
RESEARCH ARTICLE

Fast and principled simulations of the SIR

model on temporal networks

Petter HolmeID*

Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of

Technology, Yokohama, Japan

* holme@cns.pi.titech.ac.jp

Abstract

The Susceptible–Infectious–Recovered (SIR) model is the canonical model of epidemics of

infections that make people immune upon recovery. Many of the open questions in compu-

tational epidemiology concern the underlying contact structure’s impact on models like the

SIR model. Temporal networks constitute a theoretical framework capable of encoding

structures both in the networks of who could infect whom and when these contacts happen.

In this article, we discuss the detailed assumptions behind such simulations—how to make

them comparable with analytically tractable formulations of the SIR model, and at the same

time, as realistic as possible. We also present a highly optimized, open-source code for this

purpose and discuss all steps needed to make the program as fast as possible.

Introduction

Infectious diseases constitute a significant burden to global health and will continue to be that

for the foreseeable future. To aid policy-making, one needs to test scenarios and thus run epi-

demic simulations. Since such simulations rely on statistics—ideally comprising millions of

simulated outbreaks—often epidemic simulations can be prohibitively slow. It is thus essential

to have fast algorithms to simulate epidemics.

The standard approach for epidemic modeling is compartmental models [1]. These are a

class of models that divide a population into different classes with respect to the disease and

assign transition rules between these classes. One of the most canonical of compartmental

models is the susceptible–infectious–recovered (SIR) model that assumes a scenario where

people get immune upon recovery.

However, there is more to the story of how to simulate epidemic spreading than just com-

partmental models. The ways people come in contact so that the disease can spread is crucial

for epidemics, so one should not neglect them [2]. There can be structures, or regularities, in

the contact patterns that affect the disease propagation. One way of addressing this problem is

to base the simulations on temporal networks [3–5]. These encode who that is in contact with

whom, and when these contacts happen. Temporal network epidemiology has been applied to

diseases from HIV [6] to influenza [3], from COVID-19 [7] to livestock diseases [8]. It should

become even more useful with the increasing availability of large-scale data set [9].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Holme P (2021) Fast and principled

simulations of the SIR model on temporal

networks. PLoS ONE 16(2): e0246961. https://doi.

org/10.1371/journal.pone.0246961

Editor: Ivan Kryven, Utrecht University,

NETHERLANDS

Received: January 22, 2021

Accepted: January 28, 2021

Published: February 12, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0246961

Copyright: © 2021 Petter Holme. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data can be

downloaded from http://www.sociopatterns.org/

datasets/.

Funding: P.H. was supported by JSPS KAKENHI

Grant Number JP 18H01655. The funders had no

role in study design, data collection and analysis,

https://orcid.org/0000-0003-2156-1096
https://doi.org/10.1371/journal.pone.0246961
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246961&domain=pdf&date_stamp=2021-02-12
https://doi.org/10.1371/journal.pone.0246961
https://doi.org/10.1371/journal.pone.0246961
https://doi.org/10.1371/journal.pone.0246961
http://creativecommons.org/licenses/by/4.0/
http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/datasets/


Simulating the SIR model on temporal networks may seem straightforward. One can run

through contacts in order of time and let each contact be a potential infection event. Still, there

are many details the modeler has to sort out: How should one initialize the epidemics? How

should one deal with simultaneous contacts? These seemingly technical decisions do affect the

result. They may rarely affect the experiments’ qualitative conclusions, but they could be large

enough to hinder comparison between different studies. Thus, it is desirable for the temporal-

network modelers to agree on the above details to arrive at such a full model description, moti-

vated by simple principles. There could be situations where these principles are invalid, and

thus a different version could be motivated, but we believe the decisions we discuss should not

be glossed over.

One goal for this paper is to establish an exact formulation of the SIR model in temporal

networks, that could—like the Markovian SIR model on static networks—serve as a common

ground for studying effects of temporal network structure, or a starting point when exploring

special cases (for example what happens if the duration of infectiousness is broadly distrib-

uted). The other goal is to present an algorithm for simulating such a model.

This paper will proceed by discussing the principles of a full SIR model for temporal net-

works, then present an algorithm for this purpose, and finally validate and evaluate the perfor-

mance of this code.

Methods

In this section, we will discuss the considerations behind our precise formulation of the SIR

model on temporal networks. We will also present and evaluate an algorithm to simulate this

model. We assume temporal networks can be represented as a contact list [10]—a list of C con-
tacts (sometimes called “events”) (i, j, t), meaning that individuals i and j were in contact at

time t. The order of the first two arguments does not matter. We will use N to represent the

number of nodes; T to represent the duration of the data set (the time between the first and

last contact). We call a pair of nodes with at least one contact an edge.

Design principles

In a broad view, it is obvious how to simulate the SIR model on contact lists: One assigns one

state—susceptible (S), infectious (I), or recovered (R)—to every individual. If a susceptible

appears in contact with an infectious, the susceptible can become infectious with some proba-

bility. After some time, the infectious will recover. All temporal network studies using the SIR

model follow these conventions [4]. However, when it comes to more subtle decisions, like

how to initialize the network, there are many solutions in the literature. Some of these solu-

tions are well-motivated, some are not. In either case, these inconsistencies between studies

are undesirable.

