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Collagen is the major structural component of cartilage, and mutations in

the genes encoding type XI collagen are associated with severe skeletal

dysplasias (fibrochondrogenesis and Stickler syndrome) and early-onset

osteoarthritis (OA). The impact of the lack of type XI collagen on cell behav-

iour and mechanical performance during skeleton development is unknown.

We studied a zebrafish mutant for col11a2 and evaluated cartilage, bone

development and mechanical properties to address this. We show that in

col11a2 mutants, type II collagen is made but is prematurely degraded

in maturing cartilage and ectopically expressed in the joint. These changes

are correlated with increased stiffness of both bone and cartilage; quantified

using atomic force microscopy. In the mutants, the skeletal rudiment term-

inal region in the jaw joint is broader and the interzone smaller. These

differences in shape and material properties impact on joint function and

mechanical performance, which we modelled using finite element analyses.

Finally, we show that col11a2 heterozygous carriers reach adulthood but

show signs of severe early-onset OA. Taken together, our data demonstrate

a key role for type XI collagen in maintaining the properties of cartilage

matrix; which when lost leads to alterations to cell behaviour that give rise

to joint pathologies.

This article is part of the Theo Murphy meeting issue ‘Mechanics of

development’.
1. Introduction
Articular cartilage is a highly specialized connective tissue, which provides a

smooth, lubricated surface for articulation and load transmission with low

joint friction. Collagen is a major constituent of cartilage, accounting for

around 75% of its dry weight [1]. Type II collagen makes up 90–95% of the

collagen network, while the remaining 5–10% comprises other collagens such

as type IX and XI, with studies of chick articular cartilage showing association

of these three collagen types in a tight D-periodic array [2,3]. These minor

collagens help to organize and stabilize the type II collagen fibril network

that, along with proteoglycans, water and other proteins, form a dense extra-

cellular matrix (ECM) in which chondrocytes are dispersed [4]. The tight

fibrillar structure from collagens and the water content, from interaction with

glycosaminoglycans (GAGs), govern the mechanical properties of the cartilage.
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Type XI collagen belongs to the fibril-forming class of

collagens; it is formed as a heterotrimer of three chains,

each encoded by a different gene: COL11A1 [5], COL11A2
and COL2A1 [6,7]. While the a1 chain of type XI collagen is

expressed in both cartilaginous and ocular tissue, the a2

chain is predominantly expressed in cartilage.

Given the close interaction between type II and type XI

collagens, mutations that affect either can cause similar desta-

bilization of cartilage organization, as observed in Marshall

Stickler syndrome. Stickler syndrome, which affects around

1 in 7500 new-borns, encompasses a hereditary group of con-

ditions caused by defective type II, IX or XI collagen [8] and

is divided in to three phenotypes: depending on the collagen

mutation present. Type III is associated with mutations to the

type XI gene COL11A2 [9,10]. Type III Stickler syndrome is

characterized by skeletal, orofacial and auditory abnormal-

ities including: scoliosis, hearing loss, cleft palate, joint

hypermobility [11], multiple hereditary exostoses [10] and

premature osteoarthritis (OA) in 75% of patients before the

age of 30 [8]. The majority of mutations linked to Stickler

syndrome lead to truncated proteins lacking the c-terminal

domain of the peptide, disturbing the association of the a

helices to form procollagens and consequentially the for-

mation of collagen fibrils and fibres [12]. Mutations in genes

encoding type XI collagens are also associated with other skel-

etal dysplasias, including the severe developmental condition

fibrochondrogenesis [13], and Weissenbacher–Zymuller

syndrome [9].

Mutant mice for Col11a1 (Cho2/2) are neonatally lethal

and show decreased limb bone length, cleft palate and

short snouts [14], and thicker, less uniform collagen fibrils

in the cartilage ECM [15]. Type II collagen degradation [16]

and early-onset OA were reported in Cho/þ heterozygous

mice [17]. Additionally, mice haploinsufficient for Col11a1
display altered susceptibility to load-induced damage [18].

While Col11a2 mutant mice have been reported to show hear-

ing loss, their skeletal phenotype has not been described [19].

The interaction of type XI collagen with type II is important

for the maintenance of the spacing and diameter of type II

collagen fibrils [20]. As type II collagen is the major collagen

in cartilage, changes to its organization can impact the mech-

anical performance of the cartilage. Computational modelling

has shown that spacing and interconnectivity between

collagen fibrils has a significant effect on the mechanical

performance of cartilage [21]. Cartilage is an intrinsically

mechanically sensitive tissue, and changes to cartilage biome-

chanical performance have been extensively described during

development [22], ageing and disease [23]. It is also increas-

ingly well understood that subtle changes to skeletal

morphology and joint shape can increase susceptibility to

joint conditions such as OA later in life [24]. A recent large

genome-wide association study on hip shape identified

COL11A1 as a contributor to hip shape [25]. Joint shapes

seen in development and disease have been shown to have

significant impact on the biomechanical performance of

joints [24,26]. What is less clear is the sequence of events

within the joint, do changes to shape precede changes to

cartilage structure and mechanical performance or vice

versa, and what is the relative impact of each change?

Zebrafish are an attractive model for studying the effect of

genetic lesions on skeletal development. The larvae are trans-

lucent which, twinned with fluorescent reporter transgenic

lines, enables dynamic imaging of skeletal cells [27,28] and
the development of the zebrafish craniofacial skeleton is

well documented [29–31]. The zebrafish jaw joint is synovial

[32] and requires mechanical input to form normally [33,34].

