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Increased levels of histidine‑rich 
glycoprotein are associated 
with the development 
of post‑thrombotic syndrome
Jakub Siudut1,2,5, Joanna Natorska1,2,5, Maksim Son3, Krzysztof Plens4 & Anetta Undas1,2*

Denser fibrin networks which are relatively resistant to lysis can predispose to post-thrombotic 
syndrome (PTS). Histidine-rich glycoprotein (HRG), a blood protein displaying antifibrinolytic 
properties, is present in fibrin clots. We investigated whether HRG may affect the risk of PTS in 
relation to alterations to fibrin characteristics. In venous thromboembolism (VTE) patients, we 
evaluated plasma HRG levels, plasma clot permeability, maximum absorbance, clot lysis time and 
maximum rate of increase in D-dimer levels released from clots after 3 months of the index event. 
We excluded patients with cancer and severe comorbidities. After 2 years of follow-up, 48 patients 
who developed PTS had 18.6% higher HRG at baseline. Baseline HRG positively correlated with clot 
lysis time, maximum absorbance, and thrombin-activatable fibrinolysis inhibitor (TAFI) activity but 
was inversely correlated with plasma clot permeability and maximum rate of increase in D-dimer 
levels released from clots. On multivariate regression model adjusted for age, fibrinogen and glucose, 
independent predictors of PTS were recurrent VTE, baseline HRG level, and TAFI activity. VTE recurred 
in 45 patients, including 30 patients with PTS, and this event showed no association with elevated 
HRG. Our findings suggest that increased HRG levels might contribute to the development of PTS, in 
part through prothrombotic fibrin clot properties.

Post-thrombotic syndrome (PTS) affects as many as 23–60% of patients in the first 2 years of deep-vein throm-
bosis (DVT)1. It is a constellation of signs and symptoms of chronic deep venous insufficiency and typically 
manifests as swelling, pain, peripheral oedema, venous ectasia, and in advanced cases—ulceration. The severity 
is usually determined using the Villalta scale2.

PTS is thought to arise from chronic thrombotic obstruction of the deep veins leading to venous hyperten-
sion, exacerbated by valvular incompetence3. Residual vein obstruction post DVT has been reported to be 
linked to impaired fibrinolysis and disturbed microcirculation4–7. The exact mechanism underlying PTS is poorly 
understood. PTS results at least in part from delayed venous thrombus resolution and induction of vein wall 
fibrosis, which promotes valvular reflux8. Robust evidence indicates that PTS is closely associated with enhanced 
systemic inflammation3.

Fibrin formation is the final stage of blood coagulation. Fibrin clot structure is highly heterogeneous and 
determined by several genetic and environmental factors, with a commonly observed prothrombotic phenotype 
involving the formation of denser fibrin networks which are relatively resistant to lysis9. Such altered fibrin 
clot properties have been observed in unprovoked venous thromboembolism (VTE)9. The prothrombotic clot 
phenotype has also been reported to increase risk of recurrent DVT10. In 2016 Siudut et al. found that lowered 
fibrin clot permeability and impaired lysis assessed off anticoagulation following a few months since the first 
DVT predispose patients to develop PTS11.

Histidine-rich glycoprotein (HRG), an abundant plasma protein synthesized by the liver, has a host of proper-
ties including anti-inflammatory effects, along with both anticoagulant and antifibrinolytic activity12,13. HRG lev-
els decrease during sepsis13, as well as in patients with advanced cancer14,15. The role of HRG in blood coagulation 
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in humans remains unclear. HRG is known to bind heparan sulfate, tropomyosin, and heme16. HRG may limit 
antithrombin activity by binding heparin at the N-terminal heparin binding site, due to a high degree of sequence 
homology between HRG and antithrombin17. In addition, in vitro studies showed that HRG effectively binds 50% 
of circulating plasminogen16. It is unclear whether HRG has any effect on the conversion of fibrinogen to fibrin, 
however its incorporation into fibrin clots has been shown to lead to formation of thinner fibrin fibres in vitro18. 
Mice that lacked HRG expression had higher spontaneous fibrinolytic activity, but also shorter prothrombin time 
and bleeding time19. Of note, recent proteomic analyses have confirmed the presence of HRG in human plasma 
clots in healthy subjects and VTE patients20.