In constructing a complete specification for the SIR model on temporal networks, we will

pursue the following design principles.

Realism. If our goal is to simulate reality, the first guiding principle should be to make a realis-

tic model. At the same time, we are willing to compromise. The ultimate purpose of this

type of computational epidemiology is not accurate forecasting, but to enable researchers to

compare scenarios or interventions. For example, how can one best identify influential

spreaders [11, 12] or important contacts [13]? Therefore, we will not put this principle

above the others.

Continuity. To compare results from temporal network studies with other representational

frameworks—like static network epidemiology or differential equations—our simulations

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 2 / 15

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0246961


should give the same results with the same assumptions. Static network epidemiology typi-

cally (often implicitly) assume the contacts to result from a Poisson process. This is mostly

to ensure continuity to the well-mixed, Markovian SIR model—i.e., the most basic, text-

book version [1, 14]. So when we run our simulation on data with exponentially distributed

interevent times (like a Poisson process), then we should get the same result as with SIR on

static networks.

Simplicity. The “continuity” principle itself entails many simplifications. The point of this

design principle is to keep the same level of abstraction throughout the modeling. It means

that the simulation components that do not concern the limit of static network epidemiol-

ogy should be as simple as those that do.

Generalizability. Another criterion (which in most cases overlap with simplicity), is that it

should be possible to extend the model. Relaxing one of the assumptions—say that all con-

tacts between susceptible and infectious are equally likely to spread the disease—should not

conflict with another component of the model.

Speed. The above principles suffice to derive most of our detailed formulation of the model.

As a tiebreaker principle, we advocate choosing options that make the simulation as fast as

possible.

Precise model formulation

As mentioned, we assume a population of n individuals whose contacts are described by a con-

tact sequence. Every individual is in precisely one state S, I, or R. If i is infectious and j suscep-

tible at time t, then a contact (i, j, t) can cause i to become infectious. An infectious individual

will eventually recover.

Mixed discrete and continuous times. In most empirical temporal networks, time is dis-

cretized. For example, the widely used Sociopatterns data report contacts at 20 seconds inter-

vals [15]. The standard in static network epidemiology, on the other hand, is to use continuous

time. This is necessary to make the model Markovian so that it reduces to the standard differ-

ential-equation version of the SIR model if the network is fully connected. Although this mix

of discrete and continuous times may seem strange, it does not pose any technical or concep-

tual problem (cf. Ref. [16]). From a conceptual point of view, we can assume time is continu-

ous—the contacts happen at integer times. It is easy, to extend the algorithm to handle floating

point times. The main reason we use integer times internally is that almost all data set have

times specified by integers. Note that the program still follows a continuous-time algorithm in

the sense that it does not progress time step by time step.

Contagion. We will assume that every contact represents the same probability β of the

contagion (i.e., that a contact spreads the disease). In other words, we model the contagion as a

Bernoulli process on the contacts with some additional conditions—a contagion takes place at

the first non-zero event after a node pair becomes SI, if the involved nodes are still SI at the

time of that event.

Relative to a true epidemic situation, these assumptions are radical simplifications since

many effects could cause the transmission probability to vary: The amount of pathogens emit-

ted by different infectious individuals, or at different times by the same individual, can vary

greatly [17]. The susceptibility also varies much, not only between people but also e.g., with the

time of the day [18, 19]. Finally, our contact sequences do not encode the intensity of the con-

tacts. Clearly, there is a good case for a more complex model of contagion events. The motiva-

tion we keep it this simple is the continuity principle.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 3 / 15

https://doi.org/10.1371/journal.pone.0246961


In empirical data sets, nodes typically can have simultaneous contacts. With the assertion

that the contagion is instantaneous in the SIR model, simultaneous contacts become a concep-

tual problem. A simple solution, and the one we advocate, is to prohibit the infection from

spreading further than graph-distance one per time unit of the input data. In other words, if

there are contacts (i, j, t) and (j, k, t), but no (i, k, t), then i cannot infect k (via j) at time t. This

solution, technically speaking, makes the model a susceptible–exposed–infectious–recovered

(SEIR) model where the exposed state lasts a time less than the data’s resolution. However, it

simplifies the code a great deal and probably makes the simulation more realistic (since SEIR

is always more accurate than SIR). Moreover, once again, except for some extreme cases, this

decision will not significantly affect the output.

A different principle one could potentially follow would be to assume that the contacts hap-

pen at different (continuous) times but that these times have been truncated to integers. Then

the principled approach would be to sample the contacts of nominally the same time in ran-

dom order and average over different realizations of this random sampling [20]. This approach

will make more sense if the data set’s time resolution is relatively low compared to the propa-

gation of the disease. However, in such a case, one should probably instead consider a static

network model since the temporal information would be less critical.

