
Epidermal Growth Factor Controls Smooth Muscle 
a-Isoactin Expression in BC3HI Cells 
Yung-Chih Wang and Peter A. Rubenstein 
Department of Biochemistry and the Cardiovascular Research Center, University of Iowa College of Medicine, 
Iowa City, Iowa 52242 

Abstract. We have examined the effects of epidermal 
growth factor (EGF), platelet-derived growth factor, 
and insulin on the differentiation of a mouse vascular 
smooth muscle-like cell line, the BC3H1 cells. On the 
basis of cell morphology and smooth muscle a-isoac- 
tin synthesis, we demonstrate that EGF at physiologi- 
cal concentrations prevents the differentiation of these 
cells, whereas platelet-derived growth factor has no ap- 
parent effect. The induction of a-isoactin synthesis by 
serum deprivation is inhibited by EGF in a dose-de- 
pendent manner with a half-maximal effect at 3-5 
ng/ml and a maximal inhibition at ~-,30 ng/ml. North- 
ern analysis also shows that EGF blocks the accumula- 
tion of a-isoactin mRNA normally observed during 

cell differentiation. Addition of EGF to differentiated 
cells results in a repression of a-isoactin synthesis, a 
stimulation of 13- and ),-isoactin synthesis, and the 
stabilization of the nonmuscle isoactins. The synthesis 
of creatine phosphokinase, a muscle-specific noncon- 
tractile protein, is also regulated by EGF in a similar 
fashion. Modulation by EGF of a-isoactin expression 
is not affected by aphidicolin and is therefore indepen- 
dent of its mitogenic effect on these cells. Insulin is 
not required for observation of the EGF-dependent 
effects but instead seems to promote differentiation. 
Our results show that EGF can replace serum in con- 
trolling the differentiation of BC3H1 cells. 

T 
HE growth and differentiation of vascular smooth mus- 
cle cells can be controlled by factors that are in serum 
or secreted from neighboring cells (22, 26, 34). The 

nature of the complex regulation exerted by these factors is 
an important problem both in cell biology and medicine. A 
model that has proven useful in addressing this problem is 
the BC3H1 cell line. 

BC3H1 cells, isolated from a mouse brain tumor (27), 
differentiate in vitro when placed in serum-free medium. 
Events occurring during the process of differentiation in- 
clude cessation of cell proliferation, transformation from the 
morphology of fibroblasts to a long spindly shape typical of 
smooth muscle cells, and stimulation of the synthesis of sev- 
eral muscle-specific proteins such as myokinase (27), acetyl- 
choline receptor (23), creatine phosphokinase (CPK) ~ (19), 
and insulin receptor (30). These phenotypic changes induced 
by serum depletion can be prevented or reversed by addition 
of serum to the medium. 

Previous studies in our laboratory have revealed that ex- 
pression of actin isoforms in BC3H1 cells also appears to be 
developmentally regulated. Cell differentiation in serum-free 

A preliminary account of this work was presented at the 1986 meeting of 
the American Society for Cell Biology (1986. J. Cell Biol. 103:121a. 
[Abstr.]). 

1. Abbreviations used in this paper: CPK, creatine phosphokinase; EGF, 
epidermal growth factor; ILGF, insulin-like growth factor; N2SF medium, 
N2 serum-free medium; PDGF, platelet-derived growth factor. 

medium results in a selective three- to fourfold increase of 
smooth muscle a-isoactin synthesis and a five- to sixfold in- 
crease in the level of its mRNA, relative to that observed in 
undifferentiated cells (31, 32). 

Serum contains a wide variety of growth factors with vari- 
ous effects on cells (t, 2). To understand the control of 
BC3H1 cell differentiation exerted by serum, it is necessary 
to determine the roles played by individual serum growth fac- 
tors in this model system. Based on changes in the levels of 
CPK or acetylcholine receptor, two serum growth factors, 
fibroblast growth factor and I~-transforming growth factor, 
have been shown to modulate the behavior of BC3H1 cells 
(14, 21, 29). In similar experiments, epidermal growth factor 
(EGF) and platelet-derived growth factor (PDGF) were re- 
ported to have no effect on these cells (14, 21). Recently, it 
has been shown that fibroblast growth factor can exert an 
effect similar to that of serum on a-isoactin expression in 
these cells (36). 

In the work presented here, we report that results of our 
studies on the effects of EGF, PDGF, and insulin on the ex- 
pression of smooth muscle ~t-isoactin in BC3H1 cells. These 
factors have all been implicated as possibly being important 
in regulating smooth muscle cell growth (9, 16, 35). Our 
results show that although PDGF has no significant effect on 
actin expression in BC3H1 cells, EGF, like FCS, causes an 
inhibitory effect on a-isoactin expression. This effect of EGF 
is independent of the DNA replication. 
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Materials and Methods 

Materials 
L-[35S]Methionine (>800 Ci/mmol) was purchased from Amersham Corp. 
(Arlington Heights, IL). [32P]dCTP (3,000 Ci/mmol) was obtained from 
New England Nuclear (Boston, MA). Receptor-grade EGF and HPLC- 
purified PDGF were obtained from Collaborative Research Inc. (Lexington, 
MA). Insulin, aphidicolin, putrescine, and progesterone were purchased 
from Sigma Chemical Co. (St. Louis, MO). For routine use, EGF was 
stored as an aqueous solution, insulin was stored in 0.1 N HCI, and 
aphidicolin was stored in absolute ethanol. Antiserum against human mus- 
cle CPK, which cross reacts with the mouse enzyme, was generously 
provided by Ventrex Co. (Portland, ME). All other chemicals were reagent 
grade. 

