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Decoding arm speed during reaching
Yoh Inoue1, Hongwei Mao2,3, Steven B. Suway3,4, Josue Orellana3,5 & Andrew B. Schwartz2,3,6

Neural prostheses decode intention from cortical activity to restore upper extremity move-

ment. Typical decoding algorithms extract velocity—a vector quantity with direction and

magnitude (speed) —from neuronal firing rates. Standard decoding algorithms accurately

recover arm direction, but the extraction of speed has proven more difficult. We show that

this difficulty is due to the way speed is encoded by individual neurons and demonstrate how

standard encoding-decoding procedures produce characteristic errors. These problems are

addressed using alternative brain–computer interface (BCI) algorithms that accommodate

nonlinear encoding of speed and direction. Our BCI approach leads to skillful control of both

direction and speed as demonstrated by stereotypic bell-shaped speed profiles, straight

trajectories, and steady cursor positions before and after the movement.
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The firing rates of individual motor cortical neurons encode
the direction1,2 and speed3,4 of arm movement. This
encoded information is the basis for neural prostheses used

by paralyzed subjects to regain lost arm and hand movement5–9.
Although the demonstrated performance in displacing the arm
and shaping the hand while using these prosthetic devices
approximates that of normal subjects10, problems remain at the
end of a reach as a target is acquired11–13. Decoders used for
intracortical neural prosthetic arm movement estimate subjects’
intended velocity vectors. The directions of these vectors are quite
accurate, but their magnitudes (speed) are often problematic14.
Neuronal encoding of kinematic parameters can be modeled
using tuning functions, and one common tuning equation3 (Eq. 5
below) describes the effect of speed on firing rate in two ways: (1)
as a gain on the cosine tuning function for direction, and (2) as a
speed-dependent offset. The gain effect is largest when moving
along the neuron’s preferred direction (direction for which the
neuron fires maximally). Typical decoders work by inverting
encoding models fit to the recorded firing rates. However, this
speed-direction model, with speed having an effect on both gain
and offset, cannot be inverted directly. Instead, encoding equa-
tions with only an operational gain term are typically used for
velocity decoding. Interestingly, since the classic population
vector is constructed with empirical firing rates, this speed-
direction interaction is captured as a change in the length of the
resultant vector, even though the “direction-only” encoding
model used in this decoder has no explicit terms for speed. As a
result, the length of the population vector reflects movement
speed1. However, because the population vector algorithm and
other encoder-based decoders fail to account for all the speed-
related effects on firing rates, the extracted movement signal may
have deviations from the intended movement. In particular, the
additive offset term in the encoding model can have a specific
effect on decoding performance. This problem could be addressed
by decoding algorithms that reduce the effect of variance due to
signal residuals or that are capable of handling nonlinear inter-
actions, such as those due to the offset term. In this study, we
examine models that describe velocity encoding in individual
neurons and how the gain and additive speed factors affect
velocity extraction by population decoders. Activity is simulated
using different forms of these models and this analysis shows that
the speed-offset factor influences subsequent decoding. The same
effect is observed when activity from empirically recorded units is
decoded. We present alternative formulations that counteract this
problem, and demonstrate their effectiveness during normal
reaching and brain-controlled virtual reaching.

Results
Behavior. Two monkeys performed center-out movements to 16
targets. Figure 1a shows the average hand trajectories to each
target for Monkeys N and C. Figure 1b shows the average speed
profile across all targets. The mean (±SD) peak speed for Monkey
N was 35.3 ± 4.93 cm s−1, and 47.6 ± 5.51 cm s−1 for Monkey C.
Both monkeys made straight, accurate reaches with bell-shaped
speed profiles.

Encoders. The original directional-tuning model for an individual
unit proposed by Georgopoulos and colleagues2 was expressed in
the following equation for 2-dimensional movement.

y ¼ b0 þ bxdx þ bydy þ ε ð1Þ

where y is the mean firing rate of the neuron (during the
movement), dx and dy specify the direction of a target from
the initial position of the hand at the beginning of the reach, bx,
by, b0 are regression coefficients, and ε is the noise (or error)

representing the deviation from the model. This encoding equa-
tion was modified15,16 to incorporate time:

y t � τð Þ ¼ b0 þ bxdx tð Þ þ bydy tð Þ þ εðtÞ ð2Þ

where y(t)is the firing rate of the neuron at time t, and τ is the
time lag between cortical activity and hand direction. We refer to
Eq. (2) as the “direction-only model.” This formulation can be
considered as the inner product between two vectors, b= [bx, by]
lying in the preferred direction (PD), atan(by/bx), and d(t)=
[dx(t), dy(t)], a unit vector in the instantaneous direction of
movement. Equation (2) can be rewritten to emphasize its
directional nature:

y t � τð Þ ¼ b0 þmcos θðtÞ � θPDð Þ þ εðtÞ ð3Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x þ b2y

q
is the modulation depth, θ(t) is the

movement direction at time t, and the unit’s preferred direction is
θPD.

It was later found3 that movement speed acts as a gain factor in
the encoding of firing rate and that, additionally, speed has an
offset effect on the overall tuning function. These two effects are
captured in the following equation:

y t � τð Þ ¼ b0 þ bxvx tð Þ þ byvy tð Þ þ bs vðtÞj j þ εðtÞ ð4Þ

which we refer to as the “offset model.” Here, v(t) is a velocity
vector with magnitude |v(t)|, equal to the speed in the
instantaneous direction of movement. An equivalent re-
parameterization of Eq. (4) is:

y t � τð Þ ¼ b0 þm vðtÞj jcos θðtÞ � θPDð Þ þ bs vðtÞj j þ εðtÞ ð5Þ

A version of this model excludes the offset term17:
yðt � τÞ ¼ b0 þ bxvx tð Þ þ byvy tð Þ þ e tð Þ and we refer to this as

the “gain-only” model which can be stated equivalently as:

y t � τð Þ ¼ b0 þm vðtÞj jcos θðtÞ � θPDð Þ þ εðtÞ ð6Þ

Note that in these models, the coefficients bx and by, and when
present, bs, incorporate the combined effects of speed and
direction on firing rate. In the subsequent analyses, we show how
inclusion of the speed offset term, bs, changes the nature of the
encoding model. To evaluate the effect of the offset coefficient
relative to the modulation depth, we used the following offset
ratio:

