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ABSTRACT. Purpose: We aimed to investigate alterations in the topological organization of
functional brain networks in acute pain.

Methods: A total of 29 capsaicin group (CAP) and 19 sham controls (Sham) under-
went a 10-min resting-state functional near-infrared spectroscopy scan. The CAP
group applied capsaicin cream (0.1%) to the lower back, whereas the Sham group
applied a hand cream without capsaicin ingredients to the same area. All subjects
were healthy individuals prior to the experiment and did not report any pain or other
medical history. The pain in the CAP was only caused by the topical application of
capsaicin. Each subject was asked to complete a numerical rating scale. Graph
theory–based analysis was used to construct functional connectivity (FC) matrices
and extract the features of small-world networks of the brain in both groups. Then,
FC differences in the prefrontal cortex were characterized by statistical analysis,
and the altered brain features were explored.

Results: Compared with Sham, CAP had impaired functions in short- and long-dis-
tance connectivity (p < 0.05). In particular, there was a greatly significant difference
in connectivity associated with the left dorsolateral prefrontal cortex (ldlpfc) (CAP
versus Sham: 0.80� 0.02 versus 0.70� 0.05, p < 0.0001). Global efficiency, local
efficiency, and small worldness were significantly lower in the topological parame-
ters in CAP than in Sham (CAP versus Sham: 0.172� 0.018 versus 0.191� 0.015,
t ¼ 3.758, p ¼ 0.0005; 0.253� 0.012 versus 0.283� 0.012, t ¼ 8.209, p < 0.0001;
0.526� 0.031 versus 0.628� 0.082, t ¼ 3.856, p ¼ 0.0009). At the regional level,
there were deficits in nodal efficiency within the medial prefrontal cortex and ldlpfc
(CAP versus Sham: 0.156� 0.081 versus 0.175� 0.067, t ¼ 2.305, p ¼ 0.0257;
0.169� 0.089 versus 0.156� 0.081, t ¼ 2.194, p ¼ 0.0033).

Conclusions: Even brief episodes of acute pain can significantly reshape the
brain’s network architecture and FC, revealing a complex phenomenon beyond a
transient sensory experience. Disruptions in brain network topology and connectivity
due to pain suggest potential avenues for targeted therapeutic interventions and
a reconfiguration of brain networks that could underlie chronic pain formation.
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1 Introduction
Pain is the body’s protective response to potential injury and involves complex physiological and
neural mechanisms. The brain processes pain signals not only through nociceptive pathways but also
via emotional and cognitive integration, resulting in a highly subjective and variable experience.1 In
addition, the representation of pain in the brain tends to be complex and dynamic by nature.2 Notably,
the prefrontal cortex (PFC) plays a crucial role in both pain processing and the regulation of higher
order functions, adding another layer of complexity to our understanding of pain perception.

The use of neuroimaging techniques [e.g., functional magnetic resonance imaging (fMRI),
positron-emission tomography (PET), electroencephalography (EEG), and functional near-infra-
red spectroscopy (fNIRS)] has become indispensable recognition due to their capabilities to
explore human brain structure and function and key mechanisms involved in pain processing.
fMRI has become the most widely used brain imaging technique in the field of pain research due
to its whole-brain observation and good spatial resolution.3–5 However, the strict limitations of
fMRI on head movement and the noisy environment of the closed and small area make it difficult
to use in awake children, infants and young children, claustrophobic patients, and patients
with some long-term bedridden conditions. Furthermore, the cost of acquiring and operating
fMRI systems limits its use in large-scale studies. Previous studies have shown that fNIRS, with
superior portability, enhanced temporal resolution, and greater tolerance to movement artifacts,
is more suitable for investigating brain function in naturalistic settings and among special
population.6–9 This makes fNIRS technology ideal for clinical testing. Moreover, compared with
fMRI, fNIRS directly measures oxyhemoglobin (HbO) dynamics with higher temporal resolu-
tion (10 to 100 ms), rapid signal stabilization,10 and lower operational costs11 while maintaining
ease of use. Several studies simultaneously using fNIRS and other technologies have demon-
strated the validity and reliability of fNIRS signals, thus providing an empirical basis for its
application.12–14

In the field of pain research, fNIRS studies have demonstrated that external pain stimuli in
healthy and diseased patients evoked changes in oxygenation levels in distinctive cortical
regions.15–18 Some studies report alterations in task-based functional activation or functional con-
nectivity (FC) associated with pain.19–21 FC quantifies statistical dependencies among neural time
series from distinct brain regions, reflecting synchronized activity. Because resting-state func-
tional connectivity (rsFC) captures intrinsic brain network organization independent of tasks,
making it a cornerstone of connectomics research. The rsFC is commonly used as a biomarker
of neural mechanisms. For instance, in fibromyalgia patients, the rsFC between the default mode
network and pain matrix brain regions was enhanced, and this alteration was correlated with
clinical indicators such as the patient’s pain level and pain duration. This implies that rsFC has
the potential to be used as a biomarker for assessing the severity of the condition and response to
treatment in patients with chronic pain.22 Some acute pain studies have observed rsFC changes in
healthy volunteers during experimental pain stimuli (e.g., heat and mechanical).23,24 During the
stimuli, rsFC changed rapidly in pain- and emotion-related brain regions and recovered after
the stimuli ceased, suggesting that rsFC may reflect real-time neural activity in acute pain and
serve as a biomarker of its neural mechanism. Although prior work has mapped FC within pain-
related cortical regions, graph theoretical analysis of fNIRS data remains scarce, particularly for
acute pain’s impact on global network efficiency and local hub integrity.