Cell Culture 
BC3H1 cell monolayers (27) were grown and maintained at 37~ in a 
humidified atmosphere containing 95% air and 5% CO2 in T-75 flasks 
(Corning Glass Works, Coming, NY) with DME supplemented with 10% 
heat-inactivated FCS (Gibco, Grand Island, NY or HyClone Laboratories, 
Logan, UT), penicillin (100 U/ml), and streptomycin (100 ~tg/ml). Cells 
were kept subconfluent by subculturing twice a week as described (31). For 
experiments in this report, cells from passages 10 to 20 were cultured in 
35-mm dishes. 

To initiate cell differentiation or to test the effects of growth factors on 
this process, cells were placed in N2 serum-free (N2SF) modified hormone- 
supplemented medium (3) containing RPMI-1640, 5 p.M BSA (Miles 
Laboratories Inc., Naperville, IL; Pentex, fatty acid-free), 5 ~tg/ml insulin, 
100 ~tg/ml transferrin, 20 nM progesterone, 100 ~tM putrescine, 30 nM 
Na2SeO3, and 10 mM Hepes buffer solution, pH 7.2. Confluent cells were 
rinsed and incubated in N2SF medium, with growth factors added when in- 
dicated, for 4 d except where otherwise indicated. Cells were then radiola- 
beled as described below. 

Radioactive Labeling of Cells 
Cells were incubated in methionine-deficient DME supplemented with 90 
~tCi/ml L-[35S]methionine for 4 h at 37~ The labeled monolayers were 
washed twice with PBS and scraped off the dishes in 1 ml of PBS. The cells 
were then collected by centrifugation in a microfuge (Beckman Instruments, 
Inc., Palo Alto, CA) for 3 min. Cell pellets were dissolved in 70 ~tl of the 
9 M urea-containing lysis buffer described by O'Farrell (18). 

Electrophoretic Analysis of Labeled Proteins 

Two-dimensional gel electrophoresis was performed essentially as de- 
scribed by O'Farrell (18), except that a modified IEF protocol was used (8). 
The IEF gels were prefocused for 15 rain at 300 V, 30 min at 650 V, and 
30 min at 1,000 V. After sonicating for 10-15 s, 20 p.l of the [35S]methio- 
nine-labeled cell lysate was subjected to IEF in a pH 5-7 gradient at 1,000 V 
for 16 h. Throughout the prefocusing and focusing, the gel system was main- 
tained at 18~ Gels were then processed for electrophoresis on 10% poly- 
acrylamide slab gels containing SDS. After autoradiography, spots of in- 
terest were excised from the dried gels and quantitated by liquid scintillation 
counting. Experiments were performed in triplicate, and gels of samples 
from three independent cultures were analyzed. 

Analysis of Total Cell Actin by 
DNAse I Affinity Chromatography 
The experiment was performed essentially as described previously (15, 37). 
Cells were labeled with [3SS]methionine for 4 h as described above. Cells 
were then harvested, sonicated in a buffer containing 10 mM Tris-HCl, pH 
7.4, 0.2 mM CaC12, 0.2 mM ATE 10% formamide. A small aliquot was 
reserved for determination of total cell protein. The remaining solution was 
applied to a 0.6-ml column of DNAse I-agarose and the actin isolated as 
described previously (156, 37). For each determination, triplicate plates 
were analyzed in parallel, and the results are expressed as cpm labeled actin 
+SD/pg cell protein. 

Analysis of CPK Activity 
CPK activity was determined as described previously (14, 20), except that 

the concentration of NP-40 was reduced to 0.2 % in the solution used to ho- 
mogenize the cells so that protein concentrations could be analyzed with the 
protein assay from Bio-Rad Laboratories (Richmond, CA). CPK activity 
was assayed using a CPK reaction kit (Sigma Chemical Co.), and the results 
were normalized to total cell protein. 

Immunoprecipitation of CPK 
Cells from a 35-mm dish were labeled for 4 h in the presence of [35S]me- 
thionine, harvested, and sonicated in Tris buffer, pH 7.4, containing 1% 
NP-40, 2 mM EDTA, 0.15 M NaCI, 1 mM PMSF, and 100 kallikrein inhibi- 
tor units/ml aprotinin. Immunoprecipitation of radioactively labeled CPK 
was performed essentially according to the procedure of Olson et al. (19) 
using sufficient antiserum to completely remove all CPK from the sample. 
The immunoprecipitated protein was eluted from fixed killed Staphylococ- 
cus aureus (Boehringer Mannheim Biochemicals, Indianapolis, IN) con- 
taining protein A, and the labeled protein was subjected to SDS gel elec- 
trophoresis. For each precipitation equal amounts of total labeled cell 
protein were used, and following immunoprecipitation, the entire sample 
was loaded on the gel. 

RNA Isolation and Characterization 
Preparation of whole cell RNA was perfomed as previously described 
(5, 32). 

