dorn and Kitsis, 2015). Mitochondrial
dynamics are involved in the formation and regulation of
mitochondrial permeability transition pores (MPTPs), reactive
oxygen species (ROS), and neuronal apoptosis (Roy et al., 2015).
Mitochondrial dynamics can affect energy metabolism and post-
stroke neuronal function by regulating the number, morphology,
and function of mitochondria.

To identify potential interventional targets and novel
diagnostic methods, it is crucial to understand the molecular
mechanisms, especially those of mitochondrial dynamics after
ischemic stroke. Herein, we will discuss the role of mitochondrial
dynamics, as well as the energy metabolism involved in
ischemic stroke. Moreover, an improved understanding of how
mitochondrial dynamics affect energy metabolism will provide
opportunities for the development of new therapeutic strategies
targeting mitochondrial fusion and division after ischemic stroke.

MITOCHONDRIAL DYNAMICS AND
ENERGY METABOLISM IN THE BRAIN

Cell energy metabolism refers to the metabolic pathway of
ATP synthesis associated with nicotinamide adenine dinucleotide
(NADH) turnover (Rigoulet et al., 2020). This pathway
mainly includes the decompositional metabolism of sugar
(aerobic oxidation, glycolysis, and phosphate sugar pathway),
the tricarboxylic acid (TCA) cycle, fatty acid oxidation and
synthesis, amino acid metabolism, and vitamin metabolism.
Mitochondria are “energy factories” in eukaryotic cells, and
are key sites of oxidative phosphorylation. Mitochondria are
organelles that are present in most cells and are coated by
two layers of membrane. Mitochondria can be divided into
four functional regions: the outer mitochondrial membrane
(OMM), intermembrane space (IMS), inner mitochondrial
membrane (IMM), and mitochondrial matrix (listed in order
from outside to inside). The proton concentration gradient
originating from the electron transport chain in the IMM drives
ATP generation (Scheffler, 2001). Moreover, mitochondria are
highly mobile. Mitochondrial dynamics include fusion, division,
selective degradation, and transport processes. Dynamic changes
in mitochondria are important for immunity, apoptosis, and the
cell cycle. These dynamic transformations are mainly mediated
by large GTPases that belong to the dynamin family (Tilokani
et al., 2018). In addition to generating energy, mitochondria can
also drive cell dysfunction or death either passively (through ROS
toxicity) or actively (through programed necrosis and apoptosis).
Mitochondrial division and fusion play central roles in these
processes (Dorn and Kitsis, 2015).

Mitochondrial Dynamics
Mitochondrial fusion refers to the merging of two mitochondria
into a single mitochondrion (Figure 1). Because mitochondria
have two layers of membrane, the process of mitochondrial fusion
consists of outer membrane fusion and inner membrane fusion
(Table 1). The tether is a physical connection between the two
mitochondrial outer membranes, and is a prerequisite for actual
membrane fusion (Koshiba et al., 2004). Mitofusin1 (Mfn1) and
Mfn2 mediate fusion of the OMM, and optic atrophy protein
1 (Opa1) mediates fusion of the IMM (Chiurazzi et al., 2020).
The overexpression of Mfn2 could increase mitochondrial fusion
(Qin et al., 2020). However, the absence of Mfn1, Mfn2 (Hoppins,
2014), or Opa1 can lead to mitochondrial fragmentation (Song
et al., 2007). Mitochondrial fusion can also facilitate the exchange
of matrix contents among mitochondria through brief contact
without resulting in a morphological merge. This is described as
kiss-and-run fusion events (Chan, 2020). Mitochondrial fusion,
and the material exchanged between mitochondria, optimize
mitochondrial function and avoid damage accumulation due
to mutations in mitochondrial DNA aging (Westermann, 2010;
Chen et al., 2011; Cohen and Tareste, 2018).

Mitochondrial fission is the division of a mitochondrion
into two smaller mitochondria (Figure 1), and dynamin-related
GTPase1 (Drp1) plays a crucial role in this process (Table 1).
Drp1 is recruited through four single-way transmembrane Drp1
receptors anchored on the OMM: mitochondrial fission factors
(Mffs), mitochondrial kinetic proteins 49 and 51(MiD49 and
MiD51), and Fis1 (Pagliuso et al., 2018). Mitochondrial fission
usually occurs at the endoplasmic reticulum (ER)-mitochondrial
contact site (Lewis et al., 2016). Additionally, the contraction
of mitochondria is Drp1-independent, and ER tubules are more
important in defining the position of mitochondrial fission sites
(Friedman et al., 2011). However, mitochondrial fusion and
fission are colocalized in ER membrane contact sites (MCSs;
Guo et al., 2018). Therefore, mitochondrial fission and fusion
could be regulated by controlling certain enzyme-like nodes
on the ER MCS (Abrisch et al., 2020). Mitochondrial fission
can irreparably fragment mitochondria, remove organelles to
maintain mitochondria quality, and protect the normal function
of the mitochondrial network (Nunnari, 2007).