H ¼ bs
mþ bsj j ð7Þ

Data. We first applied the offset encoding model (Eq. 4) to units
recorded from the primary motor cortex of monkeys during
center-out arm reaching movements. The optimal time lag (τ)
between kinematics and a unit’s firing (both were trial-averaged)
was found based on the coefficient of determination (R2) of
models fit at different lags, ranging from −120 ms to 270 ms at
30 ms steps. The median lag for the highest R2 values were 90 ms
(Monkey N) and 60ms (Monkey C) (Fig. 2a). The offset model
explained much of the variance in our data (Fig. 2b) with median
R2s of 0.59 and 0.62, for Monkeys N and C, respectively. To
evaluate the importance of the speed-offset term relative to
directional modulation for each unit’s tuning function, we com-
puted the offset ratio (Eq. 7). A small offset ratio means that a
unit’s tuning modulation is dominated by direction, whereas a
large ratio indicates the effect of speed-offset term is greater than
that of direction. The speed offset, bs, was substantial (Fig. 2c) in
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the collected data, as the median of the offset ratios calculated at
the optimal time lags were 0.57 (Monkey N) and 0.41 (Monkey
C). This shows that the speed-offset term is an important factor
in describing the firing rate modulation of these units during the
center-out task.

To further illustrate the effect of the speed-offset term, we
chose three units with different offset ratios. Firing rates from a
unit with a small offset ratio (−0.082) are illustrated in Fig. 3a.
The traces in this figure show a clear directional effect with a
balance of positive and negative modulation, corresponding to
movements in the preferred and anti-preferred directions. In
contrast, an example unit with a large offset ratio (.868) has
firing-rate profiles that are only positive-going and are almost the
same for each direction of movement (Fig. 3b). An intermediate
ratio (close to 0.5) is indicative of a more equitable effect of speed
and direction on firing rate; one such example is the unit (offset
ratio= 0.370) shown in Fig. 3c. Here, there is a direction-related
modulation of firing rates for the targets within 90 degrees of the
preferred direction. However, the profiles in the anti-preferred
directions are small and overlap. The distribution of offset ratios
in Fig. 2c suggests that most units fall in this intermediate range.

Simulation. We used simulations (see Methods) to explore
situations in which there was a mismatch between the model used
to generate firing rates and the observation model used to
describe the way those rates were encoded. Direction-specific
temporal patterns of firing rate were investigated using the
direction-only encoding model (Eq. 3) when the firing rates were
generated with either the gain-only model (Eq. 6) or the offset
model (Eq. 5). The left column in Fig. 4 shows simulated firing

rates generated using the gain-only model and velocities from
Monkey N’s movements. Poisson noise with a rate parameter
given by Eq. (8) was included in the simulation. Figure 4a-left
shows simulated firing rates (PD= 90°) modulated symmetrically
as a function of time about the baseline of 30 Hz. Subsequent
regression (with data from the entire course of the trial) using the
direction-only encoding model on this simulated neuron yielded:

ŷ ¼ 30:0þ 4:77´ cos θ � 90:2�ð Þ;

accurately reflecting the generative process.
The normalized version of firing rate (Eq. 10) is shown in

Fig. 4b-left and is symmetrical about zero. Unit-specific
contributions to a decoder such as the Population Vector
Algorithm (PVA, see Methods) can be represented as a vector
oriented along the axis of the unit’s preferred direction with a
length proportional to its normalized firing rate. The time series
of these contributions for a single movement in the preferred
direction is shown in Fig. 4c-left. The profile, traced out by the
vector tips, matches the speed profile. Note that when movement
is in a direction 90 degrees from the preferred direction, the
profile is flat and there is no contribution to the population vector
(Fig. 4d-left). For movement in the anti-preferred direction
(Fig. 4e-left), the firing rates are below the baseline offset and
negative. Since negative vectors point in the opposite direction,
these vectors also reflect accurate speed coding.

As a comparison to the gain-only model, the column on the
right side of Fig. 4 shows a simulation generated with the offset
model using velocity taken from Monkey N with Poisson noise
and a rate parameter given by Eq. (9). This equation specifies a
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value of 0.25 Hz per m s−1 for both the offset term and the
modulation depth term, yielding an offset ratio of 0.5. Figure 4a-
right shows that simulated firing rates with PD= 90°. Here too,
the firing rates are modulated as a function of time, but the
profiles to different targets have amplitudes that are asymmetric

about the baseline of 30 Hz. If the direction-only model is used to
fit this simulated neuron, the resulting equation is:

ŷ ¼ 32:5þ 2:41 ´ cos θ � 89:9�ð Þ
Notice that the estimated offset term, b0, is now 32.5 instead of

30 impulses per second. The misestimated offset is evident as
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baseline firing rates, before and after movement, that are now
below the estimated baseline. Since direction-only models are
often assumed when constructing decoders, the presence of an
offset effect in actual data would be expected to produce similar
errors. Because of this baseline error, the normalized firing rates
to all 16 targets started and ended with negative values after
normalization (Fig. 4b-right).

For a single movement in the preferred direction (Fig. 4c-right),
the time series of contributions before and after the movement are
also negative, pointing in the anti-preferred direction. Instead of a
zero contribution before and after the movement (e.g., the gain-
only model on the left), these vectors tend to add to the magnitude

of the decoded output. When movements are made at a 90-degree
angle from the preferred direction (Fig. 4d-right), instead of
making a near-zero rate as expected for the direction-only model,
units following the offset model contribute to the decoded speed
throughout the movement. The deleterious effect of offset
encoding is further illustrated for movement in the anti-
preferred direction. The profile is now flat and does not reflect
the speed profile (Fig. 4e-right).