Northern analysis of BC3H1 cell RNA was performed as described previ- 
ously (32) using human skeletal muscle actin cDNA subjected to nick trans- 
lation (17) in the presence of [a-32P]dCTP as a probe. The hybridization 
and washing were performed at 42~ 

Results 

Effect of EGF on the Differentiation of BC 3H1 Cells 
When quiescent cells are cultured in serum-free medium for 
4 d, they differentiate into a muscle-like phenotype as pre- 
viously described (27). This change is reflected by an altera- 
tion of cell morphology from a fibroblast-like appearance to 
a long spindle-shaped appearance typical of muscle cells. At 
the same time, smooth muscle a-isoactin synthesis is stimu- 
lated (31) as is the synthesis of CPK and the acetylcholine 
receptor (19, 23). 
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Figure  1. Effects o f  EGF and aphidicolin on a-isoact in synthesis in 
differentiating BC3H1 cells. Confluent cells were placed in the 
medium indicated. At selected t imes cells were labeled with 
[35S]methionine and the percent  newly labeled a- isoact in  was de- 
termined as indicated in Materials and Methods.  Each point  shown 
represents the mean + S D  of  three independent  samples. ( e )  N2SF; 
(o)  N2SF containing 75 ng/ml EGF; (zx) N2SF containing 75 ng/ml 
EGF + 5 gg/ml aphidicolin. 
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Figure 2. Effect of EGF-induced dedifferentiation on a-isoactin 
synthesis in BC3H1 cells. Cells differentiated 4 d in N2SF were 
placed in the medium indicated. At selected times, the cells were 
labeled with [3sS]methionine for 4 h, and the percent a-isoactin of 
the total labeled actin was determined as described in Materials and 
Methods. Each point shown represents the mean +SD of three in- 
dependent samples. (e) N2SF; (o) N2SF + 75 ng/ml EGF; (zx) 
N2SF + 75 ng/ml EGF + 5 ~tg/ml aphidicolin. 

Inclusion of EGF in the serum-free medium at the start 
of the differentiation process prevents the morphological 
change usually observed in these cells (data not shown). In 
addition, it prevents the induction of smooth muscle ct-iso- 
actin synthesis (Fig. 1). Interestingly, in the presence of 
added EGF, the level of synthesis of this actin isoform rela- 
tive to the nonmuscle actins is actually lower than it is in cells 
grown in the presence of 10% FCS (Fig. 1). 

Effect of  EGF Addition to Differentiated Cultures 
of  BC3H1 Cells 

Addition of EGF to 4-d differentiated cultures caused a de- 
crease in the amount of ct-isoactin synthesis relative to the 
synthesis of the nonmuscle 13- and T-actin isoforms (Fig. 2). 
To determine whether this relative change represented a de- 
crease in the actual amount of ct-isoactin synthesized, we 
measured the total amount of newly synthesized actin by 
isolating labeled whole cell actin by DNAse I chromatogra- 
phy as described in Materials and Methods and normalizing 
the amount of radioactive actin to total cell protein. In one 
experiment, we obtained 1,130 + 110 cpm actin/ltg cell pro- 
tein in the control cells and 1,240 + 220 cpm actin/~tg cell 
protein in cells dedifferentiated with EGF for 12 h. In an 
identical experiment after 4 d of treatment with EGF, the 
values obtained were 990 + 130 cpm actin/vtg cell protein 
in the control and 920 + 130 cpm actin/Ixg cell protein in 
the treated cells. These results showed that there was no sig- 
nificant change in the amount of newly synthesized actin per 
microgram of cell protein after treatment of the differentiated 
cells with EGF. 

The results just described, combined with the data shown 
in Fig. 2 demonstrate that in cells dedifferentiated with EGF 
for 12 h, there is •46% less newly synthesized a-isoactin 
and 39 % more of the newly synthesized 13- and 7-actin iso- 
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Figure 3. Effect of EGF-induced dedifferentiation on the turnover 
of(A) ct-isoactin and (B) 13- and 7-isoactins. Labeling of cells with 
[35S]methionine and the analysis and determination of labeled 
isoactins are described in Materials and Methods. Cells differen- 
tiated 4 d in N2SF were pulse labeled for 4.5 h, washed with unla- 
beled N2SF, and then transferred to a chase medium consisting of 
N2SE 10 mM unlabeled methionine alone (e) or in the presence 
of 75 ng/ml EGF (o) for the indicated times. The radioactivity in 
each of the isoactin spots was normalized to the amount in each of 
the species on day 0. Each point represents the mean +SD of three 
independent samples. 

forms in comparison with cells continuously grown in the 
absence of EGF over the same time period. For cells dedif- 
ferentiated for 4 d in EGF the absolute amount of newly syn- 
thesized a-isoactin decreases by 32% and the absolute 
amount of 13- and y-isoactins increases 22% compared with 
the control cells. 