Mitochondrial dynamics can regulate mitochondrial
morphology, promote mitochondrial substance exchange,
maintain mitochondrial DNA and inheritance, and eliminate
damaged mitochondria. Normal regulation of mitochondrial
dynamics is important in maintaining regular cell activity.
Dysregulation of Mitochondrial dynamics plays an important
role in driving cell death. Mitochondrial dynamics also play a
role in necroptosis. The mitochondrial phosphatase, PGAM5,
dephosphorylates Drp1Ser-637, leading to increased ROS and
mitochondrial division, as well as promotion of necroptosis
(Wang et al., 2012; Yu et al., 2020). When the energy supply is
decreased, the increased levels of ADP and AMP can promote
mitochondrial division and induce autophagy by activating
MiD51 and Mff, respectively (Ducommun et al., 2015; Toyama
et al., 2016). In addition, the reduction in Opa1 leads to an
increase in autophagy (White et al., 2009). Mitochondrial fission
is a necessary step in apoptosis (Xie et al., 2018). Apoptosis
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FIGURE 1 | Schematic diagram of mitochondrial dynamics. Mitochondrial fission is the division of mitochondria into two smaller mitochondria, and the
dynamin-related GTPase Drp1 plays a crucial role in this process. Drp1 was recruited through four single-way transmembrane Drp1 receptors anchored on the outer
mitochondrial membrane (OMM): mitochondrial fission factors (Mff), mitochondrial kinetic proteins 49 and 51(MiD49 and MiD51), and Fis1. Mitochondrial fusion
refers to the merging of two mitochondria into one. Mitofusin1 (Mfn1) and mitofusin2 (Mfn2) mediate mitochondrial outer membrane fusion, and optic atrophy protein
1 (Opa1) mediates the fusion of mitochondrial inner membrane.

is a unique and important mode of programed cell death
(Elmore, 2007) that maintains the number of cells in tissues,
and it functions as a defense mechanism in the immune
response (Norbury and Hickson, 2001). Drp1 can promote Bax
translocation to the mitochondria (Montessuit et al., 2010),
change the permeability of the mitochondrial membrane, release
cytochrome C (Cyt-c), cause a cascade reaction, and lead to
apoptosis. Mitochondrial fusion can protect cells from apoptosis
(Bueler, 2010). Opa1 maintains the stability of mitochondrial
cristae (Varanita et al., 2015) and Mfn2 interferes with Bax

TABLE 1 | Mitochondrial dynamics related proteins.

Mitochondrial dynamics Proteins References

Mitochondrial
fusion

OMM fusion Mfn1 Mfn2 Sokoloff et al., 1977; Bruick,
2000; Sowter et al., 2001;
Falkowska et al., 2015; Um and
Yun, 2017; Cheng et al., 2018;
Rodger et al., 2018; Williams
and Ding, 2018

IMM fusion Opa1

Mitochondrial
fission

Cytoplasm Drp1 Herrero-Mendez et al., 2009;
Belanger et al., 2011; Lunt and
Vander Heiden, 2011; Nortley
and Attwell, 2017; Magistretti
and Allaman, 2018; Bordone
et al., 2019

Mitochondria Mff MiD49
MiD51 Fis1

OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane; Mfn1,
mitofusin1; Mfn2, mitofusin2; Opa1, optic atrophy protein 1; Drp1, dynamin-related
protein 1; Mff, mitochondrial fission factors; MiD49, mitochondrial kinetic proteins
49; MiD51, mitochondrial kinetic proteins 51; Fis1, mitochondrial fission protein 1.

translocation by promoting mitochondrial fusion (Neuspiel
et al., 2005). However, both Drp1 and Opa1 can prevent
apoptosis. A variety of cell death patterns, such as apoptosis,
necrosis, phagoptosis, and autophagy, form a complex network
with different molecular mechanisms after stroke (Fricker et al.,
2018), which suggests that mitochondrial dynamics may play
an important role in cell death after stroke. However, in this
review we mainly focused on the molecular mechanisms of
mitochondrial dynamics in apoptosis after ischemic stroke.

In addition, mitophagy is a defensive mechanism that
selectively removes damaged or unnecessary mitochondria
via autophagy, which plays an important role in maintaining
mitochondrial quality control and homeostasis (Gustafsson
and Dorn, 2019). Mitophagy is mediated by autophagy-related
proteins. Autophagy-related proteins specifically recognize and
bind to functionally defective mitochondria so that they become
fused with lysosomes to complete the degradation of damaged
organelles and proteins (Gustafsson and Dorn, 2019). Mitophagy
is closely associated with many functions and physiological
processes in cells, such as cell differentiation and development,
cell programing, cell death, and the immune response (Um and
Yun, 2017). Molecular mechanisms of mitophagy involve PTEN-
induced putative kinase 1(PINK1)/Parkin, BCL2/adenovirus
E1B 19kDa-interacting protein 3 (BNIP3)/BCL2/adenovirus
E1B 19kDa-interacting protein 3-like (NIX), FUN14 domain
containing 1 (FUNDC1), BCL2-like 13(BCL2L13), FK506-
Binding Protein 8 (FKBP8), and Cardiolipin (Rodger et al.,
2018; Williams and Ding, 2018). BNIP3/NIX is associated
with hypoxia-induced mitophagy, and the levels of BNIP3
and NIX are upregulated by hypoxia-inducible factor
(HIF-1α) transcription (Bruick, 2000; Sowter et al., 2001),
suggesting that this pathway may be involved in the brain
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damage that occurs as a result of the hypoxic ischemia that
manifests after stroke.