Data on the association of HRG with VTE are conflicting. Some studies have reported elevated HRG in 
patients with VTE21,22, while others found that HRG deficiency is a risk factor for VTE23,24. To our knowledge, 
there have been no reports exploring HRG in patients with PTS. Based on available data, we hypothesized that 
elevated HRG may contribute to long-term sequelae of DVT in part through prothrombotic alterations to fibrin 
characteristics.

Patients and methods
Baseline characteristics.  We screened 243 Caucasian patients aged between 18 to 70 years with a history 
of first-ever DVT between October 2008 and June 2010. The patients represented a subgroup of the original 
cohort of patients with VTE described previously11. Of the 243 individuals with DVT, we excluded 46 patients. 
The exclusion criteria were: deficiency of antithrombin, protein C or protein S, antiphospholipid syndrome, 
acute coronary syndrome or ischaemic stroke within the previous 3 months, known malignancy, any inflamma-
tory states (C-reactive protein [CRP] > 15 mg/L), diabetes, advanced chronic renal disease, international nor-
malized ratio (INR) more than 1.2, all the states reportedly associated with abnormal plasma clot properties9. 
Furthermore, we excluded 15 patients in whom baseline plasma samples to measure HRG levels were not avail-
able. Overall, 182 individuals were included in our final analysis.

DVT was diagnosed with duplex sonography (presence of an intraluminal thrombus in the calf, popliteal, 
femoral or iliac veins) and proximal DVT was diagnosed if the thrombus was detected in the popliteal veins 
(including trifurcation), femoral, and iliac veins. The diagnosis of PE was based on the clinical history and com-
puted tomography (CT) angiography. All patients initially were treated with unfractionated or low-molecular-
weight heparins and then with vitamin K antagonists (VKA). Duration of anticoagulation was 3 months or more 
(in patients with provoked VTE), or longer (for the patients with unprovoked VTE and/or recurrence of VTE) at 
the discretion of treating physicians. VTE was classified as unprovoked if there was no history of cancer, surgery 
requiring general anesthesia, major trauma, plaster cast or hospitalization within the last month, or pregnancy/
delivery within the last 3 months. Class II custom-fitted elastic compression stockings or hosiery were prescribed 
to patients for a period of 6–24 months.

The research has been compliant with all relevant national and institutional regulations. Experimental pro-
tocols were approved by Jagiellonian University Ethical Committee and all patients gave the informed consent 
in accordance with the Declaration of Helsinki.

Follow‑up.  PTS was assessed 12–14 months since the index event using the Villalta scale2 and was defined 
as a score of ≥ 5 on two consecutive visits that were at least 3 months apart. After 24 months all patients had 
prespecified assessment of PTS at the clinic. We evaluated symptomatic recurrent DVT or symptomatic PE. In 
subjects with signs or symptoms suggestive of recurrent DVT, including enhanced pain, or tenderness, oedema, 
and redness, if there was incompressibility of a proximal vein segment previously free from thrombi, or the 
finding of a more than 4 mm increase of the vein diameter in a previously non-compressible vein segment as 
compared with the last available measurement. Patients suspected for PE underwent spiral computed tomogra-
phy, followed by pulmonary angiography in the case of a high clinical probability of PE despite normal CT scans. 
After a median of 53 (IQR 47–56) months patients underwent the final assessment for PTS and symptomatic 
recurrent VTE (Fig. 1).