We also determined whether dedifferentiation induced by 
EGF was accompanied by a selective change in the turnover 
of actin isoforms by studying the disappearance of pre-la- 
beled isoactins after the start of dedifferentiation. As shown 
in Fig. 3, there is a slower decrease in the relative level of 
labeled 13- and ~,-isoactins in dedifferentiating cells over a 3-d 
period when compared with that in differentiated cells in the 
absence of EGF over the same period of time. On the other 
hand, the turnover of a-isoactin is about the same under both 
growth conditions. These results inducate that not only is the 
synthesis of a-isoactin decreased relative to the 13- and "y-iso- 
forms, but that the existing 13- and 7-isoactins are selectively 
stabilized during dedifferentiation. 

Effects of  EGF on CPK Levels in BC3H1 Cells 

We next investigated whether the effects we observed with 
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Table I. Effects of EGF and Aphidicolin on CPK Activity 
in BC3H1 Cells 

Growth condition CPK activity 

IU/mg protein 

Different ia t ion 
N2SF 0 .70  + 0 .05  

N2SF + E G F  0 .06  + 0.01 

N2SF + E G F  + aphid ico l in  0 .07  + 0.01 

Dedif ferent ia t ion  
N2SF 1.22 + 0 .12  

N2SF + EGF  0.61 + 0.03 

N2SF + E G F  + aph id ico l in  0 .60  + 0 .03  

In the differentiation experiment, confluent cells were transferred into the indi- 
cated medium for 4d, and the CPK activity was then determined as described 
in Materials and Methods. For the dedifferentiation experiment, differentiated 
cells that had been growing 4 d in N2SF medium were transferred to the medi- 
um indicated for an additional 4 d, and the CPK activity in the cells was then 
determined as indicated in the text. Each value shown is the mean +SD of 
three independent samples. For these experiments, EGF was used at 75 ng/ml 
and aphidicolin at 5 ~tg/ml. 
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Figure 5. Concentration depen- 
dence of the inhibition of ct-iso- 
actin synthesis on EGF. Con- 
fluent cultures were transferred 
to N2SF medium containing 
the level of EGF indicated. Af- 
ter a 4-d incubation, the cells 
were labeled with [35S]methi- 
onine and the percent labeled 
ct-isoactin was calculated as de- 
scribed in Materials and Meth- 
ods. Each point represents the 
mean +SD of three indepen- 
dent samples. 

EGF were specific for cytoskeletal and contractile proteins 
or whether they occurred as well on muscle-specific meta- 
bolic enzymes such as CPK whose synthesis is stimulated 
during the BC3H1 cell differentiation process (19). Our 
results, shown in Table I, demonstrate that in cells treated 
with EGF to prevent differentiation, CPK activity is in- 
hibited 91% relative to the activity observed in differentiated 
cells. Immunoprecipitation of metabolically labeled CPK 
from differentiated cells and cells treated with EGF at the be- 
ginning of growth in serum-free medium showed that this in- 
hibition of CPK activity was actually due to an inhibition of 
enzyme synthesis (Fig. 4). 

Treatment of differentiated cells with EGF to induce 
dedifferentiation also resulted in a decrease in CPK activity 
(Table I). Again, immunoprecipitation experiments indi- 
cated that this decrease could be largely accounted for by a 
decrease in the synthesis of CPK. Equal amounts of radioac- 
tively labeled total and cells dedifferentiated 4 d with EGF 

Figure 4. Immunoprecipitation 
of [35S]methionine-labeled CPK 
from undifferentiated and dif- 
ferentiated cells. The exper- 
iment was performed as de- 
scribed in Materials and Meth- 
ods and an autoradiogram of 
the gel was generated. (A) CPK 
from cells differentiated 4 d in 
N2SF medium. (B) CPK from 
undifferentiated cells incubated 
for 4 d in N2SF medium con- 
mining 75 ng/ml EGE (*) De- 
notes the position of CPK with 
an apparent molecular mass of 
40 kD. O, origin. BPB; Brom- 
phenol blue marker. 

were subjected to immunoprecipitation, and the precipitate 
was further resolved on SDS gels. Scanning of the CPK band 
from three separate experiments showed that the band inten- 
sity from the dedifferentiated cells was 0.22, 0.20, and 0.27 
of that in the respective differentiated cells. These results in- 
dicate that as well as controlling the differential expression 
of actin isoforms, EGF can also inhibit the expression of 
CPK in these cells. 

EGF Dose-Response Study 

To determine whether the effects observed in response to 
EGF occurred at physiological levels of the growth factor, we 
performed a dose-response study with EGF at concentra- 
tions varying between 0 and 30 ng/ml. The results, shown 
in Fig. 5, indicate that the half-maximal inhibition of ct-iso- 
actin synthesis occurs at 3-5 ng/ml, whereas the maximum 
inhibition is observed at •30 ng/ml. The half-maximal effect 
is in the range seen for other EGF responsive processes (4, 
9, 25, 33). 

Effects of Insulin on the Differentiation of 
BC3H1 Cells 

Insulin has been shown to promote cell differentiation in 313 
cells (10), and it has also been shown to potentiate or to act 
synergistically with other growth factors in promoting cell 
proliferation (12, 28). Since insulin at 5 ~tg/ml is a compo- 
nent of N2SF medium, it is important to know whether it is 
required along with EGF to produce the effects we have ob- 
served. We thus tested media with different combinations of 
these two factors for their effects on BC3H1 cell differentia- 
tion. The results presented in Table II show that whether in- 
sulin is totally excluded or present at a reduced concentration 
in the medium, EGF inhibits a-isoactin synthesis to the same 
extent it does in regular N2SF, demonstrating that EGF ex- 
erts its effect in an insulin-independent fashion. 