Energy Metabolism in the Brain
Energy Metabolism in the Brain Under Normal
Physiological Conditions
The weight of the brain accounts for only 2% of total body
weight. However, the brain accounts for 25 and 20% of glucose
and oxygen consumption in the body, respectively (Sokoloff
et al., 1977). Under aerobic conditions, ATP in brain cells is
primarily derived from glucose that is consumed in the TCA cycle
occurring in the mitochondria for oxidative phosphorylation.
Moreover, the uptake and utilization of glucose by cells in
the brain are associated with specific features. This process
requires several cell types, which comprise the neurovascular
unit, to coordinate and complete it. The neurovascular unit
is composed of brain capillary endothelial cells, pericytes,
astrocytes, oligodendrocytes, microglia, and neurons (Cheng
et al., 2018; Figure 2). Glucose enters cells through specific
glucose transporters (GLUTs), such as GLUT1, GLUT2, and
GLUT7 in astrocytes, GLUT1 in oligodendrocytes, and GLUT3
and GLUT4 in neurons. Additionally, glucose is phosphorylated
by hexokinase to produce glucose-6-phosphate (Falkowska
et al., 2015). Glucose 6-phosphate can be processed through
various metabolic pathways (e.g., glycolysis, pentose phosphate
pathway, and glycogenesis). Numerous metabolic intermediates
formed by glucose in the brain, such as lactate, pyruvate,

glutamate, or acetate, can also be utilized to produce energy
(Belanger et al., 2011).

In the brain, different cell types have different metabolic
characteristics. There is dynamic regulation between astrocytes
and neurons known as the astrocyte–neuron lactate shuttle
(Bordone et al., 2019; Figure 2). Neurons release glutamate to
stimulate astrocytes to take up glucose (Magistretti and Allaman,
2018). Due to the low activity of pyruvate dehydrogenase in
astrocytes, it is easier to produce lactic acid via aerobic glycolysis
in the cytoplasm, which is also known as the Warburg effect
in cancer cells (Lunt and Vander Heiden, 2011; Magistretti
and Allaman, 2018). Astrocytes play a significant role in
regulating the energy supply of the brain, but it remains unclear
whether the lactic acid produced by astrocytes is fuel for
neurons (Nortley and Attwell, 2017). Neurons lack fructose 6-
phosphate-2-kinase/fructose-2,6- bisphosphatase-3(Pfkfb3), thus
demonstrating a slower rate of glycolysis than other cells.
However, neurons can efficiently utilize lactic acid (Herrero-
Mendez et al., 2009; Bolanos, 2016). After glucose is transported
through the blood-brain barrier (BBB) and the cell membrane,
it is transformed into pyruvate via anaerobic glycolysis in the
cytoplasm, which leads to the generation of 2 mol of ATP. Each
mole of glucose pyruvate is subsequently transported to the
mitochondria, and is then converted into acetyl coenzyme A,
which then participates in the TCA cycle. During the subsequent
steps of the TCA cycle, oxidative phosphorylation produces an
additional 30 mol of ATP per mole of glucose. This process is
closely associated with the TCA cycle, electron transfer in the

FIGURE 2 | Energy metabolism in the brain. The uptake and utilization of glucose by cells in the brain requires the neurovascular unit, which is composed of brain
capillary endothelial cells, pericytes, astrocytes, oligodendrocytes, microglia, and neurons. Glucose enters cells through specific glucose transporters (GLUTs), such
as GLUT1, GLUT2, and GLUT7 in astrocytes, GLUT1 in oligodendrocytes, and GLUT3 and GLUT4 in neurons. Numerous metabolic intermediates formed by
glucose in the brain can also be oxidized to produce energy, such as lactate, pyruvate, and glutamate. The dynamic regulatory mechanism of lactic acid metabolism
between astrocytes and neurons is known as the astrocyte–neuron lactate shuttle. Neurons release glutamate to stimulate glucose uptake by astrocytes. Astrocytes
produce lactic acid by aerobic glycolysis in the cytoplasm and then transport to neurons.
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respiratory chain, oxygen consumption, and the production of
carbon dioxide and water. In addition to basic cell activities, the
energy produced by various cells in the brain is mainly used to
maintain and restore ion gradients that are dissipated by signaling
processes (e.g., postsynaptic and action potentials), as well as
participate in the uptake and recycling of neurotransmitters
(Attwell and Laughlin, 2001).

Energy Metabolism in the Brain After Ischemic Stroke
Obviously, ischemic hypoxic brain injury after stroke is
closely associated with energy metabolism disorder. However,
there are various pathophysiological mechanisms involved
in brain damage after stroke, such as oxidative stress,
mitochondrial dysfunction, excitotoxicity, calcium overload,
neuroinflammation, acidosis, neuronal apoptosis, and BBB
disruption (Moskowitz et al., 2010; Sekerdag et al., 2018). The
normal supply of glucose and oxygen is cut off during cerebral
ischemia, although astrocytes can synthesize and store glycogen,
as well as metabolize glycogen into lactic acid to provide
energy for neurons (Mergenthaler et al., 2013; Falkowska et al.,
2015). When the glucose supply is insufficient, ketone bodies
and lactic acid can also become substrates for brain energy
metabolism (Sokoloff, 1981). In early ischemia, when synaptic
activity disappears, adenosine is released to block presynaptic
Ca2+ influx and inhibit glutamate release (Hofmeijer and
van Putten, 2012). This early inhibition of glutamate release
prevents glutamate excitotoxicity. However, if the ischemic
period is prolonged, neuronal cells cannot maintain the normal
transmembrane concentration gradient, which causes neuronal
signal impairment. Conversely, synaptic terminal depolarization
releases the neurotransmitter glutamate. Furthermore, the
reabsorption of glutamate clearance from the synaptic space
leads to glutamic acid accumulation, excessive stimulation of
N-methyl-D-aspartate (NMDA) receptors, high levels of calcium
influx, mitochondrial depolarization, the release of Cyt-c, and
neuronal apoptosis (Harris et al., 2012; Campbell et al., 2019).