Recovery. For the time to recovery δ� 0, we simply follow the standard Markovian SIR

model for static networks. I.e., we assume the recovery can be described by a Poisson process

and thus we sample δ from an exponential distribution

ProbðdÞ ¼ n exp ð� ndÞ: ð1Þ

If one represents times as integers internally, one needs to round the sampled times down

to the nearest integer.

The duration of real infections is typically not exponentially distributed [21], so this is not a

choice made for realism, but to conform to the standard in static network epidemiology. If one

would want the recovery times to follow a particular distribution other than exponential, there

is no problem to just replace the exponential random numbers when obtaining a recovery

time. (This is unlike static network epidemiology where using a different distribution of recov-

ery rate demands a different algorithm. [22]).

Some papers use a fixed time for the infection duration [11, 20]. This does not simplify any-

thing, it is probably not more realistic either, as realistic distributions of infectiousness tend to

be peaked and skewed [23]. Furthermore, they could cause unrealistic threshold effects (when

a gap in the contacts is very close to δ). So since there are no major advantages with this

approach, exponentially distributed infection times must be preferable.

Number of sources. For several reasons, we recommend starting the outbreak at one

node, rather than many. The main reason for this is that medical epidemiology is usually con-

cerned with the outbreak of one pathogen or entering the population, typically via one external

(zoonotic) interaction, or arising from a mutation in one host. Starting the epidemics at differ-

ent sources, one would be assuming that there had been some spreading outside of the consid-

ered network. In other words, that one is modeling an open system. In that case, one would

also need to model the influx of pathogens during the outbreak, which adds another level of

complexity to the problem.

Another conceptual problem with having many sources is how to choose them. Unfortu-

nately, there is no rationale to follow that is both simple and consistent with fundamental epi-

demiological facts. If one, for example, is modeling bioterrorism, having many seeds could

make sense. However, then a modeler needs to know whether the adversary chooses seeds to

optimize the damage [24], just at random or in some cluster of the network.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0246961


Furthermore, and maybe most importantly, by using many sources, one misses the early

die-outs characteristic of epidemic models [20] and presumably also real epidemics. An out-

break typically either dies very early or takes off to follow a predictable curve [25]. With several

sources, the early die-offs become inaccessible.

Finally—and related to the previous point—with only one seed, one can measure the basic

reproductive number R0 directly [26]. This is one of the most fundamental epidemiological

quantities defined as the expected number of others that the source will infect. Note that one

cannot avoid stochastic simulations to calculate this number because neighbors of the source

could get infected by other nodes than the source and would not contribute to R0.

Initialization. Now that we established the need for only one infection source, then how

should we choose it? In the spirit of simplicity, we chose it with uniform randomness. This is

also related to realism—there might be some correlation between network positions and the

chance of acquiring a zoonotic infection. However, without additional knowledge, we cannot

do better than choosing it randomly.

In the spirit of simplicity, we also choose the time of the infection uniformly at random

between the beginning and end of the contact data set. Introducing the infection at a time

related to features of the data—like the beginning of the data or when the seed enters the

data—could introduce biases. Since the disease enters from the outside by a process unrelated

to the SIR dynamics, we should randomly choose the time. Of course, there is a chance that

the outbreak will start toward the end of the data set and thus not have enough time to spread

far. Therefore optionally, one could choose the starting time randomly in an early time inter-

val. Nevertheless, there is no simple rule to chose that interval. If the research purpose is to

investigate the largest possible outbreaks, one must find such a rule, even though it has unde-

sired consequences. Otherwise, we recommend picking an infection time by uniform random-

ness in [0, T). For the rest of the paper, we will follow that principle.

Summary. Summarizing the above points, a precise formulation of the SIR model on con-

tact sequences is as follows.

Initialization. Initialize all individuals to susceptible.

Seeding. Pick a random individual i and a random time ti in the interval [0, T). At time ti,
infect i.

Recovery. Whenever a node becomes infected, let it stay infected for an exponentially distrib-

uted time δ before it recovers.

Contagion. If i got infected at time ti and is still infected at time t> ti, and j is susceptible at

time t, then a contact (i, j, t) will infect j with probability β.

Algorithm

Now we describe the algorithm. The code, written in C and Python, is available at github.com/

pholme/tsir/. This code is commented and written for clarity. Thus, we prioritize to describe

the ideas rather than all the algorithmic details. We recommend the reader follow the actual

code when reading this section.

Straightforward algorithm. The simplest way of simulating the SIR model on a temporal

network is to:

1. Initialize all nodes as susceptible.

2. Run through the contacts in increasing order of time.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 5 / 15

http://github.com/pholme/tsir/
http://github.com/pholme/tsir/
https://doi.org/10.1371/journal.pone.0246961


3. If a there is a contact between a susceptible and infectious node, then infect the susceptible

node with probability β.

4. Whenever a node gets infected (including the source), then draw its time to recovery from

an exponential distribution, and change its state to I.