Acute knockdown of col11a1 in zebrafish using morpholinos

has been shown to affect chondrocyte maturation [35], but no

stable mutants for col11a1 or col11a2 have previously been

reported.

Here, we show that larval zebrafish carrying a col11a2
mutation display a variety of phenotypes including alterations

to: joint shape, cartilage composition, cell organization and

the material properties of the cartilage during development.

These changes impact on the biomechanical and functional

performance of the joint. The mutant fish go on to display

phenotypes consistent with Stickler syndrome such as

altered face shape and early-onset OA. Taken together, these

data suggest that mechanical and cellular changes to the

developing skeleton explain the predisposition of people

with mutations in type XI collagens to early-onset OA.
2. Methods
(a) Zebrafish husbandry and transgenic lines
Zebrafish were maintained as described previously [36], all

experiments were approved by the local ethics committee and

performed under a UK Home Office Project Licence. Transgenic

lines Tg(col2a1aBAC:mcherry), Tg(col10a1aBAC:citrine)hu7050 [37]

and Tg(smyhc1:GFP) [38] have been described previously.

col11a2sa18324 mutant zebrafish was generated by the Zebrafish

Mutation Project (Sanger Institute) and acquired from the Euro-

pean Zebrafish Resource Centre (EZRC). It carries a non-sense

mutation (C . A base pair change at position 228aa, zv9 chr19:

7834334), leading to a premature stop codon which shortens

the polypeptide to about one-third of the triple helical domain

of the a2 chain of collagen XI.

(b) DNA extraction and genotyping
Fins were clipped from anaesthetized or fixed zebrafish and incu-

bated in base solution (25 mM NaOH,0.2 mM EDTA) before the

addition of neutralization solution (40 mM Tris–HCl, pH 5.0).

For genotyping, we used KASP (LGC) genotyping or PCR

followed by Sanger sequencing (col11a2 F-GGTGGCCTGATTCT

GACCA; col11a2 R-TATCTCACACCAGGATGCCG). Mutants

were identified by C . A base pair change at position 228aa.

(c) Wholemount immunohistochemistry
Performed as previously described [37]. Primary antibodies and

dilutions used were: rabbit pAb to collagen II, (abcam ab34712),

1 : 500; mouse pAb to collagen II, (DHSB II-II6B3), 1 : 500, rabbit

pAb to collagen I, (abcam ab23730), 1 : 100. Secondary anti-

bodies were Dylight 488 or 550 (Thermo Scientific) used at a

dilution of 1 : 500. For imaging, larvae were mounted ventrally

in 1% agarose and imaged on a Leica SP5 confocal microscope

with a 10� objective.

(d) Three dimensions render generation, joint
measurements, quantification of exostoses
and cell circularity

Three-dimensional (3D) volume renders, surface models and

measurements were acquired using Amira 6.0 (FEI). Surface

models were generated manually by segmenting jaw joints

using the segmentation tool. Measurements, as depicted in

figures 1c,d and 3a, were taken using the 3D perspective
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Figure 1. col11a2 zebrafish mutant larvae show progressively altered type II collagen protein localization in jaw cartilage. (a,b) Maximum projection of ventral and
lateral confocal image stacks from wt (a) and homozygous mutant (col11a22/2) (b) larvae immunostained for type II collagen at three time points (3, 5 and 7
dpf ). White arrows indicate areas of change in type II collagen distribution in the ECM. Dashed insets show single-stack images of regions with reduced deposition
(white asterisks represent areas where type II collagen is maintained in mutant fish and red asterisks show fragments of type II collagen-positive material outside
the main cartilage elements). Red arrows show interoperculomandibular (IOM) ligament. Scale bar, 100 mm.
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measurement tool. To better visualize exostoses, 3D volume

renders were created, and the greyscale range of colour applied.

Exostoses were quantified in each lower-jaw element from single

confocal image stacks in ImageJ [39] using the multi-point tool.

Cell circularity was measured from confocal image stacks of

type II collagen immunostained zebrafish larvae at 5 dpf. The

freehand selection tool in ImageJ was used to outline chondro-

cytes in three distinct jaw regions (shown in figure 2h) and the

measure function was used to analyse the circularity of each

cell. This was done for 10 cells in each region, in 3 wild-type

(wt) and 3 col11a2 mutant zebrafish.
(e) Live imaging of transgenic fish
Live larvae at 5 dpf were anaesthetized in 0.1 mg ml21 MS222 and

mounted ventrally in 0.3% agarose with tricaine prior to being

imaged on a Leica SP5II confocal microscope with a 10� objective.

The number of slow muscle fibres and col10a1a-expressing cells

were quantified manually in ImageJ from confocal images of

double transgenic Tg(smyhc1:GFP);(Col2a1aBAC:mCherry) and

Tg(col10a1aBAC:citrine); (col2a1aBAC:mCherry) zebrafish at 5 dpf,

respectively.

( f ) Alcian blue and alizarin red staining
The 5 and 7 dpf wt and col11a2 mutant larvae were stained

following a previously described protocol [40] and imaged on

a Leica MZ10F stereo microscope prior to genotyping.
(g) In situ hybridization
In situ hybridization was performed as described [41] using a

previously described col11a2 probe [42]. Larvae were imaged

on GXM-L3200 B upright microscope.