Even though insulin does not influence the effects of EGF, 
it appears to be required for maximal differentiation of these 
cells. When insulin was omitted from the N2SF medium dur- 
ing cell differentiation, the observed levels of a-isoactin syn- 
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Table I1. Effects of lnsulin and EGF on a-lsoactin and 
Total Protein Synthesis in BC3H1 Cells 

Additions a-lsoactin Total protein 

% total labeled cpm/dish 
actin ( • 10- z) 

None 39.4 _+ 2.2 t.07 + 0.05 
EGF 8.0 + 1.5 4.64 + 0.34 
5 ng/ml insulin 38.1 + 1.8 1.14 + 0.16 
5 ng/ml insulin + EGF 8.9 + 1.0 4.71 + 0.19 
50 ng /ml insulin 50.2 + 2.6 1.55 + 0.09 
50 ng/ml insulin + EGF 9.8 +_ 1.3 4.76 + 0.20 
5,000 ng/ml insulin 52.1 _+ 0.3 3.88 + 0.14 

The basic medium used in this experimem is insulin-deficient N2SF. EGF was 
used at 75 ng/ml. Confluent cells were placed in the medium indicated for 4 d 
and labeled with [35S]methionine, and the labeled isoactins were analyzed as 
described in Materials and Methods. Each value shown is the mean +SD of 
three independent samples. 

thesis were only ~ 8 0 %  as high as the insulin-containing 
control (Table II). 

Relationship between the Mitogenic Effect of  EGF 
and Its Effect on a-lsoactin Synthesis 

We next studied whether EGF could stimulate cell prolifera- 
tion in BC3H1 cells and, if so, whether its ability to inhibit 
the expression of  r was dependent on its mitogenic 
properties. Differentiated cells were treated with EGF, and 
the cell number per plate was determined. The results, 
shown in Table III, indicate that addition of  EGF for 48 h 
to a differentiated culture (4 d incubation in serum-free 
medium) resulted in a 75-80% increase in cell number. 
When 20% serum was used as a mitogenic stimulus for com- 
parison, a doubling of the cells occurred over the same time. 
Thus EGF itself was able to produce almost the same degree 
of cell proliferation as did 20% serum. Insulin was not re- 
quired for EGF to exhibit its mitogenic effect on these cells. 
However, the absence of  insulin resulted in an overall lower- 
ing of  the cell number either because of  increased cell death 
or cell shedding (Table III). 

We then studied whether the effect of  EGF on r 
synthesis in differentiating cells was independent of  the mito- 
genic effects of  EGE To do this, we added 5 Ixg/ml aphidico- 
lin (11), a specific inhibitor of  DNA polymerase-ct, with EGF 

Table III. The Mitogenic Effect of EGF in 
Differentiated BC3H1 Cells 

Additions Cell number/dish 

xlO-* 

None 61 + 8 
EGF 107 + 8 
20% FCS 134 + 4 
Insulin 100 + 9 
Insulin + EGF 178 + 2 
Insulin + 20% FCS 219 + 8 

Confluent cells in 35-mm dishes were differentiated in N2SF medium for 4 d 
and were then transferred to insulin-deficient N2SF medium supplemented with 
growth factors or serum as indicated. Insulin was used at 5 lttg/ml, and EGF 
was used at 75 ng/ml. After incubation for 48 h, triplicate cultures from each 
growth condition were trypsinized with 0.05% trypsin, and the cells were 
pelleted in DME plus 10% FCS and resuspended in I ml PBS. Cell numbers 
of the suspensions were counted in quadruplicate with a hemocytometer and 
expressed as the mean :I:SD. 

Figure 6. Northern analysis of the muscle and nonmuscle isoactin 
mRNAs in BC3H1 cells grown under different conditions. The 
Northern analysis was performed as described in the Materials and 
Methods. 40 ~tg of RNA was loaded per lane. Thus, the band inten- 
sity observed reflects the actual amount of each actin mRNA pres- 
ent in the cells in the various stages tested allowing for lane to lane 
comparison. The radioactive band at 2.1 kb represents the 13 and 

nonmuscle isoactin mRNAs while the band at 1.5 kb represents 
the ct-isoactin mRNA as described previously (32). The autoradio- 
gram of the Northern blot was analyzed by scanning densitometry 
using an Eikonix digital camera system in the University of Iowa 
Image Analysis Facility. The percent intensity of the 1.5-kb band 
was calculated by dividing the intensity of the 1.5-kb band by the 
sum of the intensities of the two bands, and the results are displayed 
in the histogram. (A) For lanes 1-4, RNA was collected 4 d after 
transfer of confluent cells to the medium indicated. (Lane 1) N2SF; 
(lane 2) N2SF + 75 ng/ml EGF; (lane 3) insulin-deficient N2SF; 
(lane 4) insulin-deficient N2SF containing 75 ng/ml EGF; (lane 5) 
cells differentiated for 4 d in N2SF (differentiated cells) were placed 
for 4 d in fresh N2SF; (lane 6) differentiated cells were placed for 
4 d in N2SF containing 75 ng/ml EGF; (lane 7) confluent cells be- 
fore the start of differentiation in N2SE (B) Effect of short-term 
dedifferentiation on ct-isoactin mRNA. For all lanes, 4-d differen- 
tiated cultures were used. (Lane 1 ) Starting cells; (lane 2) 12 h in 
fresh N2SF; (lane 3) 12 h in N2SF + EGF; (lane 4) 12 h in N2SF 
+ 20% FCS. 