Laboratory investigations.  Blood samples were drawn from an antecubital vein with minimal stasis 
at 08:00–10:00 off anticoagulation 3–6 months and 24 months since the index event. Patients on VKA were 
switched to anticoagulation with low-molecular-weight heparin for 10–14 days and blood was collected ≥ 12 h 

Figure 1.   A flow-chart representing patient enrollment and long-term observation.
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after the last injection when the INR was less than 1.2. Venous blood samples were centrifuged at 2000 g for 
10  min within 30  min of the draw, and the supernatant was aliquoted and stored at −  80  °C until analysis. 
Routine laboratory tests were used to evaluate lipid profile, glucose, and creatinine. Fibrinogen was assessed 
using the Clauss assay. High-sensitivity CRP was measured by immunoturbidimetry (Roche Diagnostics GmbH, 
Mannheim, Germany). Plasma D-dimer was measured with the Innovance D-dimer assay (Siemens, Marburg, 
Germany). We measured HRG antigen (Cusabio Biotech Co., Ltd., Wuhan, China) according to the manufac-
turer’s instructions at baseline and 2 years after the initial HRG measurement. Tissue-type plasminogen activator 
(tPA), plasminogen activator inhibitor-1 (PAI-1) antigens, and plasma-activated thrombin activatable fibrinoly-
sis inhibitor (TAFI) activity (all American Diagnostica, Stamford, CT, USA), together with interleukin (IL)-6 
and IL-10 (both Quantikine, R&D Systems, Inc., Minneapolis, MN, Canada) levels were measured using ELISA 
kits. Plasminogen and α-antiplasmin activities were measured using chromogenic assays (both Diagnostica 
Stago, Asnières, France). Inter- and intra-assay variation coefficients were < 8%. Plasma Factor VIII activity was 
determined using a one-stage clotting assay (Siemens). Thrombophilia screening was performed in all patients 
as previously described10.

Fibrin clot permeability.  Fibrin clot permeability was determined using a pressure-driven system25. 
Briefly, 20 mmol/L CaCl2 and 1 U/mL human thrombin (Sigma, St Louis, MO, USA) were added to 120 µL 
citrated plasma. After 2 h of incubation in a wet chamber, buffer volume flowing through the gels was meas-
ured. Plasma clot permeability indicating the average pore size within the clot, was calculated using the formula 
Q × L × µ/t × A × Δp, where Q is the flow rate; L, length of the fibrin gel; µ, viscosity of the liquid (in poise); A, a 
cross-sectional area (in cm2), Δp, a differential pressure (in dyne cm2) and t, time.

Clot lysis analysis.  Two different methods were used to assess the efficiency of clot lysis. In the first assay26, 
citrated plasma was mixed with 15 mmol/L CaCl2, 0.6 pM human tissue factor (Innovin, Siemens), 12 µmol/L 
phospholipid vesicles and 60 ng/mL recombinant tPA (Boehringer Ingelheim, Ingelheim, Germany). The tur-
bidity was measured at 405 nm at 37 °C. The lag phase of the turbidity curve, which reflects the time required 
for initial protofibril formation and maximum absorbance at the plateau phase were assessed11. Clot lysis time 
was defined as the time from the midpoint of the clear-to-maximum-turbid transition to the mid-point of the 
maximum-turbid-to-clear transition. In the second assay, fibrin clots, formed as above, were perfused with a 
Tris buffer containing 0.2 µmol/L rtPA (Boehringer Ingelheim). D-dimer levels were measured every 20 min in 
the effluent using an ELISA (American Diagnostica) for 120 min and the maximum rate of increase in D-dimer 
levels and maximum levels of D‐dimer released from clots were analysed. All measurements were performed 
by technicians blinded to the origin of the samples. Inter- and intra-assay variation coefficients of the measure-
ments were 6–9%.