(h) Nanoscale surface morphology and Young’s moduli
Atomic force microscopy (AFM) was performed on adult (1 year)

bone and larval (7 dpf) cartilage from wt and col11a2 mutant fish.

A multi-mode VIII AFM with Nanoscope V controller and

PeakForce control mechanism were used and the force-curves

measured for means of set-point control in the PeakForce system

and analysed in real time to provide quantitative nanomechanical

mapping (QNM) of the samples. QNM analysis was conducted

with both Nusense SCOUT cantilevers (NuNano, Bristol, UK)

(nominal tip radius 5 nm, spring constants 21–42 N m21) and

RTESPA-300 cantilevers (Bruker, CA, USA) (nominal tip radius

8 nm and spring constants 30–60 N m21), while high-resolution

imaging of topographic features was conducted using SCANA-

SYST-AIR-HR cantilevers (Bruker) (nominal tip radius of 2 nm).

The system was calibrated for measurement of Young’s modulus

(YM) fitting with DMT models, using the relative method and

samples of known YM (highly oriented pyrolytic graphite

(18 GPa) and PDMS-SOFT-1-12M (2.5 MPa) (Bruker)), for bone

and cartilage measurements, respectively. Bone was investigated

in ambient environment while cartilage was maintained in a

hydrated state post-dissection to minimize structural changes

from drying. A root-mean-square mean was calculated for 65 536
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Figure 2. (Caption opposite.)
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Figure 2. (Opposite). col11a2 mutant zebrafish develop altered morphology and joint spacing in the lower jaw. (a,b) Lower-jaw shape quantification (n ¼ 3 for all),
location of measurements shown to the left of graphs. (c) Representation of measurements taken of joint neck (red line), joint head (green line) and joint space
(white line) (Meckel’s cartilage, light blue; palatoquadrate, dark blue). Orientation compass: A, anterior; L, lateral; M, medial; P, posterior. (d ) Three-dimensional
surface renders of jaw joint from confocal images of wt and col11a22/2 at 3, 5 and 7 dpf. Red arrowheads, areas of change. (e – g) Quantification of joint
morphology at the Meckel’s cartilage neck at joint (e), Meckel’s cartilage head at joint ( f ) and joint space (g) (n ¼ 3 for all). (h) Three-dimensional volume
renders of wt and col11a22/2 zebrafish at 7 dpf. Dashed insets show Meckel’s symphysis at higher magnification (red arrowheads, protruding cells). (i) Quanti-
fication of protruding cells in wt and col11a22/2 zebrafish at 3 – 7 dpf (n ¼ 3, 3, 4, 4, 13, 6, 8, 6). ( j ) Quantification of cell circularity in the Meckel’s cartilage in
5 dpf wt and col11a22/2 fish (n ¼ 3 for all). Location of measurements shown in h (red box, Meckel’s symphysis; blue box, mid-element; green box, jaw
joint). Student’s unpaired t-tests performed in a, b, e – g, i and j: data are mean with SEM ( j shows mean with no SEM, t-tests performed between mean
values). *p � 0.05, **p � 0.01, ***p � 0.001.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170335

5

measurements taken over a 500 � 500 nm region, three repeats

were performed per sample; repeated on three fish per genotype.

(i) Finite element models
Single specimens that were representative of the confocal z-stacks

of 7 dpf wt or mutant larvae dataset and their relative mor-

phology were selected for the meshes. Cartilage elements were

segmented in Scan IP using Otsu segmentation (electronic sup-

plementary material, figure S2a), then a solid geometry created

using the interpolation and 3D wrap tool. Smoothing filters

(recursive Gaussian at 1px3) were used on the meshes to blend

any rough small element clusters.

Cartilage geometry close to the joint was separated from the

main cartilage in a duplicate mesh using the 3D editing tool

allowing us to assign different material properties to hyper-

trophic chondrocytes and immature chondrocytes (electronic

supplementary material, figure S2b). The mesh of the cartilage

near the joints was subtracted from the original cartilage mesh

using a Boolean operation. The meshes were added to a model

and each part assigned their respective elastic isotropic material

properties based on AFM measurements; values in electronic

supplementary material, figure S2 and table S1.

The models were imported into Abaqus and two steps

created: one to simulate jaw closure and two for jaw opening.

Boundary conditions were applied to these steps, with the jaw

constrained in all axes of motion at the ceratohyal to anchor it

in space, and in y and z at the base of the palatoquadrate.

Muscle forces, direction of opening/closure and muscle attach-

ment points were as previously described [43]. The datum tool

in Abaqus was used to create a custom rectangular datum coordi-

nate system for each muscle; then used as the coordinate system

for force direction between each muscle’s insertion and origin

to ensure force travelled along the same vector from one end

to the other. A job was created and executed for the model,

and the output analysed for stress, strain and displacement.

( j) Measurement of jaw displacement and movement
frequency

High-speed movies were made of jaw movements in wt and

col11a2 mutants; frames corresponding to maximum jaw displa-

cements were selected, imported into ImageJ and the difference,

in micrometre, between resting and open states at points shown

in figure 5a recorded. The number of mouth movements in 1000

frames was recorded from 7 wt and 7 col11a2 mutant fish as

previously described in [30].

(k) Micro-computed tomography
Three col11a2 þ/2 and 3 wt adult fish of the same age

(1-year-old) were fixed in 4% PFA for one week followed by

sequential dehydration to 70% ethanol. Heads were scanned

using an XT H 225ST micro-computed tomography (CT) scanner

(Nikon) with a voxel size of 5 mm, X-ray source of 130 kV, 53 mA
and without additional filters. Images were reconstructed using

CT Pro 3D software (Nikon).