in serum-free medium. This concentration of  aphidicolin is 
sufficient to inhibit DNA synthesis >97% (data not shown). 
Under these conditions, the inhibitory effect of  EGF on 
a-isoactin synthesis remained unchanged both in the differ- 
entiation (Fig. 1) and dedifferentiation (Fig. 2) processes. 
Identical results were also seen on the repression of CPK ac- 
tivity (Table I). These results show that the effect of  EGF on 
the inhibition of the synthesis of  these muscle-specific pro- 
teins occurs independent of its effect on DNA synthesis. 

Analysis of  a-Isoactin mRNA Levels in Differentiated 
and Dedifferentiated Cells 

Previous work from our laboratory showed that the induction 
of  smooth muscle a-isoactin synthesis was accompanied by 
a significant increase in the level of  ct-isoactin mRNA (32). 
We wished to determine whether the effect caused by EGF 
on ct-isoactin synthesis in these cells occurred in conjunction 
with a change in the levels of the mRNAs for the muscle and 
nonmuscle isoactins. 

We carried out a Northern analysis on RNA samples ob- 
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rained from cells in various states of differentiation. As a 
probe, we used a human skeletal muscle a-isoactin cDNA 
previously shown to hybridize to the mRNAs for both muscle 
and nonmuscle actin isoforms (32). The findings shown in 
Fig. 6 are representative of three different experiments car- 
ried out, and equal amounts of total cell RNA were loaded 
in each lane of the gel. The results in Fig. 6 A indicate first 
that a-isoactin mRNA accumulates during the differentiation 
phase relative to the mRNAs for the nonmuscle actin iso- 
forms (lanes 1 and 7), and addition of EGF to N2SF prevents 
this accumulation (lane 2). Omission of insulin during the 
differentiation phase results in a smaller increase in the rela- 
tive level of a-isoactin (lane 3) mRNA compared to the case 
when insulin is included. Lane 4 demonstrates that insulin 
is not required for the suppression of a-isoactin mRNA level 
resulting from the addition of EGF to N2SE Finally, when 
dedifferentiation is caused by the addition of EGF for 4 d, 
a significant decrease in the relative level of r 
mRNA occurs compared to the control in fully differentiated 
cells (lanes 5 and 6). Fig. 6 B shows that in as short a time 
as 12 h after addition of either EGF or 20% FCS, there is 
a 22-25 % decrease in the amount of ct-isoactin mRNA. 
Thus, for both differentiating and dedifferentiating cells, 
changes in a-isoactin levels are accompanied by similar 
changes in the levels of its mRNA. Early in dedifferentiation, 
the decrease in a-isoactin mRNA does not equal the de- 
crease in the synthesis of r possibly suggesting the 
operation of translational control in this process as well. 

Discussion 

The differential change observed in isoactin synthesis can be 
accounted for by changes in the levels of the muscle and non- 
muscle isoactin mRNAs. During dedifferentiation, there is 
also a selective stabilization of the nonmuscle isoactins, pos- 
sibly due to the preferential use and subsequent protection 
of the nonmuscle actin isoforms at this time. 

In our hands, EGF controls the synthesis of CPK during 
differentiation and dedifferentiation in a manner parallel with 
smooth muscle r as determined both by the mea- 
surement of enzyme activities and by immunoprecipitation 
of newly synthesized CPK. This observation indicates that 
EGF may coordinately control the expression of a number 
of muscle-specific proteins. Furthermore, although EGF 
acts as a mitogen for these cells, this activity is not required 
for EGF to inhibit the synthesis of these muscle-specific pro- 
teins. It has been shown in other cells as well that EGF can 
cause major effects in specific gene expression independent 
of its ability to act as a mitogen (13). Furthermore, in BC3H1 
cells, Spizz et al. (29) reported a similar finding for FGE 

When assessing the effects of EGF during the dedifferenti- 
ation process, we noticed that in the control cells maintained 
in serum-free medium, there is a continuous increase in the 
level of muscle actin mRNA relative to that of nonmuscle ac- 
tin mRNA (compare lanes 1 and 5 in Fig. 6 A). There was 
not, however, a concomitant increase in the percent of newly 
synthesized ct-isoactin relative to the nonmuscle isoforms 
during this time (control; Fig. 2). This discrepancy may be 
due either to an isoform-specific translational control or it 
may result from the synthesis of nontranslatable 1.5-kb 
mRNA that will still hybridize with the actin clone. We can- 
not at this time distinguish between these possibilities. 