Statistical analysis.  Continuous variables were expressed as mean and standard deviation (SD) or median 
and interquartile range (IQR) as appropriate. Categorical variables were presented as numbers and percentages 
and compared by the Fisher’s exact test. Normality was assessed by the Shapiro–Wilk test. Equality of variances 
was assessed using the Levene’s test. Differences between the groups were compared using the Student’s or the 
Welch’s t-test depending on the equality of variances for normally distributed variables. The Mann–Whitney 
U-test was used for non-normally distributed variables. The Spearman’s rank correlation coefficient or the Pear-
son’s correlation coefficient were used to measure the linear associations between two variables. The Benjamini–
Hochberg procedure was used to control false discovery rate for multiple comparisons. The risk of PTS was 
determined by univariate and multivariate models. Variable selection in the multivariate models were performed 
using least absolute shrinkage and selection operator (LASSO) using tenfold cross validation to obtain optimal 
values for λ27. Two-sided p -values < 0.05 were considered statistically significant. All calculations were done with 
JMP, Version 9.0.0 (SAS Institute Inc., Cary, NC, USA, 1989–2007).

Results
We included 182 patients at a mean age of 45 years (range 18 to 69 years) to the final analysis (Table 1). The group 
comprised 102 men (56%) and 80 women (44%). Fifty-five patients (30.2%) had symptomatic PE combined with 
DVT, while the majority experienced DVT alone.

Median Villalta score was 16 (range 6–27).
Median HRG level in the total cohort of DVT patients was 68 (IQR 58–75) µg/mL. The HRG concentration 

for the whole cohort correlated with age (r = 0.24, p < 0.001) and glucose (r = 0.16, p = 0.03) and tended to be 
positively associated with BMI (p = 0.06) and CRP (p = 0.07). Of note, HRG levels were associated with the blood 
types (Supplemental Fig. 1).

Analysis of fibrin clot properties showed that baseline HRG levels correlated with plasma clot permeability 
(r = − 0.41, p < 0.001), maximum absorbance (r = 0.24, p = 0.002), and two fibrinolysis measures, i.e. clot lysis 
time (r = 0.41, p < 0.001) and maximum rate of increase in D-dimer levels released from clots (r = − 0.16, p = 0.04; 
Fig. 2). Moreover, baseline HRG levels showed a positive association with TAFI activity (r = 0.25, p = 0.001), but 
not with other fibrinolytic proteins or FVIII.

As many as 48 patients were diagnosed with PTS after 12–14 months of observation, including 10 patients 
(20.8%) with mild PTS, 14 with moderate (29.2%), and 24 patients (50%) with Villalta score of ≥ 15 represent-
ing severe PTS. Patients with PTS were older, more frequently obese and had higher plasma glucose (Table 1). 
Baseline HRG was 18.6% higher in patients who developed PTS as compared to those who did not (p < 0.001). 
In patients with PTS, baseline HRG correlated with the Villalta score (r = 0.45, p = 0.001), but not with CRP. 
Severe PTS was associated with 24% and 8% higher HRG levels as compared with mild and moderate forms of 
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Table 1.   Baseline patient characteristics. PTS post-thrombotic syndrome; VTE venous thromboembolism; 
DVT deep vein thrombosis; PE pulmonary embolism; IL interleukin; INR international normalized ratio; 
TC total cholesterol; TG total triglycerides; CRP C-reactive protein; HRG histidine-rich glycoprotein; tPA 
tissue plasminogen activator; PAI-1 plasminogen activator inhibitor-1; TAFI thrombin activatable fibrinolysis 
inhibitor.

Variable Total cohort (n = 182) PTS (n = 48) Non-PTS (n = 134) p-value

Age, years 45 (33–55) 49 (41–58) 43 (30–52) 0.022

Male n, (%) 102 (56) 26 (54.2) 76 (56.7) 0.577

BMI, kg/m2 26.5 (24.8–29.2) 27.3 (25.1–30.1) 26.2 (24.5–28.5) 0.029

Blood type, n (%)

A 70 (38.5) 13 (27.1) 57 (42.5) 0.883

B 32 (17.6) 13 (27.1) 19 (14.2) 0.598

0 66 (36.3) 13 (27.1) 53 (39.6) 0.116

AB 14 (7.7) 9 (18.8) 5 (3.7) 0.105

Clinical characteristics, n (%)