(l) Histology
Three 1-year-old col11a2 þ/2 and 3 wts were decalcified in 1 M

EDTA solution for 20 days. Samples were dehydrated in

ethanol, embedded in paraffin and sagittally sectioned at 8 mm,

relevant joint sections were de-waxed and stained with 1%

Alcian blue 8GX (pH 2.5), then counterstained with haematoxy-

lin and eosin. We adapted the OARSI cartilage OA

histopathology grading system [44] to grade severity of OA.

Five sections per jaw joint (per fish n ¼ 3 fish) were scored.

PicroSirius red staining was performed using 0.1% Sirius red

F3B in saturated aqueous Picric acid, washed in acidified

water, dehydrated and mounted under coverslips with DPX,

then imaged using polarizing filters.

(m) Second harmonic generation
Second harmonic generation (SHG) images were acquired from

histological sections of wt and col11a2 þ/2 (n ¼ 3 fish for each

genotype) using 25x 0.3 NA water dipping lens, 880 nm laser

excitation and simultaneous forward and backward detection

(440/20) in Leica SP8 AOBS confocal laser scanning microscope

attached to a Leica DM6000 upright epifluorescence microscope

with multiphoton lasers and confocal lasers allowing fluorescent

and SHG acquisition of the same sample and z-stack. Microscope

parameters for SHG acquisition were set as described previously

[45]. Maximum projection pictures were assembled using LAS

AF Lite software (Leica).
3. Results
(a) col11a2 and col2a1 are co-expressed

in the zebrafish lower jaw
To establish the extent of col11a2 expression in cartilage, we

performed in situ hybridization in larval zebrafish. Strong

col11a2 expression could be seen throughout the craniofacial

cartilages including the Meckel’s cartilage, palatoquadrate, cer-

atohyal and ethmoid plate (electronic supplementary material,

figure S1a). At 3 dpf, the expression pattern of col11a2 largely

overlapped the expression of the type II collagen gene col2a1a
visualized with the Tg(col2a1aBAC:mCherry) reporter zebrafish

(electronic supplementary material, figure S1b). The domain of

col11a2 expression labelled more of the joint than was labelled

by the col2a1a transgene, and expression of both col11a2 and

col2a1a preceded that of the mature type II protein, visualized

by immunostaining, such that immature cells at the jaw

joint and Meckel’s symphysis express col11a2 and col2a1a
RNA at 3 dpf but not the mature type II protein (electronic

supplementary material, figure S1c).
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OC, otic capsule; OP, operculum; CL, cleithrum; PS, parasphenoid; NT, notochord tip; O, otoliths. Scale bar, 200 mm. (e) col10a1aBAC:citrine;col2:mCherry transgenic
line shows type X (yellow) and type II (red) collagen in wt and col11a22/2 zebrafish at 7 dpf. Scale bar, 100 mm. ( f ) Quantification of col10a1-expressing cells in
hypertrophic chondrocytes, IOM ligament cells and osteoblasts in the lower jaw at 7 dpf ( position of each cell type shown by green, purple and orange arrows in (e),
respectively) (n ¼ 3 for all). (g) Quantification of col10a1-expressing hypertrophic chondrocytes in 7 dpf wt and col11a22/2 fish (n ¼ 3 for all) (M, Meckel’s
cartilage; PQ, palatoquadrate; C, ceratohyal). Student’s unpaired t-tests were performed in b, c, f and g, data are mean with s.e.m. (b shows mean with no s.e.m.).
*p � 0.05, **p � 0.01, ***p � 0.001.
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(b) Col11a2 mutants show atypical type II collagen
localization as they develop

As type XI collagen has previously been reported in the core of

type II collagen fibrils [3] and is thought to have a role in the

stability of type II collagen [46], we wanted to test whether

loss of col11a2 in zebrafish would impact type II collagen stab-

ility. For this, we studied the col11a2 sa18324 mutant which

carries a non-sense mutation that introduces a premature

stop codon at amino acid 228 (of 1877). We observed non-

sense-mediated decay in mutants in situ hybridized for the

col11a2 probe (data not shown); therefore, it represents a null

mutant. This mutant was crossed with the Tg(col2a1a:mCherry)
to visualize expression of col2a1a and we studied its expression
in craniofacial cartilages from 3 to 7 dpf. We saw no differences

in the position, timing or extent of col2a1 expression between

mutants and their siblings at 3 dpf, suggesting that the loss

of col11a2 has no impact on the expression of col2a1a, although

alterations to craniofacial skeletal shape in the mutant were

detectable from 5 dpf (electronic supplementary material,

figure S2). We next used immunostaining to detect type II

collagen protein in mutant and wt larvae. At 3 dpf, we could

not detect any differences between wt and mutant larvae

(figure 1a,b). However, by 5 dpf, clear differences in the distri-

bution of type II collagen were seen in the lower jaw (denoted

by asterisks in figure 1a,b). In wt fish, type II collagen can be

seen in the ECM surrounding each chondrocyte in the lower-

jaw cartilages, whereas in mutants, protein expression is



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170335

7
concentrated in the perichondrium and reduced between

chondrocytes (dashed insets in figure 1b). Alongside this

reduction in type II collagen in the more mature matrix

towards the middle of the cartilage elements, small pieces of

immunostained material were seen separate from the main

elements (red asterisks in figure 1b) and ectopic expression

of type II collagen in the ligament was observed (red arrow

in figure 1b). Changes to the shape and size of the cartilage

elements also became apparent at 5 dpf, with mutant larvae

displaying thicker, shorter cartilage structures, with less defi-

nition. At 7 dpf, these shape discrepancies were maintained.