Inclusion of insulin in the serum-free medium potentiates 
the degree of differentiation achieved by these cells. How- 
ever, the concentrations of insulin required for this effect are 
much higher than those needed to exert an effect through the 
high affinity insulin receptor (30). Although high affinity in- 
sulin receptors have been detected in BC3H1 cells (30), our 
particular subclone does not express these (Pessin, J., per- 
sonal communication). Since insulin at high concentrations 
also binds to the insulin-like growth factor-I (ILGF-I) recep- 
tor (7) which is present in our cells (Ginsberg, B., personal 
communication), the insulin effect we observed was proba- 
bly mediated via the ILGF-I receptor. Interestingly, in pri- 
mary smooth muscle cell cultures, ILGF-I, working presum- 
ably through the same receptor, exhibits the opposite effect: 
promotion of cell proliferation (6, 9, 24). 

Our results are in disagreement with those of Lathrop et 
al. (14) and Olson et al. (21) who reported that EGF had no 
effect in BC3H1 cells. Their protocols differed from ours in 
that their differentiated cells were grown on collagen layers 
in 0.5 % serum while our cells were differentiated in serum- 
free medium and grown on plastic. When we substituted 
their culture conditions individually for ours, however, the 
EGF effects were still observed. Thus, the most likely expla- 
nation for our differing results is that we have a different sub- 
clone of the cell line which responds to EGF whereas theirs 
does not. Growth of our cells on a collagen layer did seem 
to produce a more pronounced differentiated phenotype in 
terms of the amount of ct-isoactin expression (data not 
shown). We agree with Lathrop et al. (14) and Olson et al. 
(21) that PDGF has no observable effect on BC3H1 cell dif- 
ferentiation. Thus, these cells do not require exogenous 
PDGF to make them competent before becoming sensitive 
to the influence of EGF. 

The effects we observed with EGF during the dedifferenti- 
ation process are similar to those reported by Wice et al. (36) 
for fibroblast growth factor. This observation suggests that 
these two factors at some point may work through similar 
pathways after binding of the growth factors to their recep- 
tors. Finding this connection will be important in under- 
standing the nature of the control of differentiation in these 
cells. 

This work was supported by a grant from the American Heart Association 

and a National Institutes of Health Program Project Grant (HL-14388) to 
P. A. Rubenstein. 

Received for publication 25 June 1987, and in revised form 11 November 

1987. 

References 

I. Antoniades, H. N., and A. J. Owen. 1982. Growth factors and regulation 
of cell growth. Annu. Rev. Med. 33:445-463. 

2. Barnes, D., and G. Sato. 1980. Serum-free cell culture: a unifying ap- 
proach. Cell. 22:649-655. 

3. Bottenstein, J. E., and G. H. Sato. 1979. Growth of a rat neuroblastoma 
cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. 
USA. 76:514-517. 

4. Chan, C. P., and E. G. Krebs. 1985. Epidermal growth factor stimulates 
glycogen synthase activity in cultured cells. Proc. Natl. Acad. Sci. USA. 
82:4563-4567. 

5. Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 
1979. Isolation of biologically active ribonucleic acid from sources en- 
riched in ribonuclease. Biochemistry. 18:5294-5299. 

6. Clemmons, D. R. 1984. Interaction of circulating cell-derived and plasma 
growth factors in stimulating cultured smooth muscle cell replication. J. 
Cell. Physiol. 121:425-430. 

7. de Vroede, M. A., J. A. Romanus, M. L. Standaert, R. J. Pollet, S. P. 

The Journal of Cell Biology, Volume 106, 1988 802 



Nissley, and M. M, Rechler, 1984. Interaction of insulin-like growth fac- 
tors with a nonfusing mouse muscle cell line: binding, action, and recep- 
tor down-regulation. Endocrinology. 114:1917-1929, 

8, Fatigati, V., and R. A. Murphy. 1984, Actin and tropomyosin variants in 
smooth muscles: dependence on tissue type. J. Biol. Chem. 259:14383- 
14388. 

9. Gospodarowicz, D., K. Hirabayashi, L. Giguere, and J.-P. Tauber. 1981. 
Factors controlling the proliferation rate, final cell density, and life span 
of bovine vascular smooth muscle cells in culture. J. Cell Biol. 89: 
568-578. 

10, Green, H., and O. Kehinde. 1975. An established preadipose cell line and 
its differentiation in culture. II. Factors affecting the adipose conversion. 
Cell 5:19-27. 

11. lkegami, S., T. Taguchi, and M. Ohashi, M, Oguro, H. Nagano, and Y. 
Mano, 1978, Aphidicolin prevents mitotic cell division by interfering 
with the activity of DNA polymerase-a. Nature (Lond.). 275:458-460. 

12. Jimenez de Asua, L., K. M. V. Richmond, and A. M. Otto, 1981. Two 
growth factors and two hormones regulate induction of DNA synthesis 
in cultured mouse cells through different pathways of events. Proc. NatL 
Acad. Sci. USA. 78:1004-1008. 

13, Johnson, L. K., J. D. Baxter, 1, Vlodavsky, and D, Gospodarowicz. 1980. 
Epidermal growth factor and expression of specific genes: effects on cul- 
tured rat pituitary cells are dissociable from the mitogenic response. 
Proc. Natl. Acad. Sci. USA. 77:394-398. 

14. Lathrop, B., E. Olson, and L. Glaser, 1985, Control by fibroblast growth 
factor of differentiation in the BC3H1 muscle cell line. J. Cell Biol. 100: 
1540-1547. 