5. Stop the simulation when there are no infectious nodes.

There are many tricks to speed up such a simulation. For example, one can use bisection

search to find the first contact capable of spreading the disease (and thereby avoid scanning

through all contacts before introducing the infection). Another trick is to note when individu-

als become inactive and stop the simulations when there are no active contacts. Still, the run-

ning time of this algorithm (above the epidemic threshold) will be linear in C. Now, consider

the contacts between a pair of nodes. There could be thousands of these, but only one of them

can spread the infection. So clearly, if we can identify that particular contact without having to

scan through all contacts, that could make the algorithm much faster for denser data sets.

Event-based algorithm. The more elaborate algorithm that we will discuss is inspired by

the event-driven algorithm for SIR on static networks by Kiss, Miller and Simon [2].

To understand our algorithm, first consider a pair of nodes (i, j) and assume one of them,

say i, gets infected at time ti. Now assume no other nodes can infect j other than i. The infec-

tion process between i and j is then a Bernoulli process of a finite number of binary random

variables with probability β. (Note that the corresponding part of the event-based algorithm

for SIR on static networks is a Poisson process.) The number of Bernoulli random variables is

the number nij(ti) of contacts between i and j for t> ti. The probability that the k’th such con-

tact will transmit the disease is given by

bð1 � bÞ
k� 1
: ð2Þ

One can sample such a random number k by

log ð1 � XÞ
log ð1 � bÞ

� �

: ð3Þ

where X is a standard, uniformly distributed random variable X on the unit interval [0, 1).

Note that the above operations take O(log c) time (for a list of c contacts between two nodes),

compared to linear time for just scanning through the contacts.

To conveniently handle the above type of computations we store the temporal network

internally as follows. First, we represent the temporal network projected to a static network in

the standard adjacency list format. (Each node is a C-struct that contains information about its

number of neighbors and who those neighbors are.) Then, for every neighbor in the neighbor

list there is a sorted list of contacts. See Fig 1 for an illustration and some further details.

Using the above strategy, when a node i gets infected, we can go through its neighbors j 2
Γi, and calculate if j could be infected by i, then which one of the contacts between i and j
would transmit the disease. In the C code, this happens by calling a subroutine, conta-
gious-contact, that takes i’s infection time ti and the time-ordered list of contacts

between i and j, tij, as input. Then proceed as follows:

1. Use bisection search to find the smallest index k of tij such that ti< tij(k). Where tij(k)

denotes the k’th contact of tij.

2. Add a random number K generated by Eq 3 to k and call it k0.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0246961


3. If k0 is larger than tij’s number of elements, then return some out-of-bounds value (to signal

that no contact will spread the disease). Otherwise, return k0—the contact between i and j
that could be contagious.

From the previous section, we can see that our code needs a priority queue—a data struc-

ture where one can quickly delete the smallest element and insert arbitrary elements. There are

many ways to implement a priority queue. For our situation (where we have to delete, update,

and add elements), operating a priority queue of length n has at least a complexity of O(log n).

Among algorithms with this complexity, we use perhaps the simplest one—a binary heap.

Apart from its simplicity, one appealing feature of using a binary heap for this problem is that

updating the entry for an infected node already on the heap is very fast. Briefly speaking,

updating a heap needs two types of sorting operations—heap-up and heap-down—where

heap-up is much faster, and the only one needed to update elements already in the heap. We

only use heap-down when we delete the smallest element.

The core of the code happens in a subroutine called infect that handles the infection of

one node:

1. Pop the individual i with the earliest infection time from the heap.

2. Iterate through the neighbors j of i.

a. If j is susceptible, get the time tj when it would be infected by i (by calling conta-
gious-contact).

b. If it simultaneously holds that

i. There is no earlier infection event of j on the heap.

ii. i’s recovery time is not earlier than tj.

then put the contagion (i infects j at time tj) on the heap.

Fig 1. Internal representation of the temporal network. In this figure, panel B illustrates how the temporal network in panel A is represented

internally. In A, we display a temporal network of four nodes (a, b, c, d), four edges ((a, b), (a, c), (a, d), (c, d)) and nine contacts ((a, b, 0), (a, c, 2), etc.).

In panel B, the internal representation is organized by nodes. Every node has a list of neighbors (e.g., node a has the neighbor list (c, d, b)). For every

neighbor, there is an ordered list of times of contacts with that neighbor (e.g. a has contact with c at times (2, 15, 19)). The neighbor lists are ordered in

decreasing order of the last contact with that neighbor. This makes it possible to break iterations over neighbors if the infection time of a node is later

than the last contact with the neighbor.

https://doi.org/10.1371/journal.pone.0246961.g001

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0246961.g001
https://doi.org/10.1371/journal.pone.0246961


A trick to speed the code up is to sort the neighbor list in decreasing order of time of the

last contact—see Fig 1. In that way, we can break the iterations over neighbors (step 2) when-

ever we encounter a neighbor with which i has no future contacts).