Smoking 73 (40.1) 14 (29.2) 59 (44) 0.277

Trauma/surgery 37 (20.3) 3 (6.3) 34 (25.4) 0.199

Unprovoked VTE 92 (50.6) 36 (75) 56 (41.8) 0.020

DVT with PE 55 (30.2) 11 (22.9) 44 (32.8) 0.422

Family history of VTE 27 (14.8) 8 (16.7) 19 (14.2) 0.883

Proximal DVT 137 (75.3) 44 (91.7) 93 (69.4) 0.132

Baseline laboratory parameters

INR 0.99 (0.91–1.05) 1.0 (0.96–1.1) 0.98 (0.89–1.1) 0.577

D-dimer, ng/mL 211 (156–270) 273 (191–296) 216 (146–254) 0.309

Fibrinogen, g/L 3.00 (2.51–3.93) 2.98 (2.56–4.08) 3.02 (2.45–3.87) 0.917

Creatinine, µmol/L 71.4 ± 14.1 73.5 ± 16.2 70.6 ± 13.2 0.577

Glucose, mmol/L 4.9 (4.5–5.3) 5.2 (4.8–5.6) 4.8 (4.5–5.1) 0.006

TC, mmol/L 5.08 ± 1.04 5.05 ± 0.93 5.10 ± 1.08 0.917

TG, mmol/L 1.31 ± 0.65 1.40 ± 0.65 1.29 ± 0.66 0.212

CRP, mg/L 1.73 (1.02–2.43) 2.17 (1.58–3.89) 1.44 (0.98–2.31) 0.076

IL-6, pg/mL 3.56 (2.76–4.04) 3.73 (3.03–4.00) 3.47 (2.67–4.06) 0.240

IL-10, pg/mL 6.45 (5.60–7.60) 6.50 (5.85–7.95) 6.40 (5.50–7.60) 0.418

HRG, µg/mL 68 (58–75) 76.5 (67.5–82) 64.5 (57–70)  < 0.001

Factor VIII, % 123 (102–142) 120 (103–139) 124 (101–143) 0.883

tPA Ag, ng/mL 9.2 (6.71–11.25) 7.62 (6.35–10.73) 9.60 (6.80–11.43) 0.577

PAI-1 Ag, ng/mL 12.28 (8.73–18.60) 10.89 (8.46–17.15) 12.90 (8.74–19.40) 0.426

TAFI activity, µg/mL 25.71 ± 7.06 32.01 ± 6.23 23.46 ± 5.88  < 0.001

Plasminogen, % 108.8 ± 15.2 106.6 ± 12.7 109.6 ± 15.9 0.445

α-antiplasmin, % 105 (96–116) 101 (92–113) 107 (98–117) 0.243

Peak thrombin, nM 231 (199–300) 219 (193–291) 235 (200–304) 0.577

Fibrin clot formation and features

Plasma clot permeability, 10−9cm2 7.4 (6.5–8.4) 6.6 (6.0–7.6) 7.8 (6.9–8.8) 0.001

Clot lysis time, min 88 (73–101) 100 (88–109) 82 (70–97)  < 0.001

Lag time, sec 40 (37–45) 38 (35–41) 42 (38–47) 0.011

Maximum absorbance 0.81 (0.75–0.87) 0.85 (0.81–0.89) 0.80 (0.74–0.86) 0.006

Maximum levels of D‐dimer released from clots, mg/L 3.93 (3.59–4.35) 3.73 (3.60–4.30) 4.08 (3.57–4.39) 0.883

Maximum rate of increase in D-dimer levels released 
from clots, mg/L/min 0.071 (0.067–0.078) 0.0069 (0.063–0.073) 0.072 (0.068–0.079) 0.207

Genetic polymorphisms, n (%)

Factor V Leiden 23 (12.6) 5 (10.4) 18 (13.4) 0.561

Prothrombin 20210A 7 (3.9) 0 (0) 7 (5.2) 0.557

Factor XIII Val34Leu 83 (45.6) 25 (52.1) 58 (43.3) 0.418

α-fibrinogen Thr312Ala 83 (45.6) 22 (45.8) 61 (45.5) 0.616
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Figure 2.   Correlations of the histidine-rich glycoprotein (HRG) with four variables measured 3 months after 
the index event in patients who developed post-thrombotic syndrome (PTS) (n = 48). Associations of HRG 
with (A) clot permeation coefficient (plasma clot permeability), (B) clot lysis time, (C) maximum absorbance of 
fibrin gel at 405 nm determined with turbidimetry (maximum absorbance), and (D) maximum D-dimer levels 
in the lysis assay.