15. Lazarides, E., and U. Lindberg. 1974. Actin is the naturally occurring in- 
hibitor of deoxyribonuclease I. Proc. NatL Acad. Sci. USA. 71:4742- 
4746. 

16, Libby, P., and K. V. O'Brien. 1983. Culture of quiescent arterial smooth 
muscle cells in a defined serum-free medium. J. Cell. PhysioL ll5: 
217-223. 

17. Maniatis, T., E. F, Fritsch, and J. Sambrook. 1982, Molecular Cloning: 
A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Har- 
bor, New York. 109-112. 

18. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of 
proteins. J. Biol. Chem. 250:4007-4021. 

19. Olson, E. N., K. L. Caldwell, J. I. Gordon, and L. Glaser. 1983. Regula- 
tion of creatine phosphokinase expression during differentiation of 
BC3HI cells. J. Biol. Chem. 258:2644-2652. 

20. Olson, E. N., B. K. Lathrop, and L. Glaser. 1982. Purification and cell-free 
translation of a unique high molecular weight form of the brain isozyme 
of creatine phosphokinase from mouse. Biochem. Biophys. Res. Com- 
mun. 108:715-723. 

21, Olson, E. N., E. Steinberg, J. S. Hu, G, Spizz, and C. Wilcox, 1986, Regu- 
lation of myogenic differentiation by type [3 transforming growth factor. 
J, Cell Biol. 103:1799-1805. 

22, Owens, G, K., A. Loeb, D. Gordon, and M, M. Thompson. 1986. Expres- 

sion of smooth muscle-specific a-isoactiu in cultured vascular smooth 
muscle cells: relationship between growth and cytodifferentiation. J, Cell 
Biol. 102:343-352. 

23. Patrick, J., J. McMillan, H. Wolfson, and L C, O'Brien. 1977. Acetylcho- 
line receptor metabolism in a nonfusing muscle cell line. J. Biol. Chem, 
252:2143-2153. 

24. Pfeifle, B,, H. H. Ditschuneit, and H. Ditschuneit. 1982. Binding and bio- 
logic actions of insulin-like growth factors on human arterial smooth mus- 
cle cells, Horm. Metabol. Res. 14:409-414. 

25. Raben, D. M., and D. D. Cunningham. 1985. Effects of EGF and thrombin 
on inositol-containing phospholipids of cultured fibroblats: stimulation of 
phosphatidylinositol synthesis by thrombin but not EGF. J. Cell. Physiol. 
125:582-590. 

26. Ross, R. 1986. The pathogenesis of atherosclerosis: an update. N. Engl. 
J, Med. 314:488-500. 

27, Schubert, D,, A, J. Harris, C. E. Devine, and S. Heinemann. 1974, Char- 
acterization of a unique muscle cell line. J. Cell BioL 61:398-413. 

28, Shipley, G. D., C, B, Childs, M. E. Volkenant, and H. L. Moses, 1984. 
Differential effects of epidermal growth factor, transforming growlh fac- 
tor~ and insulin on DNA and protein synthesis and morphology in serum- 
free cultures of AKR-2B cells. Cancer Res. 44:710-716. 

29. Spizz, G., D. Roman, A. Strauss, and E. N Olson, 1986. Serum and 
fibroblast growth factor inhibit myogenic differentiation through a mecha- 
nism dependent on protein synthesis and independent of cell proliferation. 
J, Biol. Chem. 261:9483-9488. 

30. Standaert, M. L., S. D, Schimmel, and R. J. Pollet, 1984. The development 
of insulin receptors and responses in the differentiating nonfusing muscle 
cell line BC3HI. J. BioL Chem. 259:2337-2345. 

31. Strauch, A. R., and P. A. Rubenstein. 1984. Induction of vascular smooth 
muscle ct-isoactin expression in BC3HI cells, J. Biol. Chem. 259:3152- 
3159, 

32. Strauch, A. R., J. D. Offord, R. C. Chalkley, and P. A. Rubenstein. 1986. 
Characterization of actin mRNA levels during BC3H 1 cell differentia- 
tion. J. BioL Chem, 261:849-855, 

33, Thomas, G., J, Martin-Perez, M. Siegmanm and A. M. O~to. 1982, The 
effect of serum, EGF, PGF2~ and insulin on $6 phosphorylation and the 
initiation of protein and DNA synthesis. Cell. 30:235-242, 

34, Tiell, M. L., M. B. Stemerman, and T. H. Spaet. 1978. The influence of 
the pituitary on arterial intimal proliferation in the rat. Circ. Res. 42: 
644-649. 

35. Weinstein, R., M. B. Stemerman, and T, Maciag. 198 i. Hormonal require- 
ments for growth of arterial smooth muscle cells in vitro: an endocrine 
approach to atherosclerosis. Science (Wash, DC). 212:818-820. 

36. Wice, B., J. Mibrandt, and L. Glaser. 1987. Control of muscle differentia- 
tion in BC3HI cells by fibroblast growth factor and vanadate. J. BioL 
Chem. 262:1810-1817. 

37. Zechel, K. 1980. Isolation of polymerization-competent cytoplasmic actin 
by affinity chromatography on immobilized DNAse I using formamide as 
eluant. Eur. J. Biochem. 110:343-348. 

Wang and Rubenstein EGF Controls BC3HI Cell Differentiation 803 