As a consequence of using a direction-only encoding model on
data that follow the offset-tuning equation, the constant, b0, will
be misestimated in the regression. When this constant is then
used in Eq. (10) to normalize firing rates, the decoder will
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incorrectly have a non-zero speed representation before and after
the movement. This is commonly observed as “drift” or decoded
movement occurring when there should not be any. One way to
rectify this problem in BCI applications would be to use a
spontaneous firing rate, (e.g., from a pre-movement hold period)
as an empirically-derived value of b0. While this may work for
controlled paradigms such as the center-out task, in practical use
with spontaneous and novel movement, this may not be possible.
In addition to this problem, non-zero contributions for move-
ments in the directions orthogonal to the preferred direction, as
well as the absence of contributions in the anti-preferred
direction, are likely (depending on the sample of preferred
directions) to distort the resultant decoded direction.

Decoders. We can show how standard decoders perform by
simulating firing rates using the gain-only and offset speed
encoding models. These firing rates were applied to several
population decoders (see Methods): the standard, ‘minimal’
Optimal Linear Estimator (OLE, Eq. 12, 13)18, Direct Regression
(Eq. 15, 16), and an artificial neural network (ANN, Eq. 17, 18).
The results show how the standard decoding may be affected by
failing to account for firing rates that follow the offset model and
how alternative decoders may compensate for this problem.
These decoders were then used to reconstruct center-out arm
movements from recorded neural activities. Decoder performance

was further tested during online closed-loop BCI control of vir-
tual reaching movements.

Decoding with simulated neural units. In order to explore the
conditions likely to cause errors in the decoding of velocity, we
simulated center-out firing rates for 36 units in four conditions
(Fig. 5): (1) a uniform distribution of preferred directions with the
gain-only model; (2) a non-uniform distribution (more units with
preferred directions in the range of 90 to 270 degrees, see
Methods) with the gain-only model; (3) a uniform distribution of
preferred directions using the offset model; and, (4) a non-
uniform distribution of offset-model firing rates.

Movement trajectories were decoded using population vectors
derived from the minimal OLE decoder (which operated on firing
rates using the direction-only encoding model). The first three
conditions (uniform and non-uniform preferred direction
distributions generated with the gain-only model, and uniform
preferred direction distribution under the offset model, Fig. 5a–l)
matched the simulated movements well. The decoded trajectories
were straight and accurate, the speed profiles matched the
simulated speeds consistently to each target, and the component
profiles of the contributory vectors accurately reflected the X and
Y components of the simulated velocity vectors. However, in the
last condition (non-uniform preferred direction distribution
under the offset model, Fig. 5m–p), the OLE decoding was
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inaccurate. The extracted trajectories overshot the left targets and
the trajectories were not straight. Speed profiles in this condition
had direction-dependent amplitudes (Fig. 5n). The X components
of the predicted velocity (Fig. 5o) were under-modulated for the
right-side targets (+90 to −90 degrees) and over-modulated for
the left targets (90 to 270 degrees), while the profiles of the Y
components (Fig. 5p) were less distorted. The speed-offset effect
is evident as directionally-biased distortion when the preferred
direction sample is non-uniform.

The standard decoding procedure of inverting a population of
encoding models (as used by PVA and OLE) can be bypassed
altogether by finding the weights of each unit’s contribution to the
population that yield the best match to the actual velocity. Results
from a linear form of this decoder, Direct Regression, on the
simulated firing rates (non-uniform distribution of preferred
directions and the offset model, as used in Fig. 5m–p) are shown
in Fig. 6a–d. The decoded trajectories were straight and accurate and
the speed profiles were bell-shaped and consistent across directions.

An alternative decoder, the ANN, like the Direct Regression
method, finds an optimized way to combine each neuron’s
contribution. The ANN also has the advantage of converging to a

solution when the mapping from input (firing rates) to output
(velocities) is nonlinear. Trajectories resulting from this decoder
were also straight and accurate with bell-shaped velocity profiles
(Fig. 6e–h). Because we included Poisson noise when constructing
the simulated firing rates, there was variation in the decoded
trajectories. To quantify this variation, we calculated the distance
between end-point position of each trajectory and the trial-
averaged end position for each target. The median of this distance
across all trials (n= 16 × 50 × 10) was 1.21 cm and 0.80 cm for the
Direct Regression and ANN, respectively. The trajectory
variability of the ANN was smaller (Mann–Whitney U-test, p <
0.001, Bonferroni).

These same results can be demonstrated analytically by
constructing population vectors with a description of the
resulting directional accuracy and speed offset. The different
generative models (gain-only, offset) were again used to simulate
firing rates and these were then regressed with the standard
equation (Eq. 1) to find b̂x; b̂y; b̂0 for each simulated unit. The
overall equation for the X-component of the population vector
when using the offset model can be shown to be (Supplementary
Methods):
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v̂x tð Þ ¼ b̂0P þ b̂Px

��� ��� � vðtÞj j � cos θðtÞ � θ̂
� �

þ b̂sP vðtÞj j where:
b̂Px

��� ��� is the coefficient of directional tuning on the population

vðtÞj j is the speed
θ is the movement direction (specified)
θ̂ is the predicted angle of the X axis (e.g., 0°)
b̂sP is the effect of the speed offset on the population
b̂0P is the constant offset for the population
The results of the simulation-based decoders for X and Y are

shown in Supplementary Table 1. Using the minimal OLE on
data generated with an offset model and a non-uniform
distribution of preferred directions, resulted in a speed offset

term b̂sP
� �

that was four times larger for the X component than

for Y. The baseline offset, b̂0P, was large and biased in the X
dimension. This caused a skewing in the decoded trajectory
components as evidenced in the result shown in Fig. 5o, p. In
contrast, the speed offset coefficient for the Direct Regression
decoder was very small, as was that for the baseline offset as
visualized by the symmetric profiles in Fig. 6c, d. The Direct
Regression decoder can compensate for the same non-uniform
distribution of data generated from the offset model. The ANN
decoder must be similarly effective (Fig. 6e–h) although analytical
results are not available due to the nonlinear operations it
employs.