A pronounced reduction and disorganization of type II

collagen became clear by 7 dpf (figure 1b) and was more

obvious in the cartilages that make up the lower jaw, with

the lateral cartilage of the ear more preserved (figure 1a,b).

Taken together, these data suggest that expression and

synthesis of col2a1a are unaffected by loss of col11a2, but that

maintenance of type II collagen protein is impaired in the

mutants.

(c) Zebrafish with a col11a2 mutation have altered jaw
and joint morphology during development

Humans carrying mutations in type XI collagen show altera-

tions to craniofacial shape, including midface hypoplasia and

micrognathia [47,48]. From type II collagen immunostaining

and Alizarin red/Alcian blue staining, we observed that

mutant zebrafish also show altered craniofacial morphology

(figures 1b and 3d ). At 3 dpf, there was no significant

difference in jaw morphology, but at 5 and 7 dpf, mutants

had significantly shortened, wider jaws (figure 2a,b), in line

with the broader, flatter face shape observed in patients

with Stickler syndrome.

As people with mutations in type XI collagens also dis-

play abnormal joint shape [49] and increased susceptibility

to OA [8], we generated 3D surface models of the joint

between the Meckel’s cartilage and the palatoquadrate ( jaw

joint) at 3, 5 and 7 dpf in wt and mutants (figure 2c,d ). At

3 dpf, there was no significant change to joint morphology;

however, at 5 and 7 dpf, mutants show enlarged terminal

regions of the skeletal rudiments. Specifically, these changes

were seen at the Meckel’s cartilage neck and head adjacent

to the joint (figure 2e,f, position of measurements shown by

red and green lines in figure 2c). A reduction in the joint

space (figure 2g, position of measurement shown by white

line in figure 2c), such that the interzone is no longer clearly

defined in the renders was also observed, probably due to the

increased local deposition of type II collagen (figures 1b and

2d ). These results show that the abnormal pattern of type II

collagen deposition seen in col11a2 zebrafish mutants at 5

and 7 dpf leads to altered joint shape.

(d) Mutation of col11a2 leads to altered chondrocyte
cell behaviour

Using confocal imaging of a transgenic reporter for col2a1a,

we were also able to observe alterations to chondrocyte

behaviour in mutant fish at 7 dpf. In wt larvae, all cells

expressing col2a1a are located within the cartilage element;

however, in mutants, we frequently observed chondrocytes

located outside the main body of the cartilage element

(figure 2h). We quantified the number of these cells in the

lower-jaw cartilages of wt and mutant larvae during early
development. Prior to 5 dpf, these spurs, which resemble her-

editary multiple exostoses [50], are not observed (figure 2i).
However, at 5 and 7 dpf, they are present in the Meckel’s

cartilage and ceratohyal of col11a2 mutants, suggesting a fail-

ure of chondrocyte progenitor cells to fully intercalate into the

cartilage element prior to expression of col2a1a.

In addition to these protrusions, we observed differences

to chondrocyte morphology within the jaw elements of

mutants at 5 dpf. Chondrocyte circularity is a measure

of maturation, as in zebrafish chondrocytes become less

rounded over time and form tightly packed stacks as they

mature towards hypertrophy and show organization reminis-

cent of the mammalian cartilage growth plate. Chondrocytes

in the centre of cartilage elements (representing the most

mature chondrocytes) of col11a2 mutants show increased

circularity over those in wt cartilage (figure 2j ). These results

suggest that the maturation of chondrocytes in col11a2
mutants is disrupted, potentially due to the loss of type II col-

lagen from the ECM, which could provide an explanation for

the thicker appearance of the cartilage elements in mutants.

(e) Larval and adult col11a2 mutant zebrafish have
altered material properties in the craniofacial
skeleton

To test whether the loss of type II collagen and alterations

to chondrocyte behaviour led to changes to the material

properties of the cartilage, we performed AFM on dissected

lower-jaw cartilages from 7 dpf wt and mutants. We tested

the properties in regions containing immature cells close to

the jaw joint and Meckel’s symphysis (figure 3a) and

observed a significant increase in YM from an average of

4.15–7.4 MPa (figure 3b). In more mature, intercalated cells

towards the centre of the Meckel’s cartilage (in which we

saw loss of type II collagen), the difference in YM was

around four times greater than that of comparable regions

in wt (figure 3b). This suggests that the loss of type II collagen

as a result of the col11a2 mutation leads to stiffening of the

cartilage ECM. As we observed altered material properties

in larvae at pre-skeletonized stages, we wanted to test

whether this would persist to adulthood and impact bone

properties. We dissected jaw bones and operculae from wt

and mutant fish and used AFM to establish YM. As in the

larval cartilage, we observed that the bone from col11a2
mutant fish had a significantly higher YM than siblings

(figure 3c).

( f ) Type II collagen loss is not accompanied by changes
to glycosaminoglycans, type X or type I collagen
in col11a2 mutant zebrafish

As type II collagen was prematurely lost from maturing

chondrocytes, we sought to examine whether GAGs were

similarly reduced. We stained wt and mutant larvae with

Alcian blue (to mark cartilage GAGs) and Alizarin red

(to mark bone) at 5 and 7 dpf. We saw no reduction in

GAG reactivity in the mutants at 5 or 7 dpf (figure 3d ).

