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Abstract: Differential diagnosis of true gallbladder polyps remains a challenging task. This study
aimed to differentiate true polyps in ultrasound images using deep learning, especially gallbladder
polyps less than 20 mm in size, where clinical distinction is necessary. A total of 501 patients with
gallbladder polyp pathology confirmed through cholecystectomy were enrolled from two tertiary
hospitals. Abdominal ultrasound images of gallbladder polyps from these patients were analyzed
using an ensemble model combining three convolutional neural network (CNN) models and a
5-fold cross-validation. True polyp diagnosis with the ensemble model that learned only using
ultrasonography images achieved an area under receiver operating characteristic curve (AUC) of
0.8960 and accuracy of 83.63%. After adding patient age and polyp size information, the diagnostic
performance of the ensemble model improved, with a high specificity of 88.35%, AUC of 0.9082, and
accuracy of 87.61%, outperforming the individual CNN models constituting the ensemble model. In
the subgroup analysis, the ensemble model showed the best performance with AUC of 0.9131 for
polyps larger than 10 mm. Our proposed ensemble model that combines three CNN models classifies
gallbladder polyps of less than 20 mm in ultrasonography images with high accuracy and can be
useful for avoiding unnecessary cholecystectomy with high specificity.

Keywords: gallbladder polyp; ultrasonography; deep learning; true polyp; differential diagnosis

1. Introduction

Gallbladder (GB) polyps are tissue growths that protrude from the GB wall into the
lumen: they can be classified into pseudopolyps, represented by cholesterol polyps, and
true polyps, including adenoma and adenocarcinoma [1,2]. The most commonly used
imaging modality for the diagnosis and follow-up of GB polyps is abdominal ultrasound [3].
GB polyps are known to be found in approximately 5% of the patients who undergo
abdominal ultrasound, and the number of cases of GB polyps being incidentally detected
is increasing with the recent increase in abdominal ultrasound examinations that are being
conducted as part of regular health check-ups [4]. True GB polyps are already malignant or
have malignant potential; therefore, cholecystectomy is required. However, it is difficult
to differentiate between true and pseudo polyps through pre-operative examinations,
including abdominal ultrasound [3,5].
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Several studies have investigated the risk factors of neoplastic (true) polyps by com-
bining ultrasound findings and clinical factors [6–8]. One of the well-known risk factors
of neoplastic GB polyps is the polyp size; typically, 10 mm is used as the cutoff value for
cholecystectomy [9]. However, Wennmacker et al. reported that, with a cutoff value of
10 mm, the sensitivity and specificity for diagnosing neoplastic polyps are approximately
70% and that approximately 30% of the patients undergo unnecessary cholecystectomy [10].
It has been reported that GB polyps in approximately 94% of patients are diagnosed as
malignant GB polyps if the polyp size is more than 20 mm [11]. Therefore, it is a good
strategy to consider cholecystectomy first if the size of the GB polyp is greater than 20 mm.
In contrast, polyps of less than 20 mm require more accurate differential diagnosis.

Morphological features of polyps in abdominal ultrasound, such as hyperechoic spots
and sessile shape, aid in the differential diagnosis of neoplastic GB polyps [8]. However,
differential diagnosis using such imaging features of GB polyps is ineffective because
accurate evaluation of these features is difficult, and results may vary depending on the
ultrasound image reader. Recent advancements in deep learning have yielded impressive
results in various fields, especially in medical imaging, where deep learning has been
used to effectively distinguish imperceptible differences in image patterns [12]. Several
studies have used deep learning to analyze medical images, but only some have focused
on GB polyps [12,13]. Therefore, in this study, we aimed to differentiate true GB polyps
using deep learning, especially those less than 20 mm, which require clinical differential
diagnosis.

2. Materials and Methods
2.1. Patients and Dataset Preparation

This study was conducted on 529 patients with GB polyps in Seoul St. Mary’s Hospital
and Seoul National University Hospital. All patients were diagnosed with GB polyps
through abdominal ultrasound and underwent cholecystectomy at one of the hospitals
between January 2008 and February 2020. We excluded patients with strongly suspected
GB cancer based on pre-operative computed tomography or magnetic resonance imaging
(n = 9) and those with polyp sizes greater than 20 mm (n = 19); consequently, a total of
501 patients were enrolled in this study.