Performance with arm movement data. We tested the minimal
OLE, Direct Regression, and ANN decoders with arm movement
data. For the OLE decoder, tuning parameters were found using
the direction-only regression model (Eq. 2; without trial aver-
aging). Only units with an R2 > 0.03 (33 units for Monkey N and
19 units for Monkey C) were used with all decoders to predict
movement trajectories. The decoding was carried out separately
for each monkey (Fig. 7). Trajectories decoded with OLE were
skewed and the speed profiles had variable amplitudes for
movements to different targets (Fig. 7c, d for Monkey N, Fig. 7k, l
for Monkey C). The Direct Regression yielded modest improve-
ments in accuracy (Fig. 7e, f, m, n). The ANN produced accurate
representations of the trajectories (correlation coefficient r= 0.91
for Vx, 0.89 for Vy − Monkey N; r= 0.84 for Vx, 0.86 for Vy −
Monkey C) for both monkeys (Fig. 7g, o). Speed profiles were
consistent between targets and matched the arm speed closely
(Fig. 7h, p). The reconstructed trajectories and speed profiles were
represented more precisely for both monkeys. Vector field cor-
relations19 between ANN estimates and real arm movement
velocities for both monkeys were significantly higher than those
calculated using any other decoder in each target direction (p <
0.001, t-test, Bonferroni) (Fig. 7b, j).

Performance with BCI virtual arm movement. The performance
of the OLE, Direct Regression and ANN decoders for closed-loop
movement control was further tested with Monkey N using a
brain–computer interface (BCI). The variance-only OLE (see
Methods) was used instead of the minimal OLE to address
neuron-specific variance related to speed. OLE trajectories were
slightly skewed, but straighter than those decoded from the offline
data (Fig. 7c). In addition to the difference between the “minimal”
and “variance-only” versions of the OLE, the straighter move-
ments in this closed-loop situation may have been due to online
monitoring of the decoded trajectory20 (“re-aiming”) and/or to
learning processes which optimize directional encoding18,21.
However, even with this OLE decoder, there was prominent
drifting before movement onset, resulting in skewed movement
trajectories (Fig. 8a; Supplementary Movie 1). In contrast, tra-
jectories were straighter when using Direct Regression and ANN
(Fig. 8c, e; Supplementary Movies 2,3).

To assist calibration of the ANN decoder, its input was seeded
with empirically-derived tuning functions (hybrid-ANN, hANN;
see Methods). The offset speed encoding model (obtained from
the assisted calibration part of the session) was fit to each unit
used in the decoder and assigned to a virtual unit in the input
layer of ANN. A wide range of velocities was then simulated and
used to generate firing rates for each input layer unit following its
offset encoding model. These velocities and firing rates were used
to train the network. With this hANN decoder, the monkey
controlled movement speed well, in terms of holding the cursor in
the center before movement onset and stopping at the target after
movement offset (Fig. 8f). When compared with the alternate
decoder from the same day, the mean cursor motion rate (speed)
during the center-hold period was smaller for both Direct
Regression and hANN than OLE, and for hANN compared to
Direct Regression (Fig. 9a; single-sided Mann–Whitney U-test, p
< 0.001). A similar conclusion holds for the mean rate of motion
during the target-hold period (Fig. 9b). Subsequently, the success
rate of stopping in the target was higher for Direct Regression and
hANN than OLE (Fig. 9d, day 1–4; chi-square test, p < 0.001),
although the Direct Regression-hANN differences were not
significant (Fig. 9d, day 5–6; chi-square test, p > 0.1). Cursor
trajectories were also straighter when using Direct Regression or
hANN compared with OLE, with smaller curvatures (Fig. 9c, day
1-4; single-sided Mann–Whitney U-test, p < 0.01). The hANN
trajectories were slightly straighter than those decoded with
Direct Regression (Fig. 9c, day 5–6; single-sided Mann–Whitney
U-test, p < 0.05). These results demonstrate the potential of these
new decoders in facilitating skillful BCI control of both direction
and speed.

Discussion
Velocity decoding is now standard practice for extracting BCI
control signals from the motor cortex22,23. Decoding is usually a
two-step procedure in which an encoding model is defined
individually for each neuron in a recorded population, followed
by an implicit or explicit inversion of this model in which the
entire population is considered together to extract the encoded
information. As a vector metric, velocity is composed of direction
and speed. Direction is a robust, easily decoded movement
parameter and acts as a powerful driver to modulate the firing
rate of neurons in the motor cortex and many other neural
structures24. In contrast, accurate decoding of speed has been
more elusive14,25. A likely reason for the difficulty in decoding
speed along with direction is that the two variables interact in a
way that precludes linear mathematical inversion of the encoding
model. Speed acts as a “gain field” to the directional cosine tuning
function. As a result, the influence of speed on firing rate will be
greatest for movements taking place along a neuron’s preferred-
direction axis. If the gain-field was the only speed-related effect
on firing rate, speed would be accurately decoded with linear
methods. However, the combination of a speed-gain and a speed-
offset term, as in the case of Eq. (5), yields an encoding equation
that is no longer in a form amenable to standard matrix inversion.

Conventional BCI decoders use encoding models that fail to
account for the speed-offset effect and this may cause char-
acteristic distortions of the predicted movement. These distor-
tions fall into two categories. First, it leads to non-zero decoder
contributions when the speed should be zero. This causes the BCI
output to drift, which could be addressed by directly adding an ad
hoc bias or by the subject actively compensating with a counter
signal to hold the controlled device still. Second, improper speed
decoding results in distortion of the decoded directional signal.
The source of this problem is evident in Fig. 4 (right column). In
this example, a unit with firing rates generated using the offset
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model has a non-zero contribution for movements orthogonal to
the preferred direction, a movement direction for which units
should have a zero contribution. Moreover, instead of having a
contribution that mirrors that of the preferred direction move-
ment, the unit is not modulated in the anti-preferred direction.
Both speed factors, gain and offset, in Eq. (5) will generate
temporal profiles that match speed. However, the combination of
contributions enhances the generated profile in the preferred
direction and diminishes it in the anti-preferred direction, which
can lead to a misestimation of the baseline firing rate and dis-
tortions of decoded output. Distorted decoder output is most

evident for population samples showing non-uniform preferred
directions (Fig. 5m–p). With a balanced set of preferred direc-
tions, the variance due to speed offsets across neurons can cancel
out (Fig. 5i–l).