Leveraging these advancements, this study aims to investigate the abnormal topological
properties and FC of brain regions during acute pain states. By applying graph theoretical analy-
sis to resting-fNIRS data, we seek to provide new imaging evidence for neurological alterations
in individuals experiencing acute pain, ultimately contributing to a deeper understanding of pain
mechanisms and the development of targeted therapeutic interventions.

2 Materials and Methods

2.1 Subjects
A total of 56 healthy volunteers were recruited for this study and randomly assigned to the
capsaicin group (CAP) (n ¼ 35; 14 female, 21 male) or the sham controls (Sham) (n ¼ 21;
10 female, 11 male). The mean age of the subjects was 25.3� 2.1 years. The larger number
of subjects with CAP was chosen to exclude those who might not respond to topical application
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of capsaicin cream25 or excessive head movements during the fNIRS scan due to discomfort.26

All subjects were right-handed. None subjects reported any acute or chronic pain or other medi-
cal history. Exclusion criteria were drug intake during the previous week, except for vitamins.
Subjects were asked to avoid caffeine prior to the experiment. Informed consent was obtained
from all subjects before the study began. The study had the approval of the Shanghai Changhai
Hospital Ethics Committee (ChiCTR2400087894).

2.2 Capsaicin
Capzasin-HP cream was purchased from America and contained capsicum oleoresin BPC 1973
at 12.5% in Unguentum M (equivalent to 0.1% capsaicin).

2.3 General Experimental Procedure
All study procedures were conducted in a quiet and dimly lit room. Upon arrival at the laboratory,
subjects were informed of the complete experimental procedure and the precautions to be taken.
Next, capsaicin or hand cream was applied to the subject’s lower back (lumbar 2 to lumbar 4
paravertebral muscles). For subjects in CAP, 1-mL Capzasin-HP cream (0.1% capsaicin) was
applied to two 5 × 10 cm areas on the lower back. Then, the area was covered with a plastic
film, which allows close contact with the skin and effectively prevented evaporation, while help-
ing to build up body heat, resulting in a thermally abnormal pain sensation.27 Hand creams with
the same volume but without the capsaicin property were injected into the same 5 × 10-cm skin
area of the subjects. Capsaicin and hand cream were white, odorless, and of similar texture so that
subjects could not distinguish between them at the start of the experiment. Before the experiment,
subjects in both groups were instructed as follows, “Wewould apply a cream to your lower back,
which may trigger varying degrees of sensation, including no sensation, a mild sensation, and
even a sensation so strong that it is unbearable.”

Previous studies have shown that capsaicin cream can produce a steady and moderate-level
pain 25 min after application.27,28 Therefore, we did fNIRS scans for 10 min, 25 min after apply-
ing the cream. The 10-min fNIRS scans were performed in the resting state, and subjects sat still
with their eyes closed and tried to avoid thinking about anything else for the duration of the scan.
Before and after the experiment, all subjects were asked to rate the level of pain in their lower
back. The rating was made on an 11-point numerical rating scale (NRS) that extended from 0
(indicating no pain) to 10 (representing intolerable pain). During the experiment, subjects were
asked to close their eyes, sit still, and try not to think about anything else.

2.4 fNIRS Data Acquisition and Preprocessing
Cerebral hemodynamic responses were recorded by means of a continuous-wave multichannel
fNIRS system (Brite24, Artinis, Netherlands) [see Fig. 1(a)]. Data recording was accomplished
with OxySoft software (Artinis Medical Systems, Elst, Netherlands). The signal sampling rate
was 25 Hz. fNIRS system consists of 8 detectors and 10 light sources. As shown in Fig. 1(b),
8 detectors and 10 light sources form a 27-channel setup, where the maximum distance among
probes was 3 cm. The fNIRS optodes were placed according to the 10 to 20 EEG system29 using
a standardized cap (EasyCap GmbH, Herrsching, Germany). In this study, 3D spatial alignment

Fig. 1 fNIRS system and channels in PFC. (a) Continuous-wave multichannel fNIRS system.
(b) A 27-channel setup. (c) The oxygenated hemoglobin signals of 27 channels from three regions
were detected by fNIRS.
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of measurement channel positions was accomplished using a 3D digital locator (EZT-DM401)
and the Broadmann atlas.30 The estimated positions of the channels were spatially normalized by
the probabilistic alignment method in terms of the Montreal Neurological Institute (MNI)31 stan-
dard template. Based on this probabilistic spatial registration, the 27-channel setup covered the
following cortical regions: the left medial prefrontal cortex (lmpfc) [CH9, CH10, CH15, CH16],
right medial prefrontal cortex (rmpfc) [CH17, CH21, CH22], left dorsolateral prefrontal cortex
(ldlpfc) [CH01, CH02, CH03, CH04, CH05, CH06, CH07, CH08, CH11, CH12, CH13], and

Table 1 MNI coordinates, Brodmann area, and coverage percentage of the
measurement channels.