We established a gold standard for diagnosing GB polyps for training artificial intelli-
gence models and evaluating the diagnostic performance of artificial intelligence models.
This gold standard was the pathological diagnosis of GB polyps obtained from the chole-
cystectomy pathology report. Ultrasound images were obtained using ultrasound scanners
(Siemens Acuson S2000, Siemens Healthcare, Erlangen, Germany or GE Healthcare LOGIQ
E9 or E10, GE healthcare, WI, USA) by radiologists and gastroenterologists with about
5 to 20 years of experience in transabdominal ultrasonography. Ultrasound images with
GB polyps were selected, and the collected ultrasonography images were preprocessed
for the analysis as follows. First, we cropped the polyps from the ultrasound images and
rescaled all the cropped images to the same size. Sample images are shown in Figure 1. We
normalized the brightness and contrast of the images to minimize the effects of different
devices. A 5-fold cross-validation was performed to ensure that the results were unaffected
by the separation of the dataset into the training and validation sets. The entire dataset
was randomly divided into five equal sub-datasets. Four of the five sub-datasets were used
for training, and one was used for validation; we changed the validation set each time. To
achieve a superior classification performance, we conducted 8-fold augmentation on the
images in the training dataset by rotating the images by 90◦ three times and flipping them
horizontally for each rotation. The deep learning model was trained with these prepared
datasets, and 5-fold results were used to perform the ultrasonography image classification
and patient-specific diagnoses. A flow chart of the study procedure is shown in Figure 2.
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Figure 2. Flow chart of the study procedure. The data collected from our institutions were used for training and validation.
A total of 1460 images from 501 patients were randomly separated into five sub-datasets (i.e., A: 102/266, B: 102/306, C:
101/295, D: 98/285, and E: 98/308), and each sub-dataset was used sequentially for training and validation. The sub-dataset
results were aggregated to obtain prediction statistics of the model, and patient-specific diagnoses were conducted based on
the sub-dataset results where the patients belong.
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This study was conducted in accordance with the Declaration of Helsinki. The study
protocol was approved by the Institutional Review Boards (IRB) of each institution (Seoul
St. Mary’s Hospital IRB No. KC20RIDI0989, Seoul National University Hospital IRB No.
2002-097-110), and informed consent was waived due to the retrospective nature of the
study.

2.2. Ensemble Convolutional Neural Network Model

We propose a new ensemble model for GB polyp classification. This ensemble model
combines three convolutional neural network (CNN) models that are widely used in
computer vision for image recognition (ResNet [14], Inception v3 [15], and DenseNet [16]).
Each model operates independently and extracts features utilizing its own method. ResNet
extracts deep hierarchical features using skip connection, Inception v3 extracts multi-scale
features using parallel convolution layers with different kernel sizes, and DenseNet extracts
dense features through the direct connection of features from shallow to deeper layers. The
ensemble model was constructed by connecting the aforementioned models in parallel and
summing the results of each model.

The process followed by the ensemble model to perform prediction is as follows:
an ultrasonography image is input to the input layers of individual models; each model
predicts the probability for the input; and, finally, the probabilities of each model are
summed to calculate the final prediction probability for the input image. The probability
for an image calculated through the above process is summed up for each patient to
diagnose whether that patient’s polyp is true or pseudo. The schematic of the ensemble
model is illustrated in Figure 3.
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Figure 3. Schematic of the ensemble model of ResNet 152, Inception v3, and DenseNet 161. The transfer learning method
was used for the initial parameter setting, and minor fine-tuning was conducted for gallbladder polyp classification. Clinical
information was concatenated to the end of each model’s fully connected layer.