The detrimental effect of offset terms on decoder performance
can be illustrated by analyzing the decoded velocities in simula-
tions when the generative model is known (Supplementary
Table 1). When the gain-only model is used to generate firing
rates, the OLE-decoded velocity components Vx (Fig. 5g) and Vy

(Fig. 5h) are accurate, and the population-derived constant, b0P, is
small (Supplementary Table 1). However, when non-uniform
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preferred directions are applied to the offset model, the resulting
OLE-decoded velocity components Vx (Fig. 5o) and Vy (Fig. 5p)
have relatively large population offsets, bsP and b0P (Supple-
mentary Table 1). This suggests that using the wrong decoding
model can lead to offset terms across contributing units that do
not cancel out. In contrast, for a generative offset model with
non-uniform preferred directions, the direct regression-decoded
velocity components, Vx and Vy, have relatively small population
offsets (Supplementary Table 1). This decoder places higher

weights on the units, that when combined with others in the
sample, give the best fit to the specified velocity data and this may
effectively balance out the offsets across the population. Encoding
models that do not account for the speed offset must partition
this element of variability into the noise term. In this case, a
common source of variance is being added to the noise term and
this will induce correlation across neurons. A decoder, such as the
“full OLE”18, accounts for this type of shared variability by nor-
malizing each unit’s contribution by its covariance with other
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units in the sample and it would be expected that this type of
algorithm would handle the offset-generated errors better than
those that do not account for noise covariance. However, esti-
mating the covariance matrix between the recorded signals
requires a large sample and this may be a barrier in practical BCI
use.

A general solution to decoding in the presence of complex
encoding may be to use the hybrid approach of combining
explicit tuning functions for individual neurons with ANNs26,27

capable of finding weighting combinations that yield accurate
decoded signals. By assigning an empirical tuning function to
each element of the input layer in the ANN, a large set of
directions and speeds can be used to generate simulated firing
rates in this layer to train the network. This can be carried out
efficiently and, once trained, the network can work in real time to
produce accurate output as it receives the actual firing rates from
the recorded units. These networks have proven useful in gen-
erating coherent output from nonlinear, complex signals.

Careful examination of movement parameter encoding in
simulations and “offline” actual movement data is useful for
establishing models and testing putative decoding algorithms.
However, actual testing of decoder performance in a BCI context
is critical because different control strategies are likely used,
leading to unforeseen changes in performance. When directional
tuning functions are calculated as monkeys perform center-out
arm movements and then recalculated as the same task is carried
out in virtual reality using a BCI, the preferred directions of most
neurons change13,21. There may be multiple reasons for the
changes in tuning between the BCI and arm-movement condi-
tions. One set of explanations is based on considerations of the
physical plant. A lack of somatic sensory input28 and/or the non-
activation of muscles during BCI29 may be responsible for
changes in the tuning function. Alternatively, open-closed loop
changes in the tuning function may be due to short-term and
long-term learning that takes place in the BCI paradigm30–32 as
the subject overcomes observed errors in the decoded movement.
We tested pairs of decoders in daily experimental sessions with a
monkey performing a brain-controlled center-out task (Figs. 8, 9).
The paradigm was designed to enforce the control of speed, by
requiring the subject to move rapidly and to stop accurately
within a target zone. The cursor tended to drift when the OLE
decoder was used (Supplementary Movie 1). It took the monkey
extra effort, perhaps re-aiming in the direction opposite to the
drift, to hold the cursor in the target. The Direct Regression
decoder was less prone to this issue (Supplementary Movie 2).
When the hANN decoder was used, holding still and stopping at
the target was readily achieved in conjunction with rapid move-
ment between the center and peripheral targets (Supplementary
Movie 3). When either of the new decoders was used, movements
were fast and accurate, with bell-shaped velocity profiles similar
to those of actual arm movement.

A basic pillar of neural engineering has been the development
of population-based decoders of neural activity. These decoders
are often based on engineering principles in which there may be
little understanding of the sources generating the signals acting as
input to the decoder. This is especially true of decoders that
operate as classifiers in which the goal is to detect discrete cate-
gories of the parameters contained in extracortical signals recoded
with techniques such as EEG, ECOG, and fMRI. A separate class
of decoders, derived from empirical observation, describes how
parameters are encoded directly in single-unit activity. These
model-based algorithms are used in brain-controlled interfaces to
extract detailed movement-related parameters from populations
of simultaneously recorded action potential waveforms. In some
approaches, intended movement is predicted from a combination

of an encoding model and an assumed set of physical char-
acteristics of the motor control system (e.g., smooth trajectories).
Nonetheless, almost all intracortical BCIs, including state-space
models like the Kalman filter33,34, operate implicitly or explicitly
to invert the encoding models. As we better define the signals
present in a recorded sample of neural activity, we are finding
that the resulting encoding models are more complex and difficult
to invert. This type of problem can be bypassed with direct
decoding methods, such as Direct Regression, that do not rely on
an initial encoding step. This simple, linear method worked well
for the tasks we used in this paper, but cannot account for
multivariate interaction between parameters35. The inability to
account for these dependencies between movement parameters
and firing rates decreases the amount of information that could
otherwise be extracted. This becomes more important as the
number of parameters increases36. Another reason to use
encoding knowledge in the decoding process is to take advantage
of the intrinsic learning that takes place as subjects develop
proficiency in BCI tasks30. Since this type of plasticity operates on
the encoding level, the incorporation of dynamic encoding
models can be beneficial. In this regard, hybrid decoders that
combine detailed encoding models with nonlinear computational
approaches are likely to provide substantial gains in BCI per-
formance. As an initial step, we have shown that our hybrid ANN
decoder mitigates the speed-induced errors that persist with
conventional decoding schemes. Empirically-derived descriptions
of the interactions between behavioral variables and single-
neuron discharge, combined with efficient methods of separating
and identifying the complex interactions of these parameters in a
neural population, will greatly enhance the performance of brain-
controlled interfaces.