After stroke, different regions comprising the stroke lesion
will exhibit various metabolic characteristics. The location of
the stroke lesion can be divided into three regions according
to cerebral blood flow (CBF; Pushie et al., 2018). The ischemic
core area is the central region of brain tissue infarct. The
ischemic periphery region surrounding the core is divided into
two components. One is close to the infarct area. Here, there
are a large number of cells undergoing oxidative stress due to
the reduced blood supply, but timely reperfusion therapy can
save this section of tissue, known as the ischemic penumbra.
The ischemic peripheral region is relatively far from the infarct
area, and the blood circulation is relatively similar to that of
normal tissue. The levels of glucose utilization, ATP, lactic acid,
creatine phosphate, and pH varies according to CBF changes
(Leigh et al., 2018). The ischemic penumbra cannot be rescued
and it expands into the infarct area when CBF decreases beyond
a certain threshold (Astrup et al., 1981). Currently, it is an
important objective in stroke treatment to identify ischemic
penumbral tissue based on PET/CT and related brain metabolism
(Sarrafzadeh et al., 2010; Zenonos and Kim, 2010), and to treat
it in a timely manner. Due to the different metabolic demands

of grey matter (GM) and white matter (WM), the CBF and
cerebral blood volume (CBV) thresholds of the damaged region
are different (An et al., 2015; Leigh et al., 2018). Moreover, GM
is more susceptible to ischemia than WM because GM has a
higher CBF, CBV, and apparent diffusion coefficient (ADC), as
well as a shorter mean transit time (MTT; Bristow et al., 2005).
GM mainly includes neuronal cell bodies, dendrites, and axons,
which are used for local information, while WM mainly includes
axons, oligodendrocytes, and astrocytes. Neuronal apoptosis
or necrosis results from excessive free radical production,
calcium overload, and excitotoxicity following ischemia and
hypoxia (Radak et al., 2017). The decreased blood supply after
stroke leads to the destruction of axonal electrophysiological
characteristics and nutritional dysfunction in WM. The effect
of glutamate metabolism on astrocytes induces excitotoxicity
in oligodendrocytes (Wang et al., 2016). After reperfusion,
energy metabolism does not immediately return to baseline as
expected. The activation of platelets and complement systems, the
release of inflammatory mediators, and neuronal mitochondria in
the ischemic penumbra overcompensate for ischemic injury by
inducing metabolic pathways, which leads to the excessive release
of ROS. All of these factors contribute to neuronal death and
brain injury after ischemia-reperfusion (Al-Mufti et al., 2018).

THE ROLE OF MITOCHONDRIAL
DYNAMICS IN BRAIN INJURY AFTER
ISCHEMIC STROKE

The Molecular Mechanisms of
Mitochondrial Dynamics in the Ischemic
Stroke
The mechanism of mitochondrial division and fusion is complex,
and not only affects energy metabolism in cells, but also
induces apoptosis. After cerebral ischemia and hypoxia, changes
in mitochondrial dynamics also greatly impact the survival
of nerve cells. Seventy percent of neuronal energy is used
to maintain the sodium and potassium pump on the cell
membrane. The ATP supply is insufficient after stroke, which
leads to depolarization of the neuronal plasma membrane,
release of the excitatory neurotransmitter, glutamate, and causes
glutamate excitotoxicity (Doyle et al., 2008). Ischemia induced an
increase in glutamate release from neurons and astrocytes, which
leads to overstimulation of NMDA and α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid (AMPA) receptors. Glutamate
excitotoxicity and oxidative stress influence mitochondrial
division and fusion, as well as the imbalance in mitochondrial
division and fusion, leading to NMDA receptor upregulation and
oxidative stress (Nguyen et al., 2011). Next, we will review the
molecular mechanisms of mitochondrial dynamics in post-stroke
injury (Figure 3).

Calcium Overload
Excessive calcium enters cells, activates many calcium-dependent
proteases, lipases, and deoxyribonucleases, and leads to cell death
(Besancon et al., 2008). The mitochondrial calcium uniporter
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FIGURE 3 | Molecular mechanisms of mitochondrial dynamics in post-ischemic stroke injury. Cerebral ischemia and hypoxia lead to the imbalance of mitochondrial
division and fusion, which is related to calcium overload, reactive oxygen species (ROS), mitochondrial permeability transition pores(MPTP), apoptosis, and
mitophagy. MCU, mitochondrial calcium uniporter; NMPAR, N-methyl-D-aspartate receptors; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
receptors; [Ca2+] ext, calcium ion concentration in extracellular; [Ca2+] cyt, calcium ion concentration in cytoplasmic; [Ca2+] mit, calcium ion concentration in
mitochondria.