2.3. Clinical Validation

We first compared the results of each CNN model with those of the ensemble CNN
model to confirm its effectiveness. Thereafter, we compared the classification performance
when patient age and polyp size, which are known risk factors of neoplastic (true) GB
polyps, were selectively added. The comparison of diagnostic performance according to
the additional clinical information was conducted in three ways: with only polyp size
added, only patient age added, and both polyp size and patient age added. Additional
clinical information was concatenated parallel to the last fully connected layer of each
model, and this clinical information was used along with the ultrasonography features for
the final prediction. We compared the classification performance of the ensemble model by
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dividing the data into two groups with polyp sizes larger and smaller than 10 mm. Model
training was performed under the same conditions and with the same hyper-parameters,
learning rate, batch size, and number of epochs.

2.4. Performance Measures and Statistics

The final diagnosis of the ensemble model was determined depending on whether
the aggregated probability value exceeds a threshold. We set the thresholds for each fold
such that they maximized the Youden index, where the sum of sensitivity and specificity
was the highest, and the classification was performed according to these thresholds. For
the evaluation of the GB polyp classification results, we used the performance measures of
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
accuracy, and area under the receiver operating characteristic (ROC) curve (AUC). Diag-
nostic performance measures were calculated using the mean and 95% confidence interval
of the 5-fold cross-validation results.

Student’s t-test was conducted on age and polyp size between the pseudo and true
polyp groups to verify whether they are statistically significantly different. Cutoff values
were set for the age and size of polyps to observe the effects of these values in differ-
entiating between pseudo and true polyps. These cutoff values were calculated using
ROC analysis and the Youden index, and the sensitivity, specificity, and accuracy were
calculated according to the calculated values. A p-value of less than 0.05 was considered
statistically significant. The statistical analyses were performed using Python version 3.6.8
(Wilmington, DE, USA), SciPy 1.1.0 (Austin, TX, USA), and Numpy version 1.19.4 (Austin,
TX, USA).

3. Results
3.1. Dataset Composition and Characteristics

This study included a total of 501 patients, out of which 412 had pseudopolyps
and 89 had true polyps. The images used for the deep learning analysis contained 1039
pseudopolyps and 421 true polyps. The mean ages and polyp sizes were significantly
higher in the true polyp group compared to the pseudopolyp group (59.1 vs. 48.3 years
and 12.6 vs. 10.5 mm, respectively). The specifications of the dataset are summarized in
Table 1.

Table 1. Specifications of study dataset. We compared the pseudopolyp and true polyp groups using
Student’s t-test.

Pseudopolyp True Polyp p-Value

Number of patients 412 89
Number of images 1039 421

Age (years) 48.3 ± 12.3 59.1 ± 12.6 <0.001
Polyp size (mm) 10.5 ± 2.8 12.6 ± 3.8 <0.001

The cutoff values for age and polyp size were 52 years and 13 mm, respectively. With
a polyp size cutoff value of 13 mm, the accuracy was 76.65%, sensitivity was 42.70%, and
specificity was 83.98%. With a patient age cutoff value of 52 years, accuracy was 62.28%,
sensitivity was 77.53%, and specificity was 58.98%. These results show that the pseudo
and true polyp groups were not sufficiently divided by polyp size and patient age. The
distributions of the pseudopolyp and true polyp groups’ age and polyp size are shown in
Figure 4.
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Figure 4. Histograms of patients with pseudopolyp and true polyp by age and polyp size. The distributions of pseudopolyps
and true polyps are illustrated by blue and red bars, respectively.

3.2. Diagnostic Performance of the Ensemble Model

The classification results of the individual models and ensemble model are listed in
Table 2. When training with ultrasonography without clinical information, the individual
ResNet152, Inception v3, and DenseNet161 models achieved AUCs of 0.8710, 0.8625, and
0.8776 and accuracies of 80.39%, 81.76%, and 83.84%, respectively, and the ensemble model
achieved an AUC of 0.8960 and accuracy of 83.63%. When training with ultrasonography
and the clinical information, the ensemble model achieved an AUC of 0.9082, accuracy of
87.61%, sensitivity of 84.28%, specificity of 88.35%, PPV of 62.42%, and NPV of 96.31%;
these values are higher than those of the individual models and higher than those when
age and polyp size were not considered. The ROC curves according to the addition of
clinical information are shown in Figure 5.
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Table 2. Diagnostic performances of the individual models and ensemble model according to the addition of clinical
information. All results were calculated based on the thresholds at which the Youden index was highest. Data in parentheses
are 95% confidence intervals. PPV: positive predictive value, NPV, negative predictive value.