Figure 3.   Distribution of baseline histidine-rich glycoprotein (HRG) levels among patients developed post-
thrombotic syndrome (PTS). Severity of PTS was categorized according to the Villalta score: mild (5–9 points, 
n = 10), moderate (10–14 points, n = 14), and severe disease (≥ 15 points, n = 24). Data are presented as median, 
interquartile range, and maximum/minimum values.
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the disease, respectively (Fig. 3). There was no difference in the prevalence of any of the 4 genetic polymorphisms 
tested (Table 1).

PTS patients displayed more prothrombotic clot features, including shorter lag phase and higher maximum 
absorbance during plasma clot formation, together with lower plasma clot permeability and impaired fibrinolysis 
as evidenced by prolonged clot lysis time (Table 1). Analysis of fibrinolytic proteins showed solely elevated TAFI 
activity in the PTS group (Table 1).

After 24 months in 131 patients (71.6%) HRG assessment was repeated (median 68, IQR 57–76 µg/mL). HRG 
levels remained unchanged compared to the baseline values (p = 0.39).

At the 24-month follow-up 48 patients (26.4%) had PTS. After 24 months patients with PTS compared with 
those without PTS had 18.5% higher levels of HRG (median 74.6, IQR 66–80 µg/mL vs. 65.6, IQR 60–72 µg/mL, 
p < 0.001). In the multivariate analysis adjusted for age, fibrinogen, and glucose we showed that recurrent VTE 
along with plasma HRG and TAFI activity were associated with PTS at 24 months (Table 2).

At final assessment, after a median follow-up of 53 (IQR 47–76) months, PTS was diagnosed in 56 (32.6%), 
including 20 patients with mild PTS (35.7%), 12 with moderate (21.4%), and 24 patients (42.9%) with severe 
PTS. The baseline HRG levels were similar in patients who developed PTS after about 24 months and in those 
who developed PTS within the whole follow-up period (median, 76.5, IQR 67.5–82 µg/mL vs. 77, IQR 68–83 µg/
mL, p = 0.89).

At final assessment, VTE recurred in 45 patients (24.7%) including 30 patients (53.6%) with PTS. Patients 
with PTS had higher rates of VTE recurrence than those who did not have PTS (p < 0.001). VTE recurrence 
occurred earlier in patients with PTS (median 11, IQR 7–39 months) than those without PTS (median 29, IQR 
27–35 months; p < 0.001). Of note, HRG at baseline was 13.6% higher in patients with PTS who experienced VTE 
recurrence during follow-up than non-PTS cases who developed VTE recurrence. Multivariate analysis showed 
that baseline plasma clot permeability, TAFI activity, and CRP, but not HRG levels were significant predictors of 
recurrent VTE after adjustment for age, BMI and fibrinogen (Table 3).