Methods
Behavioral tasks. Two male rhesus macaques (monkeys N and C) performed 2D
center-out reaching tasks on a virtual reality setup. The center-out experimental
paradigm has been described previously37. A monkey sits in a chair with one hand
restrained while the movement of the other hand is tracked using an infrared
marker placed on the wrist (Optotrak, Northern Digital). The position of the
moving hand is sampled at 60 Hz and projected as a spherical cursor on a 3D
monitor (Dimension Technologies). The projected cursor is the only visual feed-
back of the moving arm. This task consists of 16 targets (radius of 6 mm for
Monkey N, 10 mm for C) radially located on a vertical plane in front of the monkey
(target distance from the center was 8 cm for Monkey N and 7.4 cm for Monkey
C). At the start of each trial, the monkey is required to hold at the center for
200–300 ms, then the center target is extinguished, followed by the selection and
display of a peripheral target. The monkey then reaches toward and remains in the
target (200–400 ms) to receive a liquid reward. We collected multiple trials to each
target in single-day recording sessions: 69 for Monkey N, and 47 for Monkey C.
The monkeys made fairly straight movements to all 16 targets.

Monkey N also performed the 2D center-out task using a BCI. The monkey sat
in a chair with both hands restrained. At the start of each trial, the cursor was reset
to the center. After that, cursor movement in the virtual reality display was driven
by recorded neural activity. This task consists of 8 targets (radius of 6 mm)
uniformly located along a virtual circle (radius of 8.5 cm) in front of the monkey.
The total time the animal had to move the cursor to the target was typically 1500
ms. Both center-hold, before target presentation, and target-hold, after target
acquisition, had durations of 400–500 ms.

We compared decoder performance (OLE, Direct Regression, and hANN;
described below) by running two sessions of the experiment with different decoders
each day. We switched the order of decoders so each decoder was used twice in the
first session and twice in the second session of a day across a period of six days. We
collected multiple trials to each target across days: 154 for OLE, 181 for Direct
Regression, and 183 for hANN. Before these BCI experiments, the monkey had
been trained to proficiency on a BCI center-out task with a brief target-hold phase
(200 ms) but no center-hold, using the PVA decoder (described below).

Neural recording. Monkeys N and C were each implanted with one multi-
electrode array (96 channels, Blackrock Microsystems) approximately in the arm
area of primary motor cortex (M1). All procedures were in accordance with the
guidelines of the US National Institutes of Health and were approved by the
Institutional Animal Care and Use Committee of the University of Pittsburgh. We
recorded single-neuron responses for arm movement experiments: 86 single units
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were isolated for Monkey N, and 93 units were sorted for Monkey C, using the
online box-sorting method in the Sort Client program (Plexon Inc.).

For Monkey N’s BCI experiments, recorded action potentials were sorted online
using box-sorting. On average, the activity of 138 units was recorded in each
session, including both single-unit and multi-unit activities (75 and 63 units,
respectively).

Data preprocessing. Center-out reaches have a stereotypic bell-shaped speed
profile. Based on the speed profile of each trial, we normalized time according to
standard landmarks. The time landmarks we used are: target presentation,
movement onset, maximum speed, movement offset, and hold off. Movement
onset and offset were defined as the times when speed reached 20% of the max-
imum. The time between landmarks was normalized according to the average
duration of that epoch across all trials. We implemented this by fixing the number
of time bins in each epoch so that the average bin width was 30 ms. Thus, cor-
responding epochs across trials had the same number of bins. For Monkey N, this
consisted of 31 bins divided into epochs of 7, 4, 7, and 13 bins, with average bin
widths (±SE, n= 69 × 16 trials) of 29 ± 0.11 ms, 32 ± 0.21 ms, 32 ± 0.25 ms and 29
± 0.17 ms respectively. For Monkey C, the task was divided into 8, 3, 4 and 9 bins
with average bin widths (±SE, n= 47 × 16 trials) of 29 ± 0.07 ms, 31 ± 0.12 ms, 32
± 0.22 ms, 31 ± 0.25 ms. Spikes were counted within each bin and divided by the
bin width to estimate firing rate. Position was spline-interpolated and then
resampled to match the number of bins in each epoch. Velocity was then recal-
culated using resampled position. The spike rates were smoothed with a Gaussian
kernel (50 ms SD). The position and velocity data recorded in Monkey N’s BCI
sessions were similarly aligned at those landmarks. However, velocities were not
adjusted by bin widths to preserve their original magnitudes (Fig. 8b, d, f).

Simulation. Two sets of simulations were performed to show how speed might
affect firing rate. One set consisted of the parameters m= 0.5 Hz per m s−1, bs= 0
Hz per m s−1, b0= 30 Hz and τ= 0 ms. Here we use the subscript i, to refer to the
ith unit in a sample of N:

yi t � τð Þ ¼ 30þ 0:5 vðtÞj jcos θðtÞ � θPDið Þ þ εiðtÞ ð8Þ

and the other was m= 0.25 Hz per m s−1, bs= 0.25 Hz per m s−1, b0= 30 Hz and
τ= 0 ms:

yi t � τð Þ ¼ 30þ 0:25 vðtÞj jcos θðtÞ � θPDið Þ þ 0:25 vðtÞj j þ εiðtÞ ð9Þ

Equation (8) is an example of the ‘gain-only’ model and Eq. (9) corresponds to
the ‘offset’ model.