Clinical
Information Model Accuracy Sensitivity Specificity PPV NPV AUC

Patient Diagnosis

None

ResNet
152

80.39
(74.48~86.30)

84.28
(74.64~93.92)

79.59
(71.41~87.78)

48.37
(35.94~60.80)

96.00
(93.81~98.19)

0.8710
(0.8335~0.9084)

Inception v3 81.76
(65.42~98.09)

84.47
(72.67~96.28)

81.29
(59.47~100.0)

56.84
(33.48~80.21)

96.37
(93.78~98.95)

0.8625
(0.7991~0.9260)

DenseNet
161

83.84
(77.07~90.62)

81.78(
72.36~91.20)

84.23
(74.71~93.76)

54.89
(41.86~67.91)

95.67
(93.91~97.44)

0.8776
(0.8449~0.9103)

Ensemble 83.63
(77.34~89.93)

84.08
(74.58~93.58)

83.49
(74.61~92.37)

54.48
(40.97~68.00)

96.18
(94.27~98.09)

0.8960
(0.8599~0.9321)

Age

ResNet
152

80.35
(72.55~88.14)

84.47
(74.26~94.69)

79.57
(68.59~90.54)

49.14
(34.99~63.28)

96.07
(93.76~98.38)

0.8701
(0.8394~0.9008)

Inception v3 81.97
(73.19~90.76)

88.22
(77.70~98.75)

80.81
(68.51~93.10)

52.05
(38.02~66.07)

97.02
(94.34~99.69)

0.8761
(0.8314~0.9208)

DenseNet161 77.91
(67.64~88.18)

92.89
(83.10~100.0)

74.56
(61.12~88.00)

45.75
(34.25~57.24)

98.20
(95.86~100.0)

0.8825
(0.8330~0.9320)

Ensemble 84.99
(73.37~96.61)

86.38
(75.30~97.46)

84.70
(69.35~100.0)

60.81
(37.52~84.10)

96.83
(94.70~98.95)

0.9024
(0.8495~0.9554)

Size

ResNet152 79.01
(70.61~87.42)

90.59
(79.58~100.0)

76.45
(65.78~87.12)

46.78
(34.56~59.00)

97.61
(94.73~100.0)

0.8848
(0.8303~0.9393)

Inception v3 83.26
(78.72~87.80)

81.97
(70.87~93.08)

83.49
(76.16~90.82)

52.77
(45.54~60.00)

95.68
(93.12~98.23)

0.8779
(0.8496~0.9061)

DenseNet
161

78.40
(66.12~90.67)

89.93
(80.46~99.41)

75.97
(59.57~92.36)

47.58
(33.76~61.40)

97.45
(95.27~99.64)

0.8736
(0.8442~0.9030)

Ensemble 81.20
(69.71~92.69)

92.04
(87.89~96.19)

78.89
(64.70~93.09)

51.34
(33.94~68.74)

97.91
(97.12~98.71)

0.9046
(0.8537~0.9555)

Age + Size

ResNet
152

79.63
(70.94~88.33)

88.88
(84.57~93.19)

77.68
(66.75~88.60)

47.81
(36.06~59.56)

97.01
(95.86~98.16)

0.8814
(0.8432~0.9196)

Inception v3 81.63
(70.86~92.40)

82.63
(68.58~96.68)

81.34
(66.28~96.40)

52.99
(33.97~72.01)

95.94
(92.92~98.96)

0.8756
(0.8358~0.9153)

DenseNet
161

84.63
(81.01~88.25)

85.33
(77.68~92.98)

84.47
(79.94~89.00)

54.64
(46.76~62.52)

96.43
(94.56~98.30)

0.8991
(0.8602~0.9380)