Channel

MNI coordinates

Brodmann area,
coverage percentagex y z

CH1 −42.667 24.667 50 9-Dorsolateral PFC, 0.916

CH2 −40.667 40.667 36.667 46-Dorsolateral PFC, 0.447

CH3 −34.667 41.667 41.667 9-Dorsolateral PFC, 0.720

CH4 −29.667 21.333 60.667 9-Dorsolateral PFC, 0.836

CH5 −20.667 37.333 54.667 9-Dorsolateral PFC, 0.561

CH6 −12 22.667 67 46-Dorsolateral PFC, 0.667

CH7 −30 58 26.667 46-Dorsolateral PFC, 0.862

CH8 −21.667 59 33.667 9-Dorsolateral PFC, 0439

46-Dorsolateral PFC, 0.355

CH9 −11.667 65 29.667 10-Medial prefrontal, 0.805

CH10 −24.333 69.333 11.667 10-Medial prefrontal, 0.954

CH11 −10.333 45.667 52.333 9-Dorsolateral PFC, 0.715

CH12 −0.667 29.333 60 9-Dorsolateral PFC, 1

CH13 0.667 51.667 44.333 9-Dorsolateral PFC, 1

CH14 13 45.667 53 9-Dorsolateral PFC, 0.700

CH15 0.667 66 19.667 10-Medial prefrontal, 1

CH16 −15.333 73 3.333 10-Medial prefrontal, 0.774

CH17 16.667 73 4.333 10-Medial prefrontal, 0.858

CH18 13.667 23.333 66.667 46-Dorsolateral PFC, 0.703

CH19 21.333 36.667 56.667 9-Dorsolateral PFC, 0.692

CH20 32.667 22.667 60 9-Dorsolateral PFC, 0.762

CH21 12.667 66.667 29.333 10-Medial prefrontal, 0.875

CH22 27.667 68 15 10-Medial prefrontal, 0.989

CH23 22.333 57.333 37.667 9-Dorsolateral PFC, 0.752

CH24 27.667 60 29.667 46-Dorsolateral PFC, 0.529

CH25 34.333 39.333 46.667 9-Dorsolateral PFC, 0.968

CH26 45.667 22.333 51.667 9-Dorsolateral PFC, 0.945

CH27 41.667 38.667 41.667 9-Dorsolateral PFC, 0.613
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right dorsolateral prefrontal cortex (rdlpfc) [CH14, CH18, CH19, CH20, CH23, CH24, CH25,
CH26, CH27] [see Fig. 1(c)]. Table 1 shows MNI coordinates and associated brain regions of
the channels together with the probability of the channels.

The data preprocessing was accomplished using several functions of the Homer2 NIRS
processing package32 in MATLAB (Mathworks, Natick, Massachusetts, United States). For each
subject, the raw light intensity data series was first converted into optical density (OD). During
the analysis using the enPruneChannels function with a signal-to-noise threshold of 10, channels
with a very low optical intensity were discarded. Following this function, channels 1 and 4 were
discarded for all subjects. Then, the motion detection algorithm hmrMotionArtifact was applied
to the OD time series to identify and deal with motion-induced artifacts. This algorithm finds the
data points that exceed an amplitude change threshold (AMPThresh) and a standard deviation
change threshold (SDThresh) within a given time (tMotion) and then marks those points from the
start of the window to tMask seconds later as motion. Both the thresholds, the window length and
tMask, are set by the user. In this study, AMPThresh = 5, SDThresh = 50, tMotion = 2, and
tMask = 4, which provided a compromise between the number of motion artifacts identified
in noisier data series and the number identified in less noisy data series. After motion artifact
identification, principal component analysis (PCA) of spatial covariance and design of spatial
filters reduce artifacts common to all data channels.33–35 These filters were used to remove 80%
of the covariance of the data using the Homer 2enPCAFilter function. hmrMotionArtifact was
run again on the corrected OD time series and the trials where a motion artifact was still present
were rejected. Subsequently, a band-pass filter (third-order Butterworth filter) with a cut-off
frequency set at 0.01 to 0.1 Hz was applied to the data with the aim of reducing very slow drift
and high-frequency noise in the data. The OD data were converted to hemoglobin concentration
change values based on the modified Beer–Lambert law.36,37

2.5 Construction of Functional Brain Networks
Only HbO signals were used in the analysis because studies have shown that HbO is a more
reliable indicator of cortical activation.38,39 FC analyses of the deoxyhemoglobin (HbR) signals
were also performed, which revealed no significant differences between the two groups (CAP
versus Sham: 0.37� 0.03 versus 0.41� 0.01, p > 0.05, see the Supplementary Material). Each
channel represented a node in the brain network in this study. Pearson’s correlation coefficient
was calculated to construct a FC matrix to measure the linear correlation among different brain
regions. Pearson’s correlation coefficient has been widely used in fNIRS studies,11,40,41 and its
calculation is simple and easy to interpret. Although other methods (e.g., partial correlation and
phase synchronization) may be advantageous in some cases, the data characteristics and sample
size limitations of this study make Pearson’s correlation coefficient a more robust and appro-
priate choice. Subsequently, a 27 × 27 FC matrix was obtained for each subject. Eventually,
Fisher’s r-to-z transformation was applied to convert these correlation coefficients to z-scores
for improved normality. Each correlation matrix was thresholded to generate a weighted matrix
with a fixed sparsity value, defined as the ratio of the total number of edges in the network to the
maximum possible number of edges [Eq. (1)]. Only suprathreshold weights were retained in the
resulting matrix. This sparsity-based thresholding approach ensures that the brain networks
across different groups maintain an identical number of edges and consistent connection costs,
thereby facilitating unbiased comparisons. Therefore, we conservatively chose a wide sparsity
range from 0.05 to 0.5042,43 with a step size of 0.01 to fully estimate the topological properties
covering the wide sparsity range. The sparsity (S) can be calculated by the following equation:

EQ-TARGET;temp:intralink-;e001;117;188S ¼ E
Emax

; (1)

where E is the actual number of connected edges and Emax is the maximum possible number of

connected edges in a network with N nodes. For an undirected graph, Emax ¼ NðN−1Þ
2

. Ultimately,
we compute the area under the curve (AUC) of each topology coefficient at different sparsity
thresholds as a comprehensive measure of the network topology coefficients. This approach
helps to reduce the bias that may be introduced by a single threshold selection.

In region of interest (ROI) analysis, 27 measurement channels were divided into four brain
regions based on their location, namely, lmpfc (CH9, CH10, CH15, CH16), rmpfc (CH17, CH21,
CH22), ldlpfc (CH01, CH02, CH03, CH04, CH05, CH06, CH07, CH08, CH11, CH12, CH13),
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and rdlpfc (CH14, CH18, CH19, CH20, CH23, CH24, CH25, CH26, CH27). Then, the channel
time series within each ROI were averaged to obtain ROI-based r-scores. The seed-based
correlation was used to calculate the strength of pairwise connections at four levels in the
PFC (Fig. 2): short-range connectivity 1 (SC1), denoting internal connectivity within the same
ROI in each hemisphere; short-range connectivity 2 (SC2), denoting connectivity among differ-
ent ROIs within a hemisphere; long-range connectivity 1 (LC1), denoting connectivity among
symmetric ROIs in different hemispheres; and long-range connectivity 2 (LC2), denoting con-
nectivity among asymmetric ROIs in different hemispheres. Pearson correlation coefficient r was
converted to a normally distributed value z using the Fisher Z transformation and then used for
statistical analyses. The results were visualized using BrainNet Viewer.44

2.6 Graph Theory Analyses
In this study, all network properties were computed using the analysis toolbox GRETNA. For
brain networks at each sparsity threshold, we explored the topological network properties of
CAP and Sham at the global and regional levels. We chose several common characteristics for
the functional brain networks obtained by each participant, which cover both global and regional
topological properties.

2.6.1 Global network properties

The global network properties included small-world attributes clustering coefficient (Cp),
characteristic path length (Lp), global efficiency (Eg), local efficiency (Eloc), and small-world
attributes (gamma γ, lambda λ, sigma σ).45,46

Fig. 2 Four types of connections. (a) Short-range connectivity 1 (SC1) refers to the internal con-
nections within the same ROI in each hemisphere. (b) Short-range connectivity 2 (SC2) refers to the
connections among different ROIs within a hemisphere. (c) Long-range connectivity 1 (LC1) refers
to the connections among the symmetric ROIs in different hemispheres. (d) Long-range connectivity
2 (LC2) refers to the connections among asymmetric ROIs in different hemispheres.
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The Cp is an important metric in complex network analysis to measure the local clustering
properties of nodes in a network. Cp reflects the closeness between a node and its neighbors

EQ-TARGET;temp:intralink-;e002;117;712Cp ¼ 1

N

X

i

P
j;kaijaikajk

ðP
j
aij − 1ÞP

j
aij

; (2)

where N was the number of nodes in the map. The Lp of the network quantifies the average
length of the shortest path between any two nodes in a network. It is an important measure of the
efficiency of information dissemination in a network

EQ-TARGET;temp:intralink-;e003;117;630Lp ¼ 1

NðN − 1Þ
X

i;j∈xj≠i
dij; (3)

where dij is the shortest path length between node i and node j. The Eg of network G represents
the information transfer efficiency across the network, which is defined as the inverse of the
harmonic mean of the shortest path length between any two nodes47

EQ-TARGET;temp:intralink-;e004;117;553Eg ¼
1

NðN − 1Þ
X

i≠j∈G

1

dij
; (4)

where dij is the shortest path length between nodes i and j. The shortest path length was the
minimum number of edges included in the path that connected these two nodes. N denoted the
number of nodes of the networkG. Meanwhile, the Eloc of networkG is defined as the average of
the local efficiencies of all nodes, where the local efficiency for a given node i is the global
efficiency of the subgraph composed of the nearest neighbors to node i47,48

EQ-TARGET;temp:intralink-;e005;117;453Eloc ¼
1

N

X

i∈G
EgðiÞ; (5)

where EgðiÞ is the global efficiency of Gi, which is the subgraph of the neighbors of node i.
To examine the small-world attributes of a network G that consisted of N nodes and K edges,
the normalized characteristic path length (λ ¼ L∕Lrand) and the normalized clustering coefficient
(γ ¼ C∕Crand) were computed. L and C are the characteristic path length and clustering coef-
ficient of a real network, respectively, and Lrand and Crand represent the means of the correspond-
ing parameters derived from 100 matched random networks that have the same numbers of
nodes, edges, and distribution of degrees as the real brain network. Small worldness (σ) is a
metric used to measure whether a network has small-world properties