(MCU), a calcium transporter in mitochondria, plays a vital
role in maintaining intracellular homeostasis by transporting
Ca2+ from the cytoplasm into the mitochondrial matrix (Zhao
et al., 2013; Kwong et al., 2015). Mitochondrial Ca2+ controls
energy production and metabolism by regulating key enzymes
and fatty acid oxidation in the TCA cycle. Calcium overload
in the cytoplasm activates calcineurin, and dephosphorylates
Drp1 at serine 637, leading to Drp1 accumulation from the
cytoplasm to the OMM. Promoting mitochondrial division and
ROS production, but inhibiting mitochondrial division by using
mitochondrial division inhibitor 1(Mdivi-1), Drp1siRNA, or
calcineurin inhibitors shows that mitochondrial morphology is
retained, intracellular calcium ions are reduced, and cell death
is prevented in cardiac ischemia-reperfusion injury (Sharp et al.,
2014). Inhibiting Drp1 can participate in neuroprotection by
combating glutamate toxicity in vitro and ischemic brain injury
in vitro (Grohm et al., 2012). Calcium overload also causes
mitochondria to release apoptotic factors and induce apoptosis
(Pivovarova et al., 2004).

Reactive Oxygen Species
Reactive oxygen species and oxidative stress are important
causes of tissue damage during cerebral ischemia (Crack and
Taylor, 2005). Mitochondria are thought to be the main origin
of intracellular ROS (Bayir and Kagan, 2008). Oxygen-free

radicals are highly active and have the ability to destroy
cellular components (Droge, 2002). Changes in ROS lead to
changes in the expression or activity of proteins associated
with mitochondrial dynamics that affect mitochondrial fusion
and division (Cid-Castro et al., 2018). In general, elevated ROS
levels trigger mitochondrial fission. It is worth mentioning that
phosphorylation at different sites of Drp1 differentially affects
mitochondrial dynamics. The increase in ROS promotes Drp1
activation through Ser616 phosphorylation, which promotes
mitochondrial fission (Cho et al., 2012). However, Drp1
serine 637 phosphorylation inhibits mitochondrial fission.
The phosphorylation of Drp1 at tyrosines 266, 368, and
449 leads to mitochondrial division and neuronal death
(Zhou et al., 2017). The Drp1-mitochondrial fission ROS
cycle may play a role in central nervous system (CNS)
diseases (da Rosa et al., 2020). There is an interaction
between mitochondrial dynamics and ROS production. On
one hand, increased mitochondrial division will increase the
production of ROS, but inhibition of mitochondrial division
can restore ROS levels to normal (Zhang Y. K. et al.,
2020). On the other hand, the increase of ROS will promote
the activation of Drp1, leading to increased mitochondrial
division (Youle and van der Bliek, 2012; Cid-Castro et al.,
2018), thereby further increasing the production of ROS,
whereas knocking out Drp1 reduces oxidative stress-induced
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mitochondrial fragmentation (Youle and van der Bliek, 2012).
This cyclic reaction will aggravate mitochondrial dysfunction
after stroke, increase the level of ROS, and increase brain
damage after stroke. After inhibiting ROS levels in a mouse
model of stroke, mitochondrial dysfunction, obstruction volume,
and neurological deficits were reduced (Hwang et al., 2020).
From this perspective, interrupting this cycle by reducing ROS
levels or inhibiting mitochondrial division is a key part of
stroke treatment. Studies have shown that inhibiting excessive
mitochondrial division could protect against neurotoxicity
(Rappold et al., 2014). Hyperbaric oxygen (HBO) can also reduce
brain damage by regulating Drp1 phosphorylation (Ni et al.,
2020). ROS can also activate OMA1 to promote the cleavage of
L-Opa1 to S-Opa1, resulting in mitochondrial crest remodeling
and Cyt-c release, further resulting in increased apoptosis (Zhang
K. et al., 2014).

Mitochondrial Permeability Transition Pores
The MPTP is a channel that triggers a sudden increase in the
permeability of the mitochondrial inner membrane when there
is mitochondrial calcium overload, especially when combined
with oxidative or nitrite stress and/or ATP depletion (Bernardi,
1999). When the MPTP is open, it can lead to a rapid increase in
the osmotic pressure of the matrix solute, rupture of the OMM,
collapse of the mitochondrial membrane potential (19m), and a
reduction in intracellular ATP, which eventually leads to necrotic
cell death (Kinnally et al., 2011). The MPTP can also be used as a
physiological efflux pathway, and can open transiently (Altschuld
et al., 1992). In cyclophilin D-knockout mice, transient activation
of the MPTP could protect neurons from cytoplasmic Ca2+

overload (Barsukova et al., 2011). Mitochondrial matrix calcium
overload is the main mechanism of MPTP opening, and plays
an important role in regulating the MPTP (Hurst et al., 2017).
Moreover, ROS can also regulate the activity of the MPTP
(Halestrap et al., 1997). Hence, the opening of the MPTP is
involved in the pathophysiological mechanism after stroke. The
infarct size after transient occlusion of the artery can be reduced
by the cyclosporine A analog, N-methyl-Val-4-cyclosporin A
(Me ValCsA), which blocks the MPTP (Matsumoto et al.,
1999). Melatonin and atorvastatin can also block the MPTP
and the release of Cyt-c from mitochondria, thereby reducing
neuronal apoptosis after ischemia-reperfusion (Andrabi et al.,
2004; Song et al., 2014). Treatment of HL-1 cells with Drp-
1 inhibitors reduces mitochondrial permeability transition pore
sensitivity after cardiac ischaemia-reperfusion (Ong et al., 2010).
In Mfn-2-deficient mice, MPTP opening is delayed. Therefore,
Mfn-2 participates in the regulation of the MPTP and triggers
death in cardiomyocytes (Papanicolaou et al., 2011).