Then the final structure of the program is simply:

1. Read the network and initialize everything.

2. Infect the source node.

3. While there are any nodes left on the heap, call infect.

4. Reset the simulation.

5. Go to 2 until you have enough averages.

6. Evaluate the output.

Further notes about the implementation. Our implementation of the above algorithm,

available at github.com/pholme/tsir/, uses a mix of C and Python. The idea is to exploit C’s

speed for the core routines and the many libraries of Python to simplify the pre- and post-pro-

cessing. We have not made this into a full Python library because research building on this

codebase would most likely need to add functionality on a low level. We have refrained from

adding many imaginable measurements, both because it is hard to envision a sufficiently com-

plete list of such, and it would slow down the program. We display an example output of the

program in Fig 2.

Fig 2. Example output. This heatmap shows the average outbreak size as a function of the model parameters. The raw

data comes from the first day of sampling in Ref. [27]. It represents the proximity patterns of visitors to an art gallery.

https://doi.org/10.1371/journal.pone.0246961.g002

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 8 / 15

http://github.com/pholme/tsir/
https://doi.org/10.1371/journal.pone.0246961.g002
https://doi.org/10.1371/journal.pone.0246961


We use a 64-bit state version of the PCG (Permuted Congruential Generator) random

number generator [28]. For this type of simulation, neither speed nor statistical quality of the

random number generation is critical. For simplicity, we could just have used some lower-per-

formance, library generator. Still, in the spirit of using state-of-the-art components, we opt for

PCG. For some parameter values, it does save a few percent of computing time compared to

popular random number generators of the previous generation (i.e., the Mersenne Twister).

Results

In this section, we go over some analysis of our temporal-network simulation program.

Validation

We validate our event-based program by consistency checks in several ways. In this section,

we will discuss some such checks—validation against the straightforward implementation and

the analytical solution of the standard Markovian SIR model on static networks. As mentioned

above, if the contacts are generated by a Poisson process on the edges—i.e., if they have expo-

nentially distributed times between the contacts—then SIR on a temporal network and static

network simulations should give the same results.

For this test, we use the graph shown in Fig 3A. This graph has a complex behavior with

respect to the SIR model. It is also small enough to solve exactly [29]—the expected outbreak

Fig 3. Validation of the program. Panel A shows a small graph with especially complex behavior with respect to the SIR model (and thus a good test case).

Panel B shows the predicted outbreak size for the graph in A. The solid curve is the analytical solution. The symbols represent averages over 106 values for

the straightforward and event-based algorithms, respectively.

https://doi.org/10.1371/journal.pone.0246961.g003

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 9 / 15

https://doi.org/10.1371/journal.pone.0246961.g003
https://doi.org/10.1371/journal.pone.0246961


size O as a function of β is

OðbÞ ¼
1176b

10
þ 8540b

9
þ � � � þ 123bþ 7

168b
10
þ 1316b

9
þ � � � þ 105bþ 7

: ð4Þ

We add contacts to this graph’s edges by drawing exponential random numbers with the

rate parameter one. We break these time series when they are longer than τ = 1000 (arbitrary

units). This gives an expected number of 1000 contacts per edge. Since our code reads integer

time stamps, and we want as high resolution as possible, we rescale the times so that T = 232

− 1 which guarantees there is no 32-bit integer overflow. Note that there is a trade-off: If we

have too many contacts per link, then the distribution of inter-event times gets further from

exponential. If we have too few contacts per link, there is a higher chance the outbreak will not

die by the end of the data set. We use ν = 1 and average over 106 runs of the algorithms and

100 realizations of the generation of time-stamps. Even with these caveats, O from the tempo-

ral network simulation is statistically indistinguishable from the exact values from the static

network version (standard scores between 0.5 and 2). Furthermore, the straightforward algo-

rithm and the event-based algorithm are also indistinguishable.

Time complexity

The worst-case complexity of the event-driven algorithm is O(n2 log n log C) for a dense net-

work (where C is the number of contacts). Each node has to enter and exit the priority queue

(a factor n log n). For an infected node, all the neighbors need to be scanned (another factor

n). Then for each neighbor, the infecting contact needs to be identified (in a worst case this has

a complexity log C). Most real networks of interest are sparse—i.e. the degrees are bounded,

giving the complexity O(n log n log C)—and has C� n.

The straightforward implementation is O(C + n) in a worst case, and should be slower as

long as C is sufficiently large. Conversely one could construct temporal networks where the

straightforward algorithm is faster—make a list of one contact per node pair for all node pairs,

then repeat the same list after the first. Is such a temporal network the number of links nodes

is maximal and the number of contacts per link is low. Furthermore, every node is reachable

from every other. This should be a case where the straightforward algorithm outperforms the

event-based one. However, empirical temporal networks typically look very different with very

large C values and relative low reachabilities—i.e. many node pairs are unreachable due to the

constraint that paths have to follow increasing time stamps reduces the outbreak sizes, so that

a large part of the network will never be reached even in a worst case. In the event-based simu-

lations, the program does not need to evaluate contacts in these unreachable parts of the net-

works, which contributes to its speed in practice. Many other factors affect the running time.