EQ-TARGET;temp:intralink-;e006;117;318σ ¼ C∕Crand

L∕Lrand

¼ γ

λ
: (6)

In brief, small-world properties reflect the information exchange properties of the brain’s
functional differentiation and functional integration, as well as the superb adaptive capacity of the
human brain to a variety of stimuli. Typically, a small-world network should meet the following
criteria: γ > 1 and λ ≈ 1 or σ ¼ γ∕λ > 1.49

2.2.2 Regional network properties

For the regional network properties, we evaluated nodal degree (ND) and nodal efficiency
(NE).48,50–53 The ND is a simple measure of the connectivity of nodes in a network. The higher
the ND, the more connections there are to that node, and the more important the node is in the
network.

EQ-TARGET;temp:intralink-;e007;117;148Di ¼
X

j∈G
aij; (7)

where aij represents an edge connected to node iwithin the network G. The NE characterizes the
efficiency of information transfer between a node and its neighboring nodes,43 and the efficiency
of node i is measured as follows:
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EQ-TARGET;temp:intralink-;e008;114;736NEðiÞ ¼ 1

N − 1

X

j≠i∈G

1

dij
; (8)

where dij is the shortest path length between node i and node j. Nodes with high nodal efficiency
indicate that the network exhibits high tolerance to the removal of a given node, which is asso-
ciated with the high clustering of that node’s neighbors.48

2.7 Statistical Analysis
Statistical and clinical data were analyzed using statistical package for the social sciences (SPSS),
version 20 (IBM, Armonk, New York, United States). The normality of the data was assessed
using the Shapiro–Wilk test. Independent two-sample t-tests were used to compare demographic
data (except for gender ratios, analyzed by chi-square test), clinical data, and topological proper-
ties between CAP and Sham. For all statistical analyses of node topological characteristics, we
implemented a false discovery rate (FDR) correction method to control for the risk of false
positives due to multiple comparisons, with the significance level set at p < 0.05.

3 Results

3.1 Clinical Variables
A total of 48 participants were used for formal data analyses (29 in CAP, the other 19 in Sham;
21 female, 27 male; age: 24� 1.8 years). Three participants were excluded due to excessive head
motion during fNIRS scanning, and another five participants had their experiments interrupted
due to excruciating pain. Table 2 shows the values of CAP and Sham and mean differences with a
95% confidence interval (CI). Age, body mass index (BMI), and gender were not statistically
different (p > 0.05 for all comparisons made, independent samples of t-tests) between the two
groups, whereas pain ratings did (6.7� 1.1 versus 0.0� 0.0, p < 0.0001). As both groups had
pain scores of 0 at the baseline level with no variability, this suggests that none of the subjects
reported any pain prior to application. Thus, the changes in pain scores observed after application
can be attributed to the capsaicin effects. Experimental pain induction was successful, with sub-
jects with capsaicin cream applied to the lower back experiencing moderate to high pain levels
during fNIRS scans.

3.2 Channel-Based Functional Connectivity
In the group-averaged FC matrix, the spatial pattern of rsFCs was similar for the CAP and Sham
(t ¼ 2.026, p ¼ 0.0479) (Fig. 3). FC was significantly attenuated in CAP compared with Sham
(mean ± SD: 0.64� 0.21 and 0.57� 0.21, respectively). For the results of Fig. 4, there were
30 connections with a significant difference (p < 0.05) and 5 connections with a highly signifi-
cant difference (p < 0.01). This suggests that capsaicin-induced pain may trigger a broad decline
in overall brain function.

3.3 ROI-Based Functional Connectivity
All 27 channels were divided into four ROIs to further explore the connectivity characteristics
among the ROI. The time series averages of four ROIs’ internal channels were taken, and

Table 2 Demographic and pain intensity variables for CAP and Sham.

Variable CAP (n ¼ 29) Sham (n ¼ 19) Statistics

Age (years) 23.7 ± 1.6 24.4 ± 2.0 t ¼ 1.364, p ¼ 0.179

BMI (kg∕m2) 20.9 ± 2.7 21.5 ± 2.9 t ¼ 0.802, p ¼ 0.427

Gender (female/male) 10/19 6/14 χ2 ¼ 0.108, p ¼ 0.742

Pre-application NRS 0.0 ± 0.0 0.0 ± 0.0 —

Postapplication NRS 6.7 ± 1.1 0.0 ± 0.0 t ¼ 28.67, p < 0.0001

Data are expressed as mean ± standard deviation. Statistics were obtained using
an independent samples t -test or Chi-square test between CAP and Sham.
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independent samples of t-tests and FDR correction were used to compare the differences between
CAP and Sham. Figures 5(a) and 5(b) showed the FC matrix for ROI, with a weaker correlation
in CAP. Compared with Sham, CAP had significantly lower FC intensity in rmpfc–ldlpfc
(CAP versus Sham: 0.37� 0.07 versus 0.57� 0.04, t ¼ 2.532 p ¼ 0.0148), lmpfc–ldlpfc
(CAP versus Sham: 0.31� 0.09 versus 0.52� 0.02, t ¼ 2.325, p ¼ 0.0245), and rdlpfc–ldlpfc

Fig. 4 Changes in functional connections between CAP and Sham. These connecting lines re-
present the differences in FC strength between CAP and Sham. (a) Connections with p < 0.05.
(b) Connections with p < 0.01. The color bar shows the t -values of the difference in FC strength.
A darker red color on the line indicates a more significant difference in FC, whereas a darker blue
color indicates a less significant difference.