Apoptosis
After apoptotic stimulation, apoptotic members of the Bcl-2
protein family, such as Bax and Bak, insert into the mitochondrial
outer membrane (Ader et al., 2019) and change the permeability
of the OMM, thus mediating the release of apoptosis-related
factors, such as Cyt-c, second mitochondria-derived activator
of caspases (Smac), and apoptosis-inducing factor (AIF) from
mitochondria into the cytoplasmic matrix (Jurgensmeier et al.,

1998; Susin et al., 1999; Jeong and Seol, 2008). Apoptosis-related
factors in the cytoplasm activate caspase-9, causing cascade
reactions, consequently leading to apoptosis (Green and Reed,
1998). However, mitochondrial dynamics is involved in the
regulation of apoptosis (Frank et al., 2001). The dominant-
negative mutant of Drp1, as well as siRNA-mediated silencing
of Drp1, could reduce apoptosis in Q111/0 cells in Huntington’s
disease (Costa et al., 2010). By inhibiting Drp1 activation,
mitochondrial debris and ROS can be reduced, and neuronal
damage can be alleviated (Zhou et al., 2020). Using propofol to
treat oxidation-injured neurons could reduce the expression of
Fis1 and increase the expression of Mfn1, maintaining normal
levels of these two proteins, thus reducing the expression of
apoptotic proteins in neurons and alleviating neuronal damage
induced by hypoxia (Zhang H. S. et al., 2020). Research has shown
that inducing mitochondrial fission via activation of Drp1 and
Mff results in apoptosis in hippocampal neuronal cells (Zhang C.
et al., 2020).

Mitophagy
The regulation of mitochondrial autophagy is associated with
mitochondrial dynamics (Yoo and Jung, 2018), and is expected to
be a new target for ischemic stroke treatment (Guan et al., 2018).
In an acute model of mitochondrial damage induced by carbonyl
cyanide-m-chlorophenylhydrazone (CCCP), the ubiquitination
of mitofusin 1 (Mfn-1) and 2 (Mfn-2) is closely associated
with the induction of mitophagy, and the ubiquitination of
both proteins is dependent on parkin and PINK1, which play
crucial roles in mitophagy (Gegg et al., 2010). In Parkin-null
HeLa cells and in HEK293 cells with siRNA-mediated Parkin
knockdown, glycoprotein 78 (Gp78) induction of mitophagy was
Mfn1-dependent (Fu et al., 2013). In adult cardiac progenitor
cells (CPCs), knockdown of either Fundc1 or Bnip3l had no effect
on Mfn1/2 protein levels, but led to the activation of DNM1L and
the promotion of mitochondrial fission during differentiation
(Lampert et al., 2019). In proximal tubule-specific Fundc1-
knockout mice, Drp1 is overactivated and leads to mitochondrial
division (Wang J. et al., 2020). In traumatic brain injury (TBI)
models, the Drp1 inhibitor, Mdivi-1, could inhibit the activation
of PTEN-induced putative kinase 1 (PINK1)-Parkin mediated
mitophagy (Wu et al., 2018).

Mitochondrial Dynamics in Different
Neuronal Cells After Ischemic Stroke
Mitochondrial dynamics play various roles in different cells
after stroke. Because of the length of axons and special energy
requirements in neurons, the distribution, movement, and timely
fusion and repair of mitochondria are particularly important
in maintaining normal neuronal function (Mandal and
Drerup, 2019). Oxygen-glucose deprivation (OGD) can induce
mitochondrial division, leading to autophagy or apoptosis (Wu
et al., 2017). Astrocytic endfeet are enriched in mitochondria-ER
contact sites. These sites, as well as mitochondrial fusion, can
promote vascular remodeling after brain injury (Gobel et al.,
2020). After several hours of OGD, the length of the astrocytic
endfeet were shortened, mitochondrial fission was delayed, and
the mitochondria were lost (O’Donnell et al., 2016). Increased
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mitochondrial division in astrocytes during hypoxia may be a
possible method of increasing mitochondrial energy production
(Quintana et al., 2019). In microglia, the inflammatory response
induced by OGD can be improved by inhibiting mitochondrial
fission (Zhou et al., 2019b). Mitochondrial division can also
promote the production of mitochondrial ROS in microglia by
activating NF-κB and mitogen-activated protein kinase (MAPK),
and by inducing the expression of proinflammatory mediators
(Park et al., 2013). The neurovascular unit is composed of
neurons, glial cells, such as astrocytes and microglia, vascular
cells, such as endothelial cells and perivascular cells, and
basement membrane (Iadecola, 2017). After inducing excessive
mitochondrial division, endothelial cell death also increased (Rao
et al., 2020). After stroke, changes in mitochondrial dynamics
affect the cells of the neurovascular unit, thus destroying the
BBB. Using Mdivi-1 to inhibit mitochondrial division can reduce
damage to the BBB after TBI (Wu et al., 2018). Oligodendrocytes
primarily wrap axons and form insulated myelin structures,
which are essential in maximizing the conduction and velocity
of the action potential. Unlike neurons, mitochondria are
sparsely distributed in oligodendrocytes with poor fluidity, and
glutamate activation can promote mitochondrial motility in
oligodendrocytes (Rinholm et al., 2016). However, unlike in
astrocytes, the use of mitochondrial division inhibitor 1 makes
oligodendrocytes sensitive to excitotoxicity and ER stress due

to their non-targeted effects, resulting in oxidative stress and
apoptosis (Ruiz et al., 2020).