The preferred direction angle is a free variable in Eqs. (8) and (9). Preferred
directions for N= 36 simulated neurons, θPDi, were chosen from either a uniform
or a non-uniform distribution. The PDs of the uniform distribution were spaced at
10° intervals. The non-uniform distribution was chosen to be the von Mises
distribution: θPD ~ von Mises (μ, κ), where μ is the angle of central tendency and κ
is the concentration parameter38. We chose μ as 180° with κ= 1.3. The simulation
was based on the behavior of Monkey N. The simulated dataset consisted of 800
trials (50 repetitions for each of 16 targets, see Fig. 1) with a single speed profile (|v
(t)|, the mean profile of all 69 × 16 trials from Monkey N). Each trial had 31 bins
(bin width= 30 ms). Simulated movements to each of the 16 targets were straight.
Poisson realizations of the underlying rate parameter from Eqs. (8) or (9) served to
generate binned spike counts which were divided by the bin width and smoothed in
the same way as real data, to convert to simulated firing rates. These rates were
used for encoding velocities and subsequently, for testing the performance of
decoders in predicting trajectories. Ten-fold cross validation was used for decoder
performance evaluation, and the procedure was repeated ten times with randomly
generated data partitions.

Decoders. Whereas encoding models predict a unit’s firing rate using movement
parameters (in this case direction and speed), decoding algorithms use sampled
firing rates to predict movement parameters. Most intracortical decoding algo-
rithms mathematically invert these models to predict movement parameters and
we analyzed the performance of one such decoder, the OLE, using a variety of
simulated and actual data. We then tested alternative decoders that do not rely on
encoding inversion. Decoder performance was evaluated with arm movement data
using 10-fold cross validation (repeated ten times with random data partitions).

Population vector algorithm. The direction-only encoding model (Eq. 2) is used
to find the ith cell’s modulation depth, mi, the unit-length preferred direction in
vector form pdi= [bxi, byi]/mi, and its offset constant, b0i, for use in the population
vector algorithm. Each unit in the recorded sample contributes to the population
vector in the form of a vector ci(t)= ri(t)pdi which lies in the unit’s preferred

direction with a magnitude equal to its normalized instantaneous firing rate:

riðtÞ ¼
yi tð Þ � b0i

mi
ð10Þ

The vectorial contributions from all included units are added to yield the
population vector pv(t):

pvðtÞ ¼
Xn
i¼1

ri tð Þpdi ð11Þ

The decoded velocity vpred(t) is computed as:

vpred tð Þ ¼ ks
n
pvðtÞ

where ks is a speed factor that converts the magnitude of the population vector to a
physical speed, and n is the number of units used for decoding18. Note that
although this algorithm has no terms accounting for speed, there is an emergent
correspondence between the population vector magnitude and speed3. This is
because speed acts as a gain factor on the directional tuning curve, as seen for
example in the gain-only encoding model (Eq. 6). Also note that although its
performance is not analyzed here, PVA demonstrates how inversion of the
encoding model is used for decoding (e.g., Fig. 4), and it is closely related to the
OLE algorithm explained next.

Optimal linear estimator. The OLE39 can be considered a modification of the
population vector algorithm. Both rely on previously estimated preferred directions
and normalized firing rates. The OLE operates by inverting the encoding equation

r tð Þ ¼ BdðtÞ þ εðtÞ; ð12Þ

where r(t) is a n × 1 vector consisting of the normalized firing rates for each
sampled unit (Eq. 10) for a movement in direction d(t) (2 × 1). Since the move-
ments considered here are two-dimensional, B is the n × 2 matrix of unit-length
preferred directions (pdi). Thus Eq. (12) is just a reformulation of the decoding
parameters found in the direction-only model of PVA. The key aspect is that OLE
treats the matrix of preferred directions B as the explanatory variable in an
ordinary multiple regression model. Hence, the least squares estimator for direction
is:

dpredðtÞ ¼ ðB′BÞ�1B′rðtÞ: ð13Þ

For ease of notation, Eq. (13) can be written as dpred(t)= Pr(t). The matrix P=
α(B′B)−1B′, with dimensions 2 × n, is analogous to an optimized version of the
matrix B′. The scaling constant, α, is chosen such that the average length of the
vectors in P is unit length. Once P has been calculated, it is then used to calculate
population vectors and trajectories (Eq. 13). Note that if the sample of preferred
directions, B, is distributed uniformly about the unit circle, B′B= I, where I is the
identity matrix, and dpred(t)= B′r(t) which is the definition of the PVA (Eq. 11).
Thus, for a uniform sample of preferred directions, PVA and OLE are equivalent
and both are optimal40.

Because the PVA and OLE rely on previously estimated direction-only
encoding parameters, their performance can actually be degraded by extensions
that account for speed. Consider a modified form of the offset encoding model
(Eq. 4):

yi t � τð Þ � b0i ¼ v tð Þj j bxidx tð Þ þ byidy tð Þ þ bsi
� �

þ εiðtÞ

Since speed is itself one of the parameters we wish to estimate, this equation
cannot be inverted in the same way as the direction-only model (Eq. 2). The least
squares solution described in Eq. (13), technically the “minimal OLE”18, is valid
only when the noise terms of all units are independent, identically distributed
random variables. If there is correlation between the noise terms of different units,
the OLE decoding preferred direction matrix should be

P ¼ αðB′Σ�1BÞ�1B′Σ�1; ð14Þ

where Σ is the covariance matrix of noise terms. Implementing this “full OLE”
requires estimating the full covariance matrix, which is challenging when the
dimensionality is high and the data are limited18. The “variance-only OLE” is often
used for online closed-loop control, where only the diagonal of the covariance
matrix is used to find the decoding preferred directions. Instead of assuming that
the variance terms for each unit are the same (minimal OLE), the variance-only
OLE uses each unit’s variance.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07647-3

12 NATURE COMMUNICATIONS |          (2018) 9:5243 | DOI: 10.1038/s41467-018-07647-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Direct regression. Instead of defining encoding parameters for each unit as a
precursor to decoding, we can estimate the least squares vector weights of indi-
vidual neurons jointly from the collective ensemble of sampled firing rates. This
procedure is referred to as “Reverse or Direct” Regression40 and obviates the
problem of inverting the parameter matrix for speed coding.