For example, the earlier the outbreaks die, or the smaller they get, the shorter are the execution

times. For these reasons, it is challenging to make a complete theory of these algorithms’ rela-

tive running times for practical parameter values.

Evaluation

To evaluate the speed of our event-based algorithm, we use artificial temporal networks. We

generate these in a similar way to the ones used to check the limit to the static network SIR

model described in the previous section. The difference is that we here use random graphs—

the standard Erdős-Rényi or G(n, p) model [30]—and Barabási-Albert models as the underly-

ing structure. Then we put time series of contacts, with inter-event times drawn from an expo-

nential distribution, on the edges.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 10 / 15

https://doi.org/10.1371/journal.pone.0246961


We compare our event-driven algorithm to the straightforward method. For a fair compari-

son, we employ all simple optimizations that we can think of for both programs—such as

bisection search to find the earliest contact after the beginning of the epidemics. We report the

times of the disease simulation, i.e. excluding the time to read the data and fill up the data

structures (which is not the bottleneck of the program).

In our first experiment—see Fig 4—we check the relative speed-up for the same data set as

in Fig 2. We note that the event-based algorithm always outperforms the straightforward one,

although the region of the parameter space where the speed-up is larger than around 3 is not

that large. This region is at small transmission probabilities and small recover rates, i.e. the dis-

ease does not spread much, still it does not die out. In this case, the straightforward algorithm

still has to go through all contacts, whereas the event-driven algorithm just has to go through

the few ones that get infected.

In our second experiment, we use 103 temporal networks for averages, and 106 outbreak

simulations per network. We chose the parameter values in such a way that the outbreak sizes

should be intermediate. In Fig 5, we show the speed-up—the execution time of the straightfor-

ward implementation divided by the time of the event-driven simulation. We ran the simula-

tions on a workstation with dual AMD EPYC 7552 CPUs, 256Gb RAM memory and 192

logical cores (at least half were idle during the experiment).

As predicted, more contacts per edge increases the advantage (Fig 5A). To keep the total

number of contact the same, we let the average degree be z = 1024/c. This means that for the

Fig 4. Speed-up relative to the straightforward algorithm for an artificial network as a function of the SIR model

parameters. How many times faster the event-driven program is compared to the reference code for the same data set as in

Fig 2. The minimum value of the speed-up in this figure is 2.8.

https://doi.org/10.1371/journal.pone.0246961.g004

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 11 / 15

https://doi.org/10.1371/journal.pone.0246961.g004
https://doi.org/10.1371/journal.pone.0246961


largest values of c of the Erdős-Rényi model, the networks are fragmented, which explains the

increase in the speed-up relative to the BA model (which never is fragmented). For fragmented

networks, the event-based algorithm never needs to deal with connected components other

than the one where the disease starts, which contributes to its speed.

In Fig 5B we see that the speed-up has intermediate peaks both for the Erdős-Rényi and the

Barabási-Albert models. Why the relative speed-up decays for larger n is hard to say. It is

important to notice that the practical run times cannot be explained by any single parameter,

not even output quantities like the average outbreak size or time to extinction. Rather the prac-

tical run times depend both on the progression of the simulated outbreak and properties of the

network that do not affect the disease spreading. The most important message this study is the

event-driven algorithm can in theory be arbitrarily faster than the straightforward one, and in

practical situations it is, at least for some parameter values and data sets, faster. If computa-

tional speed is of utmost importance, we recommend a probe of the running times with the

two algorithms. Code for such a comparison is available here https://github.com/pholme/tsir_

eval/.

Discussion and conclusion

We have derived a principled detailed formulation of the SIR model on temporal networks

and presented an, open-source simulation code for an event-based simulation of this model.

We also a give platform for comparing the speed of the event-based algorithm with a more

straightforward version (running through all contacts in order of time).

The event-based algorithm that we proposed can be extended to many other compartmen-

tal models. As long as individuals do not reenter the susceptible state, it should be quite

Fig 5. Speed-up relative to the straightforward algorithm of artificial networks. How many times faster the event-driven program

is compared to the reference code. The underlying temporal networks are Erdős-Rényi—ER, binomial random graphs, G(n, z/n)

(where z is the average degree—for Barabási-Albert (BA) model networks [30]. We add exponential inter-event times to these static

graphs (λ = 1/c) added until T is at least one. (Where λ is the usual, “rate parameter,” of the exponential distribution.) We use 103

temporal networks and 106 outbreak runs per set of parameter values. The recovery rate is ν = 1. Error bars (standard errors) would

have been smaller than size of the symbols and thus not shown. Panel A shows the scaling of the speed-up as a function of the average

number of contacts per link. Here n = 128 and z = 1024/c (to keep the number of contacts constant). Panel B displays the speed-up as

a function of n. Here c = 512 and z = 2.

https://doi.org/10.1371/journal.pone.0246961.g005

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 12 / 15

https://github.com/pholme/tsir_eval/
https://github.com/pholme/tsir_eval/
https://doi.org/10.1371/journal.pone.0246961.g005
https://doi.org/10.1371/journal.pone.0246961


straightforward to extend our code. This would cover e.g., the SEIR model [3]. The only signif-

icant difference would be that one needs to put different types of events in the priority queue.