Additionally, we saw no dramatic changes to Alizarin red,

with dermal and chondral bones in mutants mineralizing at

a similar rate to wt fish.

During cartilage maturation, a change in collagens from

type II to type X collagen is associated with chondrocyte
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hypertrophy [51]. In teleosts such as zebrafish, col10a1a marks

hypertrophic chondrocytes, but also osteoblasts and ligament

cells [52,53]. To test whether there was any change to the

extent of chondrocyte hypertrophy or to the number of

osteoblasts or skeletal connective tissue cells, we crossed

the col11a2 mutant into the col10a1a transgenic reporter

(figure 3e). Quantification of col10a1a-positive cells in wt

and mutant fish revealed no differences to the number of

hypertrophic chondrocytes at 7 dpf (figure 3f, green arrows

and graphs figure 3g,h), we also saw no difference in the

number of osteoblasts in the dentary which is located directly

adjacent to the MC (red arrows in figure 3f, quantification in

figure 3g) or to the number of cells in the IOM ligament

(purple arrows in figure 3f, quantification in figure 3g). This

suggests that the onset of hypertrophy is not disrupted in

col11a2 fish, despite the ‘less mature’ appearance of their

chondrocytes.

During cartilage degeneration, such as in OA, a switch of

collagens is commonly reported with a reduction in type II

and increase in type I collagen, associated with stiffer

matrix [54]. To test whether loss of type II collagen led to

replacement with type I, we performed immunostaining in

wt and mutant larvae at 5 and 7 dpf. In wt fish, type I

collagen was present in the jaw joint space, Meckel’s symphy-

sis and at a low level in the cartilage ECM, this pattern was

unchanged in mutants at 5 dpf; however by 7 dpf, there

was a reduction in type I collagen in the joint interzone of

mutants but no change within the cartilage elements

themselves (electronic supplementary material, figure S4).

Taken together, these results suggest that loss of type II

collagen in col11a2 mutants does not lead to loss of GAG,

nor to compensatory increases of Col I or col10a1, and that

hypertrophy is unaffected by the col11a2 mutation. As a

result, the increase in cartilage stiffness observed from AFM

cannot be attributed to alterations in these components.
(g) Both shape and material properties impact the
biomechanical performance of the zebrafish lower
jaw

We have previously modelled the biomechanics of zebrafish

jaw opening and closure during early ontogeny using finite

element analysis (FEA) [43] and shown that paralysis and

the accompanying changes to joint shape impact the strain

pattern in the developing joint [33]. Therefore, we used

FEA to model how the changes to shape and material

properties observed in col11a2 mutants would affect the bio-

mechanical performance of the lower jaw. Meshes were

generated of wt and mutant larvae at 7 dpf (meshes shown

in electronic supplementary material, figure S5b). We applied

muscle forces as per Roddy et al. [55] and used the material

properties established from AFM (figure 3b).

We first modelled the wt and the mutant jaw shapes

using the material properties established from each genotype

and modelled a two-step process for jaw movement with step

1 denoting jaw closure and step 2 jaw opening (as per [43,55])

and visualized the maximum principal (EMax) and minimum

principal (EMin) strains for jaw opening (figure 4) and closure

(electronic supplementary material, figure S6). In the wt

model, tensional strains (EMax) are located laterally around

the joint and either side of the Meckel’s symphysis, focused

on the muscle insertion points with the strain spreading
widely through the element. By contrast, in mutants, maxi-

mum principal strain is concentrated on the joint interzone,

with little spread through the cartilaginous element (note

blue colour throughout the cartilage of mutants, cf. greens

and yellows in wt) (figure 4a; electronic supplementary

material, videos S1 and S2). Comparison of the Meckel’s sym-

physis joint interzones for strains (EMax) showed that the

difference between the types of models (wt models and the

mutant models) was far larger than the difference between

each type of model with different material properties (elec-

tronic supplementary material, figure S5c,d ). In the mutant

model with mutant values, the joints averaged 1.63 � 1022

maximum strains (EMax), and in the mutant model with wt

values, the joint strain averaged 1.51 � 1022, whereas in the

wt models, the joint strains averaged 4.41 � 1022 (EMax) in

the wt with wt values model, and 5.14 � 1026 in the wt

with mutant values model. Between each type of model (wt

against mutant), the average maximum principal strains

have not changed substantially, despite change in material

properties. In wt, compressional strains (EMin) are at the

Meckel’s symphysis, the medial surface of the anterior MC

and on the dorsolateral side of the jaw joint (figure 4a; elec-

tronic supplementary material, figure 6a). In mutants,

again, the minimum principal strains are more focal than

in wt larvae (figure 4a; electronic supplementary material,

figure S6a).

Changing the material properties of the models affects

patterns of strain and displacement. This influences the

displacement on the overall jaw morphology as seen in

the jaw opening stage when both models are given the stiffer

mutant material properties. In these models, the jaw shows

less displacement in the opening movement compared to

the situation in which models are given the less stiff wt

material property values.