Ensemble 87.61
(81.03~94.18)

84.28
(72.79~95.76)

88.35
(81.24~95.46)

62.42
(45.42~79.43)

96.31
(93.70~98.92)

0.9082
(0.8550~0.9614)

3.3. Diagnostic Performance Based on the GB Polyp Size

We compared the performance of the ensemble model with both age and polyp size
information according to the polyp size. The results are listed in Table 3. For the case of
370 patients with polyp sizes of 10 mm or more (pseudopolyp: 299, true polyp: 71), the
ensemble model achieved an accuracy of 87.15%, sensitivity of 85.30%, specificity of 87.64%,
and AUC of 0.9131 with a threshold of 0.287. For the case of 131 patients with polyp sizes
less than 10 mm (pseudopolyp: 113, true polyp: 18), the ensemble model achieved an
accuracy of 86.61%, sensitivity of 93.33%, specificity of 85.57, and AUC score of 0.8942 with
a threshold of 0.292.
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Table 3. Diagnostic performances of the ensemble model according to the polyp size.

Model
(With Clinical

Info)
Size Accuracy Sensitivity Specificity PPV NPV AUC

Patient Diagnosis

Ensemble
(age + size)

- 87.61
(81.03~94.18)

84.28
(72.79~95.76)

88.35
(81.24~95.46)

62.42
(45.42~79.43)

96.31
(93.70~98.92)

0.9082
(0.8550~0.9614)

≥10 mm 87.15
(80.62~93.69)

85.30
(70.69~99.91)

87.64
(80.65~94.64)

63.46
(50.20~76.72)

96.13
(92.25~100.0)

0.9131
(0.8523~0.9740)

<10 mm 86.61
(67.88~100.0)

93.33
(74.82~100.0)

85.57
(64.33~100.0)

59.24
(29.11~89.37)

99.26
(97.20~100.0)

0.8942
(0.7867~1.000)

4. Discussion

We proposed a new ensemble model that combines three CNN models (ResNet, In-
ception v3, and DenseNet) that have shown excellent performance in the field of image
recognition [17]. Each model has different feature extraction characteristics, and the ensem-
ble model combines these features to obtain the final result. The model utilizes more diverse
morphological and texture features and extracts more informative features useful for GB
polyp classification than when using only a single model. This structural uniqueness of the
ensemble model made it possible to classify GB polyps of less than 20 mm from abdominal
ultrasound images with high accuracy. We improved the diagnostic performance of this
model by adding information such as age and polyp size, known as the risk factors for
neoplastic (true) GB polyps, to the ensemble model.

To date, few studies have analyzed abdominal ultrasound images of GB polyps using
artificial intelligence. Yuan et al. performed computer-assisted image analysis using spatial
and morphological features from ultrasound images of GB polyps and achieved an accuracy
of 87.5% in neoplastic polyp diagnosis [18]. Although their study used computer-aided
analysis, it differed from ours in that it did not use a CNN. Further, fewer than 100 subjects
were enrolled in their study. Jeong et al. reported the classification of GB polyps using a
CNN and achieved an accuracy of approximately 85.7% [19]. In their study, the maximum
GB polyp size was approximately 47 mm, mean polyp size of the neoplastic polyp group
was 18.4 mm, and it is highly likely that a large number of polyps with a size of 20 mm
or more were included. Considering that most polyps with a size of 20 mm or more in
previous studies were found to be neoplastic polyps, their study likely included several
polyps that were relatively easy to differentiate clinically based on size alone, which may
have resulted in an overestimation of the diagnostic accuracy [11,20]. Our study excluded
polyps larger than 20 mm to only target patients with GB polyps that are difficult to
discriminate in real clinical practice. Nevertheless, our model showed similar diagnostic
performance and numerically better accuracy compared to the model by Jeong et al. This is
likely because our ensemble model employs two additional CNNs in addition to Inception
v3, the only CNN used in their study. Interestingly, in the present study, when age and
size factors were not considered, our model showed a diagnostic performance similar to
that of the single DenseNet model. This is because our model uses the results of the two
other models in addition to those of the DenseNet; therefore, if the performance of the two
other models is insufficient, the performance of the ensemble model will be similar to that
of the DenseNet model, which has the best performance of all single models. Meanwhile,
when age and size factors were added, each of the three models achieved a certain level of
performance and complementary effect, and the performance improvement effect of the
ensemble model was maximized compared to the single models, thereby yielding the best
performance.