For models like the SIS, where individuals can become susceptible again, it might be hard to

write efficient event-driven code. For example, in this case, one can no longer discard potential

infection events because they happen later than others. Probably other ideas for fast epidemic

simulations could work better in this case [31].

Another direction for future research would be to sacrifice some of the principles that we

recommended to further increase the speed. One could, for example, use a fixed duration of

the infectious stage [11]. In such a case, the gaps between the contacts determine whether an

edge could transfer the infection. This, we speculate, could open for other types of fast algo-

rithms. In general, temporal networks opens many intriguing problems for algorithm design.

We recommend Ref. [32–34] for further inspiration.

Acknowledgments

We thank Gordon Erlebacher and Martin Sterchi for constructive comments.

Author Contributions

Conceptualization: Petter Holme.

Formal analysis: Petter Holme.

Funding acquisition: Petter Holme.

Investigation: Petter Holme.

Methodology: Petter Holme.

Project administration: Petter Holme.

Resources: Petter Holme.

Software: Petter Holme.

Validation: Petter Holme.

Visualization: Petter Holme.

Writing – original draft: Petter Holme.

Writing – review & editing: Petter Holme.

References
1. Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000; 42(4):599–653. https://doi.

org/10.1137/S0036144500371907

2. Kiss IZ, Miller JC, Simon PL. Mathematics of Epidemics on Networks. Cham: Springer; 2017.

3. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. A high-resolution human contact

network for infectious disease transmission. Proc Natl Acad Sci USA. 2010; 107(51):22020–22025.

https://doi.org/10.1073/pnas.1009094108 PMID: 21149721

4. Masuda N, Holme P. Temporal Network Epidemiology. Springer: Singapore; 2017.

5. Masuda N, Holme P. Predicting and controlling infectious disease epidemics using temporal networks.

F1000 Prime Rep. 2013; 5:6.

6. Rocha LE, Liljeros F, Holme P. Simulated epidemics in an empirical spatiotemporal network of

50,185 sexual contacts. PLoS Comput Biol. 2011; 7(3):e1001109. https://doi.org/10.1371/journal.pcbi.

1001109

7. Barrat A, Cattuto C, Kivelä M, Lehmann S, Saramäki J. Effect of manual and digital contact tracing on

COVID-19 outbreaks: a study on empirical contact data; 2020.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 13 / 15

https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1073/pnas.1009094108
http://www.ncbi.nlm.nih.gov/pubmed/21149721
https://doi.org/10.1371/journal.pcbi.1001109
https://doi.org/10.1371/journal.pcbi.1001109
https://doi.org/10.1371/journal.pone.0246961


8. Schirdewahn F, Colizza V, Lentz HH, Koher A, Belik V, Hövel P. Surveillance for outbreak detection in

livestock-trade networks. In: Temporal Network Epidemiology. Springer; 2017. p. 215–240.

9. Sapiezynski P, Stopczynski A, Lassen DD, Lehmann S. Interaction data from the Copenhagen net-

works study. Sci Dat. 2019; 6:315. https://doi.org/10.1038/s41597-019-0325-x

10. Holme P, Saramäki J. Temporal networks. Phys Rep. 2012; 519(3):97–125. https://doi.org/10.1016/j.

physrep.2012.03.001

11. Lee S, Rocha LEC, Liljeros F, Holme P. Exploiting temporal network structures of human interaction to

effectively immunize populations. PLOS One. 2012; 7(5):e36439. https://doi.org/10.1371/journal.pone.

0036439

12. Starnini M, Machens A, Cattuto C, Barrat A, Pastor-Satorras R. Immunization strategies for epidemic

processes in time-varying contact networks. J Theor Biol. 2013; 337:89–100. https://doi.org/10.1016/j.

jtbi.2013.07.004

13. Takaguchi T, Sato N, Yano K, Masuda N. Importance of individual events in temporal networks. New J

Phys. 2012; 14(9):093003. https://doi.org/10.1088/1367-2630/14/9/093003

14. Andersson H, Britton T. Stochastic Epidemic Models and Their Statistical Analysis. New York:

Springer; 2012.

15. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J, Vespignani A. Dynamics of Person-to-Per-

son Interactions from Distributed RFID Sensor Networks. PLOS ONE. 2010; 5(7):e11596. https://doi.

org/10.1371/journal.pone.0011596

16. Böttcher L, Antulov-Fantulin N. Unifying continuous, discrete, and hybrid susceptible-infected-recov-

ered processes on networks. Phys Rev Research. 2020; 2:033121. https://doi.org/10.1103/

PhysRevResearch.2.033121

17. VanderWaal KL, Ezenwa VO. Heterogeneity in pathogen transmission: mechanisms and methodology.

Funct Ecol. 2016; 30(10):1606–1622. https://doi.org/10.1111/1365-2435.12645

18. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science. 2016; 354(6315):994–

999. https://doi.org/10.1126/science.aah4965

19. Colman E, Spies K, Bansal S. The reachability of contagion in temporal contact networks: how disease

latency can exploit the rhythm of human behavior. BMC Infect Dis. 2018; 18(1):219. https://doi.org/10.