The Role of Mitochondrial Dynamics in
Ischemic Stroke
As mentioned previously, the interaction between calcium
overload, ROS production, and the MPTP leads to an
increase in mitochondrial fission in ischemic stroke. Although
increased mitochondrial fission during hypoxia may increase
mitochondrial energy production, which is beneficial in the
maintenance of neural function after stroke (Quintana et al.,
2019), inducing mitochondrial fission is detrimental to neurons
(Zhang C. et al., 2020). However, inhibiting Drp1 to restore
the balance of mitochondrial fission and fusion could reduce
Bax oligomerization and the release of apoptotic factors after
ischemic stroke, thereby reducing the volume of cerebral
infarction (Zhao et al., 2014). Exercise preconditioning could
promote mitochondrial fusion after cerebral ischemia by up-
regulating OPA1, thus reducing cerebral edema and improving
neurologic function in ischemic stroke (Zhang L. et al., 2014).
Mitochondrial fission can clear damaged mitochondria through
autophagy, but excessive mitochondrial division affects the
normal function of mitochondria so that the production of
ATP is reduced (Wai and Langer, 2016; Sprenger and Langer,

TABLE 2 | Drugs targeting mitochondrial dynamics after ischemic stroke.

Target Treatment Mechanism Effect References

Inhibit mitochondrial fission Atractylenolide III Reduce Drp1 phosphorylation and
translocation by inhibiting the
JAK2/STAT3 pathway

Attenuate cerebral edema and
neurological deficits

Zhou et al., 2019a

AG490

miR-7 mimics Repress α-synuclein, a protein that
induces mitochondrial fragmentation

Reduce the post-ischemic lesion
volume, accelerate motor function
recovery, and ameliorate motor and
cognitive deficits in mice

Kim et al., 2018

Nitric Oxide Synthase 3
(NOS3) inhibition

Regulate Miro-2 levels and prevent
mitochondrial division,

Promote axonal functional recovery Bastian et al., 2018

peptide P110 Inhibit the interaction between Drp1
and Fis1

Increase neuronal cell viability by
reducing apoptosis and autophagic cell
death

Qi et al., 2013

photobiomodulation
therapy

Inhibit hypoxic-ischemic-induced
mitochondrial fragmentation

Reduce neuronal apoptosis in neonatal
hypoxic-ischemic encephalopathy

Tucker et al., 2018

Promote mitochondrial
fusion

Melatonin Upregulate Opa1 expression by
activating the Yap-Hippo pathway

Reduce infarct size and cerebral
reperfusion stress, inhibit neuronal
death

Wei et al., 2019

Restore the balance of
mitochondrial dynamics

B355252 Restore Mfn2, p-Drp1, and Fis1 levels Decrease the mitochondrial membrane
potential and ROS, reduce the
autophagy induction

Chimeh et al., 2018

deletion of Nurr1 Inhibit Fis1/Drp1 expression, reverse
the levels of Mfn2 and Opa1

Reduce neuronal death Zhang and Yu, 2018

subcutaneous injection of
G-CSF

Reduce levels of Beclin-1, Bax, Bak,
and Drp1, upregulate Opa1

Reduce apoptosis, and protect neurons
in cerebral ischemia

Modi et al., 2020

Others Mitochondrial
transplantation

Transfer of exogenous mitochondria
through local or systemic intra-arterial
injections

Reduce brain damage, cell death, and
motor function in MCAO rats

Huang et al., 2016;
Chang et al., 2019

B355252: 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl) phenoxy) thiophene-2-sulfon-amiden.
NOS, Nitric oxide synthase; G-CSF, granulocyte-colony stimulating factor.
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2019). Dysfunction of mitochondrial dynamics can lead to
obstacles in mitochondrial distribution and transport in neurons,
which can lead to insufficient local energy in neurons (Sheng,
2014). Excessive mitochondrial fission also affects intracellular
calcium homeostasis and exacerbates excitotoxicity (Wang et al.,
2015). However, mitochondrial fusion can repair damaged
mitochondria (Cohen and Tareste, 2018) and produce additional
energy by upregulating the activity of ATP synthase through
the remodeling of mitochondrial cristae (Gomes et al., 2011).
Therefore, inhibiting excessive mitochondrial fission, properly
promoting mitochondrial fusion, and restoring the balance
of mitochondrial dynamics are beneficial in recovery after
ischemic stroke.

TREATMENTS TARGETING
MITOCHONDRIAL DYNAMICS AFTER
ISCHEMIC STROKE

The clinical treatment of ischemic stroke primarily includes
acute stage treatment and subacute stage treatment. The acute
stage occurs within 4.5 h. If patients meet admission criteria
and have no thrombolytic contraindications, thrombolytic
therapy is recommended (Powers et al., 2018). Currently, great
progress has been made in endovascular treatment, such as
mechanical thrombectomy, which has played a great role in the
treatment of stroke (Prabhakaran et al., 2015). However, these
treatments still have limitations, such as a strict time window for
thrombolytic therapy, and there is a certain risk of complications,
such as hemorrhagic transformation (Yaghi et al., 2017).
Therefore, it is necessary to find new therapeutic targets and
to develop corresponding drugs. The mitochondrial dynamics
are closely associated with energy metabolism after stroke and
pathophysiological mechanisms, such as ROS, apoptosis, and
autophagy. Therefore, the molecular mechanisms associated
with mitochondrial dynamics may represent new directions in
ischemic stroke treatment. However, the excessive mitochondrial
division plays an essential role in ischemic stroke. Therefore, an
emphasis should be placed on inhibiting excessive mitochondrial
fission and restoring the balance of mitochondrial dynamics
when using mitochondrial dynamics as a focal point in the
treatment of ischemic stroke (Table 2).