Currently, one of the most important factors for differentiating neoplastic GB polyps
in clinical practice is the polyp size, and a recent guideline suggested a cutoff value
of 10 mm [9]. However, this value is not sufficient to differentiate neoplastic polyps.
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According to a recent study, when cholecystectomy was performed with a 10 mm criterion,
approximately 40% of the patients had non-neoplastic (pseudo) polyps and did not require
cholecystectomy [21]. In the present study, the diagnostic accuracy of the model, when the
size factor was not included, was approximately 84%, indicating that the size factor is not
absolutely crucial. Nevertheless, this suggested cutoff value is widely applied in clinical
practice, and as such, we analyzed the performance of our model in each of the subgroups
based on this 10 mm threshold. As a result, the diagnostic performance for true polyps was
best in the subgroup with a polyp size greater than 10 mm and an AUC of 0.9131. This is a
positive factor in our model, considering that in real clinical practice, it is often necessary to
differentiate true polyps from polyps greater than 10 mm rather than those that are smaller
than 10 mm. Furthermore, our model showed a high specificity of nearly 90% and a PPV of
approximately 62%, which is considerably higher than the 14.9% PPV for the diagnosis of
neoplastic GB polyps of abdominal ultrasound reported in a recent systematic review [5].
These high specificity and PPV values of our model can significantly reduce false positive
diagnoses for neoplastic (true) polyps, avoiding unnecessary cholecystectomy. In fact,
when we evaluated the ultrasound images selected by our model, we found that our model
could effectively discriminate large, sessile pseudopolyps that could be mistaken for true
polyps. Our model could effectively distinguish true polyps among the small polyps with
hyperechoic spots, which are generally considered pseudopolyps. Figure 6 shows the true
and false cases of the model prediction for representative ultrasound images of pseudo and
true polyps based on the polyp size.
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Our study has several strengths. First, we developed a new ensemble model that
combines three CNNs. To the best of our knowledge, no studies have demonstrated a model
that incorporates multiple CNN models for the differential diagnosis of GB polyps. Second,
we limited the study subjects to include only GB polyps that are difficult to distinguish in
actual clinical practice and enrolled the largest number of patients among the studies with
this subject limitation.

There are some limitations to this study. First, the model was trained and validated
only on still images, and it could not include all the information of ultrasound images
observed in real-time videos, as in an actual test. To further improve the model and
make it more practically applicable using ultrasound video information, it is necessary to
develop an algorithm that distinguishes the features of polyps in ultrasound videos; we are
planning a follow-up study in this direction. Second, to exclude patients whose pathological
diagnoses of polyps are not confirmed, only those who had undergone cholecystectomy
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were included in this study, and a selection bias may have occurred as a result of this.
Future prospective studies including patients who have not undergone cholecystectomy
are required to further verify our ensemble model. Third, there is a limit to the resolution
of transabdominal ultrasound itself. One method to overcome this is to use an endoscopic
ultrasound (EUS), which is known to be more helpful in the differential diagnosis of GB
polyps [22]. Thus, we are planning an artificial intelligence analysis study using EUS. In
this future study, verifying whether the diagnostic accuracy is good enough to overcome
the disadvantages of EUS is necessary, as it is more invasive and less accessible than
transabdominal ultrasound.

5. Conclusions

We developed a new ensemble model that combines three CNN models and dis-
tinguishes true polyps with high accuracy from ultrasound images of patients with GB
polyps that are less than 20 mm in size. Our ensemble model, which has relatively high
specificity and PPV, can help avoid unnecessary cholecystectomy. Future studies using EUS
and real-time ultrasound video are necessary to develop a model with better diagnostic
accuracy.
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