1186/s12879-018-3117-6

20. Holme P. Information content of contact-pattern representations and predictability of epidemic out-

breaks. Sci Rep. 2015; 5:14462. https://doi.org/10.1038/srep14462

21. Vergu E, Busson H, Ezanno P. Impact of the infection period distribution on the epidemic spread in a

metapopulation model. PLOS One. 2010; 5(2):e9371. https://doi.org/10.1371/journal.pone.0009371

22. Masuda N, Rocha LE. A Gillespie algorithm for non-Markovian stochastic processes. SIAM Review.

2018; 60(1):95–115. https://doi.org/10.1137/16M1055876

23. Krylova O, Earn DJD. Effects of the infectious period distribution on predicted transitions in childhood

disease dynamics. J Roy Soc Interface. 2013; 10(84):20130098. https://doi.org/10.1098/rsif.2013.0098

24. Jankowski J, Szymanski BK, Kazienko P, Michalski R, Bródka P. Probing limits of information spread

with sequential seeding. Sci Rep. 2018; 8:13996. https://doi.org/10.1038/s41598-018-32081-2

25. Janson S, Luczak M, Windridge P. Law of large numbers for the SIR epidemic on a random graph with

given degrees. Random Struct Algor. 2014; 45(4):726–763. https://doi.org/10.1002/rsa.20575

26. Holme P, Masuda N. The basic reproduction number as a predictor for epidemic outbreaks in temporal

networks. PLOS One. 2015; 10(3):e0120567. https://doi.org/10.1371/journal.pone.0120567

37. Van den Broeck W, Quaggiotto M, Isella L, Barrat A, Cattuto C. The making of sixty-nine days of close

encounters at the Science Gallery. Leonardo. 2012; 45(3):285–285. https://doi.org/10.1162/LEON_a_

00377

28. O’Neill ME. PCG: A family of simple fast space-efficient statistically good algorithms for random number

generation. Claremont, CA: Harvey Mudd College; 2014. HMC-CS-2014-0905.

29. Holme P. Three faces of node importance in network epidemiology: Exact results for small graphs.

Phys Rev E. 2017; 96(6):062305. https://doi.org/10.1103/PhysRevE.96.062305

30. Newman MEJ. Networks: An Introduction. Oxford UK: Oxford University Press; 2010.

31. St-Onge G, Young JG, Hébert-Dufresne L, Dubé LJ. Efficient sampling of spreading processes on com-

plex networks using a composition and rejection algorithm. Comput Phys Commun. 2019; 240:30–37.

https://doi.org/10.1016/j.cpc.2019.02.008

32. Badie-Modiri A, Karsai M, Kivelä M. Efficient limited-time reachability estimation in temporal networks.

Phys Rev E. 2020; 101:052303. https://doi.org/10.1103/PhysRevE.101.052303

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 14 / 15

https://doi.org/10.1038/s41597-019-0325-x
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1371/journal.pone.0036439
https://doi.org/10.1371/journal.pone.0036439
https://doi.org/10.1016/j.jtbi.2013.07.004
https://doi.org/10.1016/j.jtbi.2013.07.004
https://doi.org/10.1088/1367-2630/14/9/093003
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1103/PhysRevResearch.2.033121
https://doi.org/10.1103/PhysRevResearch.2.033121
https://doi.org/10.1111/1365-2435.12645
https://doi.org/10.1126/science.aah4965
https://doi.org/10.1186/s12879-018-3117-6
https://doi.org/10.1186/s12879-018-3117-6
https://doi.org/10.1038/srep14462
https://doi.org/10.1371/journal.pone.0009371
https://doi.org/10.1137/16M1055876
https://doi.org/10.1098/rsif.2013.0098
https://doi.org/10.1038/s41598-018-32081-2
https://doi.org/10.1002/rsa.20575
https://doi.org/10.1371/journal.pone.0120567
https://doi.org/10.1162/LEON_a_00377
https://doi.org/10.1162/LEON_a_00377
https://doi.org/10.1103/PhysRevE.96.062305
https://doi.org/10.1016/j.cpc.2019.02.008
https://doi.org/10.1103/PhysRevE.101.052303
https://doi.org/10.1371/journal.pone.0246961


33. Himmel AS, Bentert M, Nichterlein A, Niedermeier R. Efficient Computation of Optimal Temporal Walks

Under Waiting-Time Constraints. In: Cherifi H, Gaito S, Mendes JF, Moro E, Rocha LM, editors. Com-

plex Networks and Their Applications VIII. Cham: Springer; 2020. p. 494–506.

34. Petrovic LV, Scholtes I. Counting causal paths in big times series data on networks; 2019.

PLOS ONE Fast and principled simulations of the SIR model on temporal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0246961 February 12, 2021 15 / 15

https://doi.org/10.1371/journal.pone.0246961