Atractylenolide III and AG490 (an inhibitor of jak2)
therapy in middle cerebral artery occlusion (MCAO) mice
could reduce Drp1 phosphorylation and translocation, as
well as and mitochondrial division though the JAK2/STAT3
pathway, thereby attenuating cerebral edema and neurological
deficits (Zhou et al., 2019a). Melatonin upregulates Opa1
expression by activating the Yap–Hippo pathway, thereby
promoting mitochondrial fusion, reducing infarct size, inhibiting
neuronal death, and reducing cerebral reperfusion stress
(Wei et al., 2019). Opa1, Mfn2, p-Drp1, and FIS1 were
decreased to varying degrees in the mouse model of CoCl2-
induced cerebral hypoxia. However, 4-chloro-N-(naphthalen-
1-ylmethyl)-5-(3-(piperazin-1-yl) phenoxy) thiophene-2-sulfon-
amide (B355252) treatment could restore Mfn2, p-Drp1, and Fis1
levels, maintain mitochondrial stability, restore mitochondrial

membrane potential, and reduce ROS (Chimeh et al., 2018).
Injection of miR-7 mimic oligonucleotide after cerebral ischemia
could repress α-synuclein, a protein that induces mitochondrial
fragmentation, oxidative stress, autophagy, and the promotion of
neuronal cell death, thus reducing brain injury after stroke (Kim
et al., 2018). Nitric oxide synthase 3 (NOS3) inhibition regulates
Miro-2 levels, prevents mitochondrial division, and promotes
axonal functional recovery by protecting mitochondrial structure
and movement (Bastian et al., 2018). Fis1 and Drp1 are
increased, and both Mfn2 and Opa1 are downregulated
after cerebral ischemia-reperfusion, indicating that cerebral
ischemia-reperfusion induces excessive mitochondrial division
and prevents mitochondrial fusion. However, deletion of Nurr1
could inhibit Fis1/Drp1 expression, reverse the levels of Mfn2
and Opa1, correct the imbalance in mitochondrial division and
fusion, and reduce neuronal death (Zhang and Yu, 2018). In
a mouse model of bilateral common carotid artery occlusion,
subcutaneous injection of granulocyte-colony stimulating factor
(G-CSF) was used as treatment. G-CSF reportedly reduced the
levels of the autophagy marker, Beclin-1, and the proapoptotic
proteins, Bax, Bak, and Drp1, but upregulated the mitochondrial
fusion protein, Opa1. Therefore, G-CSF can maintain cellular
homeostasis by maintaining the stability of mitochondrial
dynamics, reducing apoptosis, and protecting neurons in cerebral
ischemia (Modi et al., 2020).

However, mitochondrial fission is necessary for maintaining
normal cellular function, and it is unrealistic to inhibit
mitochondrial fission completely. Some studies have focused
on the role of the interaction between Drp1 and its recruitment
molecules, such as Mff (Kornfeld et al., 2018) and Fis1 (Qi et al.,
2013), in physiological and pathological mitochondrial fission.
One study showed that peptide P259-mediated inhibition of
the Drp1-Mff interaction could influence normal mitochondrial
morphology and basic function under physiological conditions
(Kornfeld et al., 2018). The peptide P110 could inhibit the
interaction between Drp1 and Fis1, thus reducing excessive
mitochondrial fission under pathological conditions without
affecting physiological fission (Qi et al., 2013). Moreover,
some biomarkers, such as flavin adenine dinucleotide
fluorescence (Berndt et al., 2020), can be used as early
markers of mitochondrial damage during brain hypoxia,
which helps in studying the optimal time to administer drugs
targeting mitochondria. There are also some new therapies,
such as photobiomodulation therapy, which can inhibit
hypoxic-ischemia-induced mitochondrial fragmentation,
alleviate mitochondrial dysfunction and oxidative stress, and
ultimately reduce neuronal apoptosis in neonatal hypoxic-
ischemic encephalopathy (Tucker et al., 2018). Mitochondrial
transplantation is also on the rise, and the transfer of exogenous
mitochondria through local or systemic intra-arterial injections
reduces brain damage, cell death, and motor function in MCAO
rats (Huang et al., 2016; Chang et al., 2019).

CONCLUSION AND PERSPECTIVE

Energy metabolism after ischemic stroke is closely associated
with mitochondrial dynamics. Targeting mitochondrial
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dynamics-related molecular mechanisms and associated
processes, such as calcium overload, ROS, MPTP, apoptosis,
and mitophagy, can alleviate brain injury after stroke
by improving mitochondrial function and its effect on
energy metabolism. This review shows that mitochondrial
dynamics play essential roles in pathophysiological changes
after stroke. However, the related studies of mitochondrial
dynamics mainly focus on cardiac ischemia-reperfusion
and neurodegenerative diseases. Mitochondrial dynamics
should also be studied intensively in ischemic stroke to
understand the specific regulatory mechanisms of mitochondrial
dynamics on the clinical manifestations and prognosis of
stroke. The clinical application and long-term prognosis
of stroke patients are also worthy of further study. In
addition, most drug-related effects have only been examined
in laboratory studies. There have been few studies on
clinical applications. Whether mitochondrial dynamics-
targeted drugs could improve a stroke patient’s condition

and prognosis in the clinic is a challenge to be explored in
subsequent drug studies.
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