Discussion
This study is the first to show that elevated plasma HRG levels measured at 3 months since first-ever DVT are 
associated with the development of PTS. Moreover, we provided evidence that unfavorable effects of elevated 
HRG are at least in part associated with alterations to fibrin clot structure and impaired fibrinolysis observed in 
patients who developed PTS during follow-up. In contrast, elevated HRG did not associate with VTE recurrence. 
In light of inconsistent data on the role of HRG in human thrombosis21–24, our findings provide new insights in 
this regard suggesting a negligible impact of HRG on the risk of recurrent VTE in real-life patients. The current 
study suggests that HRG could be a yet unknown factor of the risk of developing PTS and might help identify 
DVT patients at increased risk of this common complication. Mechanisms underlying this association are likely 
multiple with a significant contribution of the prothrombotic fibrin clot phenotype enhanced by elevated HRG. 
It has been previously shown that HRG interacts with fibrinogen18,28. Furthermore, not only does HRG have a 
high affinity for fibrinogen, but it is also incorporated into fibrin clots generated from human plasma in vitro20,28. 
It is known that the presence of HRG in fibrin clots significantly affects the structure of the clot by causing the 
formation of thinner fibrils18, which results in denser networks that are usually more resistant to lysis11. Since 
fibrin is the main component of all venous thrombi29,30, elevated circulating HRG levels likely lead to augmented 
incorporation of this protein into fibrin networks and the subsequent disturbed degradation of fibrin and pos-
sible harmful local actions. Our findings suggest that HRG may contribute to the development of PTS via 
prothrombotic alterations to fibrin structure and function. Moreover, elevated HRG along with recurrent VTE 
and increased TAFI activity, reported previously11, independently predicted PTS. This mechanism is further 
supported by the fact that HRG levels remained unaltered after 2 years since the first measurement, suggesting 

Table 2.   Predictors of post-thrombotic syndrome (PTS) during 2 years’ follow-up. For abbreviations, please 
see Table 1. Multivariate model where variable selection was performed using least absolute shrinkage and 
selection operator (LASSO) algorithm and adjusted for age, fibrinogen and glucose.

Variable OR per

Univariate Multivariate*

OR (95% CI) p-value OR (95% CI) p-value

Age 1 year 1.04 (1.01–1.07) 0.005 1.01 (0.98–1.04) 0.491

BMI 1 kg/m2 1.17 (1.06–1.30) 0.002 1.07 (0.95–1.22) 0.252

Unprovoked VTE No/yes 2.57 (1.34–5.07) 0.005

Proximal DVT No/yes 2.26 (1.03–5.37) 0.041

VTE recurrence No/yes 10.25 (4.80–22.75)  < 0.001 2.68 (1.10–6.54) 0.031

Glucose 1 mmol/L 1.91 (1.19–3.17) 0.007

HRG 1 µg/mL 1.08 (1.05–1.12)  < 0.001 1.06 (1.02–1.10) 0.004

CRP 1 mg/L 1.27 (1.07–1.54) 0.006

TAFI activity 1 µg/mL 1.18 (1.11–1.25)  < 0.001 1.12 (1.05–1.20)  < 0.001

TAFI antigen 1% 1.04 (1.02–1.06) 0.001

Ks 1 × 10−9cm2 0.61 (0.45–0.80)  < 0.001

CLT 1 min 1.04 (1.02–1.06)  < 0.001
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the elevation of HRG is a persistent characteristic in a proportion of VTE patients. Our observations regard-
ing hypofibrinolysis, reflected by prolonged clot lysis time are in line with the studies performed on mice with 
HRG deficiency, in which accelerated fibrinolysis has been reported19,31. Taken together, it might be speculated 
that elevated HRG has a prothrombotic impact on fibrin clot structure and function, including impaired lysis.

Given accumulating data on the key role of inflammation in PTS, the current study is in line with previous 
reports13,32 by showing that patients at risk of PTS tended to have elevated CRP levels compared with those free 
of this adverse event, without any differences in concentrations of IL-6 or IL-10. Regarding a potential effect of 
inflammation on HRG levels, it is worth mentioning that decreased HRG levels have been suggested as a novel 
biomarker for sepsis13. In such cases, the values of CRP during systemic inflammatory response syndrome and 
sepsis tend to be much higher—typically greater than 150 mg/L33—than in VTE. For this reason, this inverse 
relationship between HRG and CRP in systemic inflammatory response syndrome and sepsis cannot be expected 
in typical DVT patients. There was no correlation between HRG and CRP in the present study. Moreover, it has 
been shown that HRG is distributed systemically as an unbound form, bound with plasminogen, and bound with 
platelets, phagocytes or other cells34, which are involved in the inflammatory response. Our data suggests that 
in PTS patients, in which inflammatory markers were relatively low and did not differ from non-PTS patients 
elevated HRG levels are associated rather with impaired fibrinolysis than inflammation. The issue of the associa-
tion between the HRG levels and inflammation is worth investigating in future studies.