Using notation corresponding to our previous descriptions:

V ¼ YBþ ε;

where V= [vx, vy] (T x 2) is a matrix of t= 1,…,T sampled velocities from center-
out trials, Y= [y1, y2,…,yT]′ is a T × n matrix of firing rates (each of the n neurons
is an explanatory variable) and B= [bx, by] is an n × 2 matrix of regression
coefficients. The least-squared solution for B is:

B ¼ ðY′YÞ�1Y′V

Note that we can include an overall population offset term if desired. Since the
components of velocity are orthogonal in this center-out task, and the task is
balanced with equidistant targets located on a circle, the above formulation is
equivalent to separate regressions for vx and vy:

vx ¼ kx þ Ybx þ εx

vy ¼ ky þ Yby þ εy;

where kx, ky are regression constants common to the whole sample.
The estimator for velocity is then:

v̂x tð Þ ¼ kx þ
Xn
i¼1

bxi � yi tð Þ ð15Þ

v̂y tð Þ ¼ ky þ
Xn
i¼1

byi � yiðtÞ ð16Þ

Artificial neural network. The PVA, OLE and Direct Regression decoders all
adopt some linear mapping to predict velocity from population firing rates. These
decoders could be suboptimal given that neuronal firing rate may be better
described by some nonlinear model, such as the offset model of Eq. (4). ANNs are
known as good approximators for nonlinear functions and could be used to find a
nonlinear mapping from firing rates (input) to velocities (output).

Here we consider a single-hidden-layer feedforward network as the ANN
decoder. The value of the jth hidden-layer neuron in the ANN is

hj tð Þ ¼ tanh bj þ
Pn
i¼1

wijyi tð Þ
� �

; where yi is the value of the ith input-layer

neuron (i.e. firing rate of the ith recorded unit), n the number of input-layer
neurons, wij the weight parameter between the input layer and the hidden layer, bj
the bias, and tanh the hyperbolic tangent transfer function. The output of the ANN
is predicted velocity, given by

v̂x tð Þ ¼ bx þ
Xm
j¼1

wxjhjðtÞ ð17Þ

v̂y tð Þ ¼ by þ
Xm
j¼1

wyjhjðtÞ; ð18Þ

where wxj and wyj are weight parameters between the hidden layer and the output
layer, m= 10 is the number of hidden neurons, and bx and by are the biases.
Parameters wij, wxj, wyj, bj, bx, and by are randomly initialized, and then learned
from training data using the backpropagation algorithm, with the goal of
minimizing the mean squared error between predicted and ground truth output.
Early stopping was used to prevent overfitting. This was achieved by dividing data
into a training and a validation dataset. Training data were used to iteratively adjust
network parameters using backpropagation, and validation data were used to
monitor network performance (the mean squared error in the output) and stop
training when performance stopped improving. To decode the simulation and arm
movement data, two trials from each target were used for validation. For online
BCI control, we generated artificial data (described below) to train the network and
recorded real data were used for validation. We implemented this hANN decoder
using the Matlab Neural Network Toolbox (version 8.4; Mathworks Inc.).

Decoder calibration for closed-loop control. For BCI experiments, a decoder was
calibrated at the beginning of a session using the assisted control paradigm6.
During the calibration procedure, cursor movement toward the target was ‘assisted’
by combining the decoded movement intention with an automated idealized

command:

vctrl tð Þ ¼ αvauto tð Þ þ 1� αð Þvpred tð Þ; 0 � α � 1

where vauto is the automated velocity command, vpred the predicted command by
the decoder, vctrl the actual control signal driving the cursor, and α the amount of
assistance. The direction of vauto was always pointing to the target from the current
position. The magnitude of vauto was

vauto tð Þj j ¼ 4βinc tð Þβdec tð Þs0

βinc tð Þ ¼ min 1;
t

d tð Þ=s0

� �

βdec tð Þ ¼ min 1;
d tð Þ
d0

� �
;

where t ≥ 0 is the time since target onset, d is the distance from current position
to target, d0= 8.5 cm is the distance from starting position to target, and s0= 15
cm s−1 is a reference speed. This formula generates a bell-shaped speed profile for
vauto. The decoder was re-calibrated using vctrl and recorded neural firing rates in
successive blocks of movements to each target. The amount of assistance, α, started
with a value of 1 in the first block of trials, and was decreased by 0.2 after each
subsequent block. The last re-calibration was done after completion of the sixth
block in which assistance had decreased to 0. The latest decoder was then used for
the rest of the session, giving the monkey full control of cursor movement. The
gain-only regression model was used to select units with R2 > 0.03 for any decoder.
This ended up with 62, 57, and 58 units (of which 41, 39, and 39 were single units
and the rest contained multi-unit activities) on average for the OLE, Direct
Regression and ANN decoder, respectively.

The hybrid-ANN (hANN) decoder calibration was initiated by assigning the
empirical offset-tuning function (Eq. 4, found using data from previous assisted
calibration blocks) for each included recorded unit i to an input of the ANN. A
wide range of velocities (in 16 uniformly arranged directions, including eight new
directions in addition to the 8 target directions) was generated using the automated
control signal (vauto). These velocity profiles were then fed into the tuning function
for each input unit i to produce firing rate profiles, yi. Firing-rate data of each input
unit i in five trials for each of the 16 directions were generated with Poisson noise
using yi as the rate parameter. These artificial firing rates and velocities were used
to train the network. Real firing rate and velocity data recorded from the assisted
calibration procedure were used to validate the network. Early stopping was
adopted to avoid overfitting and training was terminated when performance on the
real data was no longer improving. In practice, it took about 9 s to train the
randomly initialized hANN decoder with 10 hidden-layer units in a computer with
a 2.8 GHz CPU and 16 GB of memory. Making a prediction of intended velocity
from population firing rates took about 8 ms.

Code availability. Code package for offline data analyses is available from the
corresponding author on reasonable request.

Data availability
The data sets recorded and simulated for this study are available from the corre-
sponding author on reasonable request.
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