Fig. 3 Group-average correlation matrix for CAP (a) and Sham (b). Dots represent the channels.
Exclusion of channels 1 and 4 is shown in dark blue. The correlation coefficient is set to 1 (the diago-
nal line) for each channel. Panels (c) and (d) represent FC visualizations. Within the visualizations,
nodes represent channels, and edges indicate the correlation among different channels. The color bar
indicates the r -values of FC strength, with higher values indicating greater connection strength.

Luo et al.: Cortical functional connectivity and topology based on complex. . .

Neurophotonics 025010-9 Apr–Jun 2025 • Vol. 12(2)



(CAP versus Sham: 0.37� 0.09 versus 0.57� 0.01, t ¼ 2.210, p ¼ 0.0321), as shown in
Fig. 5(c); there was a highly significant difference in the connectivity associated with the ldlpfc.

Four types of FC were shown and compared among groups in Fig. 6. Both short- and long-
range connectivity of CAP were weaker than Sham (p < 0.05). Compared with Sham, CAP
showed significantly weaker connectivity in short-range connectivity within the same ROI in
each hemisphere, except for lmpfc. This was especially evident in ldlpfc (CAP versus Sham:
0.80� 0.02 versus 0.70� 0.05, t ¼ 4.600, p < 0.0001). In short-range connectivity, CAP is
significantly weaker than Sham in the left hemisphere (CAP versus Sham: 0.78� 0.01 versus
0.67� 0.06, t ¼ 5.515, p < 0.0001). CAP showed significantly weaker connectivity than Sham
in symmetric and asymmetric long-range connectivity (LC1, CAP versus Sham: 0.75� 0.01

versus 0.68� 0.03, p ¼ 0.0005; CAP versus Sham: 0.69� 0.02 versus 0.57� 0.06, LC2,
p ¼ 0.0082), but not in the mpfc. In addition, there were highly significant differences in the
connectivity associated with ldlpfc across these four types of FC. This is consistent with the
results presented in Fig. 4.

3.4 Graph Theoretical Topological Analysis
We constructed models of brain networks under the influence of capsaicin at different scales
based on the FC of the brain and using threshold sparsity. The threshold sparsity ranges from
0.05 to 0.50 in 1% steps. We quantified the global network and small-world properties of the
brain networks of CAP and Sham and compared the differences among them. Figure 7 demon-
strates the global network features of the PFC with an increasing threshold.

Within the sparsity range of 0.05 to 0.50, we observed that changes in the levels of Lp, Eg,
and Eloc were observed in all groups. Given that the data at each sparsity level (or threshold) were
independent of each other, we did not find it necessary to perform analysis of variance (ANOVA)
tests. We chose the independent samples of t-test and two-tailed analysis and chose a criterion of
p < 0.05. Specifically, within the sparsity range of 0.05 to 0.18, a significant increase in the Lp
value was observed (CAP versus Sham: 1.47� 0.03 versus 1.38� 0.03, t ¼ 2.363, p ¼ 0.0232)
[see Fig. 7(a)]. When S > 0.20, the difference between the two groups was not statistically sig-
nificant. On the other hand, the Eg was significantly higher in Sham than in CAP in the sparsity
range of 0.22 to 0.50 (CAP versus Sham: 0.17� 0.001 versus 0.19� 0.004, t ¼ 3.758,
p ¼ 0.0005) [see Fig. 7(b)]. At the higher sparsity range (S ¼ 0.22 to 0.50), the performance

Fig. 5 ROI-based correlation matrix for CAP (a) and Sham (b). (c) Between-group differences in
ROI-based functional connections. Circles indicate the average correlation value for each ROI for
each subject.
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Fig. 7 Differences in global topological properties of functional networks between Sham and CAP
in the sparsity range (0.05 to 0.50). (a) Shortest path length, Lp; (b) global efficiency, Eg; (c) local
efficiency, E loc; (d) gamma, γ; (e) sigma, σ; and (f) lambda, λ.

Fig. 6 Comparison of short-and long-range connectivity between CAP and Sham. The dots indi-
cate the correlation z-values among the ROIs. (a) Short-range connectivity 1 (SC1); (b) short-
range connectivity 2 (SC2); (c) long-range connectivity 1 (LC1); (d) long-range connectivity 2
(LC2). The error bars correspond to the standard errors of the mean. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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of the two groups tends to be the same, which indicates that as the sparsity increases, the network
characteristics of the two groups gradually approach to 1. Meanwhile, Sham had a significantly
larger Eloc value as the sparsity increased (CAP versus Sham: 0.28� 0.003 versus 0.25� 0.02,
t ¼ 8.209, p < 0.0001) [see Fig. 7(c)]. Overall results showed that Lp was higher and Eg and
Eloc were lower in CAP compared with those of Sham.