To test whether the change to the strain pattern was pre-

dominantly caused by the alteration to the shape of the jaw

elements or the changes to YM, we next modelled the effect

of mutant properties in the wt shape, and wt properties

in the mutant shape (figure 4b; electronic supplementary

material, figure S6b). We observed that changing YM in the

wt shape to the mutant values decreased the spread of max

and min principal strains, such that the pattern was inter-

mediate between the mutant and wt. Likewise, inserting

the wt values for cartilage into the mutant shape led to an

increase in the extent of both tension (EMax) and compression

(EMin). However, it did not fully ‘rescue’ the pattern, leading

us to conclude that while both shape and material properties

play a role in the mechanical performance of the tissue, the

effect of shape is greater than that of material properties.

(h) Col11a2 zebrafish mutants show impaired jaw
function

As patients with Stickler syndrome suffer from joint

hypermobility [56], and as col11a2 zebrafish mutants show

aberrant joint morphology, we looked at jaw function at

5 dpf. Zebrafish have two joints within the lower jaw and

make distinct movements for feeding and breathing [57].

By filming and quantifying jaw movement, we observed

that mutants make significantly fewer total movements

than wt (figure 5b; electronic supplementary material,

videos S3 and S4). This was due to a reduction in the

number of movements involving the jaw joint, as we
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Figure 4. Shape changes in col11a2 zebrafish mutants have a greater effect on jaw biomechanics than material property changes. (a,b) FE models of maximum
(EMax) and minimum (EMin) principal strain during mouth opening in 7 dpf wt and col11a22/2 zebrafish. Red arrowheads, areas of high strain; black arrowheads,
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shape with col11a22/2 material properties and col11a22/2 shape with wt material properties. Ventral and lateral views shown for each condition.
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observed no significant difference in the frequency of move-

ments involving the buccal joint (figure 5b). However,

mutant zebrafish show an increased range of motion at the

buccal joint, which appears to dislocate (figure 5a,c). To

rule out the possibility that this change to movement was

caused by altered muscle patterning, we quantified the

number of slow twitch fibres in the jaw at 5 dpf and saw
no difference in fibre number between wt and mutants

(electronic supplementary material, figure S7a,b). We also

measured the diameter of the intermandibularis posterior

and interhyoideus muscles in the lower jaw from birefrin-

gence and found no change in diameter between wt and

mutants (electronic supplementary material, figure S7c).

Taken together, this suggests that the alterations to joint
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Figure 5. col11a2 mutant zebrafish have abnormal jaw movement at 5 dpf.
(a) Stills from high-speed movies show range of jaw movement in wt and
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shape observed in col11a2 mutants are the cause of abnormal

joint function.
(i) Premature osteoarthritis is observed in adult
col11a2 heterozygous fish

Owing to the abnormalities in joint shape, mechanical

performance and function in mutants, and because aberrant

joint loading is highly associated with OA risk [58], we

wanted to test whether adult mutants would develop prema-

ture OA. To address this question, we analysed 1-year-old

heterozygous fish (col11a2þ/2) and wt siblings using mCT.

Craniofacial abnormalities were observed in col11a2þ/2,

including jaw protrusion and hypoplasia of the fronto-nasal

bone (figure 6a). Changes in joint shape were observed in
col11a2þ/2 accompanied by narrowing of the inter-joint

space (figure 6b). To identify the histopathological changes

related to OA, we stained wt and col11a2þ/2 joint sections

for Alcian blue and H&E (figure 6c). While in wt sections,

a defined cartilaginous layer lines the joint, in col11a2þ/2,

the cartilage shows signs of degradation. Grading of 5

sections per joint per fish (n ¼ 3 fish) using the criteria in

the OARSI scoring system [44] showed an average score of

6 in the col11a2þ/2 sections which is characterized by defor-

mation and change in the contour of the articular surface,

compared to an intact surface and normal cartilage with an

average score of 0 in the siblings (figure 6c). Osteophytes

were not observed. We analysed collagen organization

using PicroSirius red staining and SHG (figure 6d,e). In wt

jaws, the cartilaginous layer at the joint shows organized

collagen fibres with a distinct orientation from those of the

underlying bone (figure 6d, note change in colour from

red to green in PicroSirius red staining). However, in the

col11a2þ/2, the transition from cartilage to bone is lost and

the overall organization is perturbed (figure 6d ). Thicker col-

lagen bundles and fibres displaying abnormal orientations

were seen through SHG in col11a2þ/2 samples (figure 6e).

Taken together, these data demonstrate that loss of col11a2
leads to early onset of OA-like changes in adults.
4. Discussion
Mutations in the type XI collagen genes col11a1 and col11a2
have previously been linked to numerous skeletal dysplasias,

such as Stickler syndrome and fibrochondrogenesis, which

are associated with cartilage destabilization, and abnormal

skeletal shape and properties. Here, we describe the impact

of loss of col11a2 in zebrafish and show changes to ECM com-

position, material properties, craniofacial shape, mechanical

performance, chondrocyte behaviour, and joint function in

larval and adult fish.