It should be highlighted that the current study showed a relatively high percentage of severe PTS patients 
and recurrent events among them. This unexpected finding might be related to several issues, such as the lack of 
anticoagulation clinics in Poland, which are known to offer the best long-term care for patients with PTS together 
with education35. Most patients referred to our clinic had more severe clinical course of DVT, they had mostly 
proximal DVT (75%). Further, even if patients declared that they implemented the compression therapy we 
were not able to assess the compliance during log-term follow-up. Since the most available studies on PTS were 
performed in high income countries with less than 10% patients with severe PTS, the current study could be also 
important by showing a large group of such patients, which highlights the need or improved care provided in 
DVT patients to minimize the risk of severe PTS. Thus, additional value of this report is the analysis of relatively 
high number of patients with the Villalta score ≥ 15, which are usually underpowered in studies regarding PTS.

Our study has several limitations. The number of patients with PTS was limited with the prevalence of the 
syndrome similar to that reported in other studies1. Any subgroup analysis within the PTS group should be 
interpreted with caution. In addition, this study excluded patients with known thrombophilic states, the elderly, 
and significant comorbidities such as cancer or diabetes, as it has been shown that these conditions unfavorably 
alter plasma fibrin properties regardless of VTE36. Therefore, our findings likely cannot be extrapolated to such 
populations. At this point, it is too early to suggest that HRG may be used in clinical practise as a predictor of 
PTS. In vitro studies would be needed to better ascertain the function of HRG in patients following DVT, explore 
potential mechanisms linking this protein with PTS, and finally larger scale studies to determine reference ranges 
for HRG. We did not determine the HRG Pro186 allelic variant, which has been reported more frequently in 
thrombosis recently37. No data linking this variant with PTS has been published.

In conclusion, we reported here an original finding suggesting that elevated HRG is associated with the 
development of PTS, which might be in part associated with impaired clot lysis. Further large cohort studies are 
needed to corroborate these findings and mechanistic investigations should look into how HRG may contribute 
to long-term complications of VTE.

Table 3.   Predictors of recurrent venous thromboembolism. For abbreviations, please see Table 1. Multivariate 
model where variable selection was performed using least absolute shrinkage and selection operator (LASSO) 
algorithm and adjusted for body mass index (BMI) and fibrinogen.

Variable OR per

Univariate Multivariate*

OR (95% CI) p-value OR (95% CI) p-value

BMI 1 kg/m2 1.15 (1.04–1.27) 0.005 1.05 (0.93–1.19) 0.40

PTS No/yes 10.25 (4.80–22.75)  < 0.001 – –

Smoking No/yes 0.48 (0.22–0.98) 0.043 – –

Trauma No/yes 0.22 (0.05–0.64) 0.004 – –

Proximal DVT No/yes 3.51 (1.40–10.71) 0.006 – –

Fibrinogen 1 g/L 1.38 (0.97–1.96) 0.072 0.92 (0.59–1.43) 0.72

HRG 1 µg/mL 1.07 (1.04–1.27) 0.004 – –

CRP 1 mg/L 1.39 (1.16–1.72)  < 0.001 1.27 (1.00–1.61) 0.047

TAFI activity 1 µg/mL 1.14 (1.08–1.21)  < 0.001 1.08 (1.01–1.15) 0.023

Plasma clot permeability 1 × 10−9cm2 0.36 (0.24–0.52)  < 0.001 0.43 (0.27–0.66)  < 0.001

Maximum absorbance (405 nm) 0.01 1.16 (1.10–1.24)  < 0.001 – –

Clot lysis time 1 min 1.04 (1.02–1.07)  < 0.001 1.01 (0.98–1.04) 0.47
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