At the defined sparsity level, all subjects showed significantly increased Cp (γ > 1) and
almost identical characteristic path lengths (λ ≈ 1) for the functional brain network properties.
Thus, both CAP and Sham exhibited typical small-world properties (σ > 1) in all subjects in the
present study. The AUCs of small-world attributes, Lp, Eg, and Eloc, were significantly different
between CAP and Sham (p < 0.05) [Table 3 and Figs. 7(d), 7(e), and 7(f)]. Compared with
Sham, we found that γ, σ, Eg, and Eloc were significantly decreased in CAP. Moreover, λ and
Lp were significantly increased in CAP compared with that of Sham.

The regional nodal functions were visualized in Fig. 8 and Table 4. The patterns of ND and
NE were clearly different between CAP and Sham. Compared with Sham, CAP showed decreased

Table 3 Differences in the AUC of values of global network properties.

Global metrics Sham CAP SMD (95%CI) p t

Lp 1.376 ± 0.124 1.468 ± 0.134 0.125 (–0.170, 0.013) 0.0232 2.363

Eg 0.191 ± 0.015 0.172 ± 0.018 0.235 (0.009, 0.029) 0.0005 3.758

E loc 0.283 ± 0.012 0.253 ± 0.012 0.593 (–0.037, 0.022) <0.0001 8.209

γ 0.769 ± 0.120 0.680 ± 0.115 0.187 (0.185,0.159) 0.0150 2.585

σ 0.628 ± 0.082 0.526 ± 0.031 0.403 (0.467,0.156) 0.0009 3.856

λ 0.518 ± 0.012 0.545 ± 0.032 0.192 (–0.044, 0.008) 0.0060 2.923

Metrics are expressed as the mean ± standard deviation. Abbreviations: SMD, standardized
mean difference; CI, confidence interval; Lp, shortest path length; Eglob, global efficiency;
E loc, local efficiency.

Fig. 8 Visual map of regional nodal properties of PFC in CAP and Sham. The color in each topo-
logical plot represents the level of ND and NE in the network. ND and NE were calculated by taking
the averages of all subjects in each group. The ND and NE of each channel are shown in the heat-
map on both sides of the topological scalp plot, with channel labels indicating their locations.
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NE in mpfc (p < 0.05). Meanwhile, CAP showed decreased NE and ND in ldlpfc (p < 0.01).
However, the node attributes among all other ROIs did not show significant differences.

4 Discussion
This study used brain FC to examine the strength of pairwise interactions between channels and
ROIs in the PFC. As expected, healthy individuals have stronger FC. Interestingly, our study
showed that there was a greatly significant difference in connectivity associated with the ldlpfc.
Compared with Sham, CAP had impaired functions in both short- and long-range connectivity.
After studying all the pairwise interactions between channels and ROIs, we found that the FC of
ldlpfc performed well in distinguishing between Sham and CAP. Using graph theoretical analysis,
we further delved into the widespread network-level pathophysiological characteristics of CAP at
the level of topological indicators. Despite the small number of nodes in this study, we ensured the
robustness of the analysis results using methods such as sparsity thresholding and AUC calcu-
lation. It has been shown that even with a small number of nodes, fNIRS studies can effectively
reveal the topological properties of functional brain networks.40,41 We found that CAP showed
impaired small-world properties at a global level compared with that of Sham. At the regional
level, two brain regions were identified as showing significant differences among groups in NE.

4.1 Widely Disrupted Functional Connectivity
Local application of capsaicin or intradermal injection of capsaicin has been described as a
model of neuropathic pain, which produces spontaneous burning pain and local nociceptive
hypersensitivity.23 With the continuous development of neuroimaging techniques, network-based
conceptual frameworks have been used to study the pathogenesis and recovery from pain.
The dynamic interactions between multiple cortical and subcortical networks differ to varying
degrees among those experiencing different pain types.54–56 Our study investigated channel-
based and ROI-based FC. Consistent with previous studies, we found impaired FC in the
PFC of the brain during pain.57–59

In addition, we looked at the short- and long-distance connectivity in CAP. Short- and long-
distance connectivity could have a different role in establishing brain function, which indicates
that damage to either one could have different effects.60,61 Capsaicin-induced pain is usually a
localized, acute sensory experience that primarily involves the source of the painful stimulus.
Due to the characterization and perception of pain signals, the nervous system may rely more on
short-distance connections for rapid local processing. This makes the reorganization of short-
distance connections appear more significant, whereas functional changes in long-distance
connections may be relatively minor because of tighter signaling among local nodes.

4.2 Global Topological Dysfunction of Networks in CAP
The reduction of FC across the brain during pain is accompanied by alterations in the brain
networks’ inherent topological structure. Brain regions integrate and distribute information
through powerful interconnected networks. A network is considered to have small-world proper-
ties if its σ value is greater than 1, which is believed to represent an optimal balance between
network segregation and integration.62 In our study, the functional brain networks of CAP exhib-
ited efficient small-world topology (σ > 1) in the sparsity range (0.05 to 0.50), which was

Table 4 Alterations in the regional nodal functions were identified in three
ROIs of CAP.

ROIs ND/NE Sham CAP p t

mpfc NE 0.175 ± 0.067 0.156 ± 0.081 0.0257 2.305

ldlpfc NE 0.156 ± 0.081 0.169 ± 0.089 0.0033 2.194

ldlpfc ND 2.547 ± 1.648 2.965 ± 1.888 0.0063 2.862

Data are presented as the mean ± standard deviation. Abbreviations: mpfc, medial
prefrontal cortex; ldlpfc, left dorsolateral prefrontal cortex; NE, nodal efficiency;
ND, nodal degree
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consistent with previous neuroimaging studies of different pain diseases.55,63,64 Moreover, we
found that CAP had decreased the γ and σ values but increased the λ values compared with that
of Sham. Anomalies in the small-world properties of CAP suggest that local efficiency, fault
tolerance, and the brain’s information-carrying capacity are disrupted. These abnormalities may
be related to the loss of remote communication among brain parts.

The Eg is an important metric used to rate the efficiency of information transfer in the net-
work, which directly reflects the effectiveness of the brain in handling information exchange and
resource allocation.65 The Lp is defined as the number of edges on the shortest path moving from
one node to another, reflecting all of the possible channels of information transmission between
two brain regions.66 Together, Eg and Lp provide complementary insights into the integration of
network functions: Eg captures the global efficiency of information transfer across the entire
network, whereas Lp quantifies the ease of communication among specific brain regions.
Functional integration is achieved through complex connections and signaling among neurons,
which allows different parts of the brain to work together to engage and process information for
efficient cognitive and behavioral responses. Abnormal reductions in functional integration
(lower Eg and higher Lp) are indicative of decreased efficiency of information transfer among
different regions of the human brain.

In our study, the Eloc was significantly decreased in CAP compared with Sham. The Eloc

measures the information transfer efficiency of local subgraphs (usually those formed by a node’s
direct neighbors) in a network. Specifically, Eloc is concerned with the closeness of connections
and information transfer capability between a node and its direct neighbors. Lower Eloc means
decreased local information processing, which indicates a change in the optimal topological
organization of the functional networks. Several studies have also exhibited disrupted topological
organization of functional networks in individuals with pain compared with healthy subjects.67–69

Our results indicate that parallel information transfer in brain functional networks is
impaired, and the small-world attributes (γ, σ, and λ), Lp, Eloc, and Eg may have the potential
to be used as biomarkers to monitor the course of the disease as well as to assess the severity of
the conditions in painful conditions.

4.3 Regional Topological Dysfunction of Networks in CAP
At the regional level, we found decreased NE mainly in the mpfc and ldlpfc and decreased ND in
the ldlpfc. This indicates that under the influence of pain, brain networks became more frag-
mented, with nodes acting as fewer shortest path hubs of other nodes, and therefore, information
exchange within the network tended to be more indirect and less efficient.55 For pain individuals,
this can mean that their ability to cope with pain, regulate their emotions, or perform cognitive
tasks is compromised. In line with these studies, we found that these regions had lower NE in
chronic pain patients than in healthy subjects.70–72 Even though the NE and ND were reduced in
the pain individuals, their brain networks continued to exhibit small-world properties, suggesting
that the kind of efficient network structure with an optimal balance between network segregation
and integration observed in the normal human brain is maintained in the pain state.73 The small-
world properties were preserved in the functional brain networks of neuropathic pain patients,
whether due to brachial plexus injury74 or postherpetic neuralgia.75 This suggests that, in contrast
to other neurological or psychiatric conditions like Alzheimer’s disease or schizophrenia, the
remodeling process of the brain after chronic neuropathic pain is relatively subtle and does not
significantly disrupt the small-world properties and structural integrity of brain networks.73

4.4 Limitations
The present study has several limitations that need to be improved in future studies. First, the HbR
signal also contains information about the cortical pain response, but this was not quantitatively
analyzed in the current study. Estimating the similarity between HbO and HbR networks using
methods such as DSI76 may help to further elucidate the cortical mechanisms of pain response.
Second, pain triggers changes in physiological information, such as heart rate and blood pressure,
which affect systemic responses inside and outside the brain. Therefore, in future studies, we will
add short separation channels to better eliminate the effects of physiological signals.77–79 In addi-
tion, synchronizing the acquisition of physiological information will help reduce spurious con-
nections that may result from the interaction of physiological information with cortical blood flow.
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Third, this study only monitored fNIRS in the forebrain cortex and did not cover the entire cerebral
cortex. Future studies could adjust the number of device channels to provide a more comprehen-
sive view of the dynamic changes in the brain during the experience of pain.

5 Conclusion
In the present study, topical application of capsaicin produced burning pain with a corresponding
increase in pain scores. From a network topological perspective, CAP and Sham have different
topological architecture models and nodal functions in PFC. Using graph theoretical analysis,
we explored brain connectivity in CAP in the resting state. It was found that the functional
brain networks of CAP suffered from impaired properties at both the holistic and nodal levels
compared with healthy subjects. Notably, CAP showed a decrease in short- and long-distance
connectivity. Even brief episodes of acute pain can significantly reshape the brain’s network
architecture and FC, revealing a multifaceted phenomenon that transcends a mere fleeting sen-
sory event. The alterations in brain network topology and connectivity caused by pain reveal the
potential for implementing targeted therapeutic strategies and suggest a reorganization of neural
pathways that may lead to the development of persistent pain. This work not only advances our
understanding of pain mechanisms but also opens new avenues for targeted interventions and
therapies.
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