Type XI collagen is important for the protection of type II

collagen from degradation [46]; our data suggest that while

transcription and secretion of type II collagen is unaffected

at early stages of larval development, the assembly of type

II collagen fibrils may be altered in mutants, making them

more susceptible to degradation. This idea is given weight

by the identification of fragments of type II-positive material

seen surrounding the cartilage elements. What happens to

those degraded collagen fragments is still unclear. Poten-

tially, they may be cleared by the phagocytic cells of the

innate immune system either with a rapid resolution or, alter-

natively, continued accumulation of these fragments could

lead to the low-level inflammation associated with OA

[59,60]. The loss or breakdown of type II collagen also

occurs as the chondrocytes mature, such that the matrix

between the chondrocytes almost completely lacks type II

collagen, while the matrix of the perichondrium is relatively

preserved. We have tested effects of col11a2 loss on the

material properties of cartilage and bone, and our data

show an increase in YM in both tissues, with the greatest

difference seen in mature chondrocytes. It may be noted

that YM for zebrafish cartilage is higher than that from

other species (4.15 MPa in fish versus 0.45 Mpa in human

articular cartilage [61]). One likely explanation is the variation

in relative ratio of cells to matrix during development and

across species in evolution. In mature human articular
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Figure 6. Mutations in zebrafish col11a2 result in changes that trigger premature OA. (a,b) Three-dimensional renders from mCTs of 1-year-old wt and col11a2
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white arrow, bone (green). (e) SHG, asterisks pointing to areas of thinner fibres not detected by SHG, red arrows, thicker collagen bundles on abnormal orientation.
Scale bars, 50 mm.
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cartilage, the ratio is approximately 10 : 90 cells to matrix

compared to 80 : 20 in zebrafish [62]. The higher YM in

mutants was not explained by any obvious increased calcifi-

cation, accumulation of type X or type I collagen or loss of

GAG. In rodent models, increased matrix stiffness has been

described as chondrocytes mature in the growth plate

[63,64]. The stiffness of collagen matrix is controlled by

several factors including fibre diameter and the density of

intra-fibrillar cross-links, and abnormalities in collagen fibril-

lar assembly have been related to changes to mechanical

properties of the cartilage during progression of OA [65]

and ageing [66].

It has previously been reported that patients with Stickler

syndrome develop premature OA (1), but the mechanism by

which this occurs is unclear. We and others have previously

shown that despite living in an aquatic environment, zebra-

fish can also develop alterations to the joint that strongly

resemble OA [32,67]. Interestingly, we see premature devel-

opment of OA in col11a2 heterozygous adult zebrafish. This

is manifested by abnormal collagen organization, degener-

ation of joint cartilage and loss of joint space. During OA,

proteoglycans are lost from the cartilage prior to the degra-

dation of the collagen network in the ECM (2). This change

to the organization and content of collagen in the cartilage

leads to changes in its material properties (3), including its

stiffness and tensile strength (4). It has previously been

demonstrated that in OA, cartilage stiffness is often reduced

[17,68] while we saw a dramatic increase in cartilage matrix

stiffness in the col11a2 mutants, these measurements were

taken from larvae. We saw increased YM in adult bone,

both of dermal (operculum) and chondral ( jaw) bone, albeit

less dramatically than in the cartilage. Potentially, stiffer

bone could exacerbate OA pathogenesis; as subchondral

bone thickening accelerates the degradation of articular carti-

lage [69]. Alternatively, and perhaps more likely, changes to

joint loading from the abnormal shape and function through-

out life may be the driver for the development of pathogenic

OA-like changes in the joint. To test this more fully, it would

be desirable to follow the development of the pathology

throughout the life course of the fish.
As joint mechanical performance is impacted by its shape

and the material properties of the tissues, we explored the

relative impact of each by testing the impact of altering

material properties in the wt and mutant shapes. From this,

we deduced that while both contribute to the strain pattern,

the larger impact comes from joint architecture. However,

questions remain to the exact sequence of events; are the

increases in YM in immature chondrocytes sufficient to

drive local changes to cell behaviour within the joint? If so,

subtle changes to joint morphology could impact joint

mechanics upon onset of function, leading to further, more

significant changes to skeletal cell behaviour. Movement of

joints has been shown to be required for their correct specifi-

cation in the majority of joint types in all species studied

[26,70–73]. Interestingly, at the earliest stages we studied

(3 dpf), prior to the onset of joint movement, the mutants

are barely distinguishable from wts, despite the col11a2
gene being expressed throughout the cartilage from 2 dpf.

Following the onset of movement changes between wt and

mutants become more pronounced, these include the degra-

dation of type II collagen from the mature matrix, and the

loss of the joint space. This loss of correct joint spacing and

the enlargement of the rudiments could be explained by pre-

mature differentiation of the immature cells of the interzone.

A requirement for normal movement has been demonstrated

in chick, mouse and fish to maintain joint space and to

prevent ectopic expression of type II collagen [33,34,74,75].

Alternatively, it could represent a failure to maintain local

gdf5 signalling; it has recently been shown that there is a

requirement for the continued influx of Gdf5-positive cells

for correct joint specification [76].

It is likely that by changing the mechanical performance

of the joint, mechanosensitive genes will be differentially

activated, and these probably control the cellular changes

we describe. Candidates that could be differentially activated

in the mutants could include the Piezo ion channels, which

have been shown to play a role in OA [77]. Another candidate

could be the YAP pathway—YAP is implicated in negative

control of chondrogenesis [78,79]—or the genes in the Wnt

signalling pathway. The Wnt pathway has been implicated
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in developmental skeletal mechanosensation in mice, chicks

[80] and zebrafish [81], and could potentially be acting in

combination with BMP regulatory genes such as Smurf1

[82]. We have shown in zebrafish that wnt16 controls chon-

drocyte proliferation and migration in the joint region.

Wnt16 is also linked to hip geometry [83], altered cortical

bone thickness [84,85], the response of chondrocytes to

injury and to OA [86,87].

Following the onset of movement, we also see the appear-

ance of cells located outside the cartilage anlage, which bear

some resemblance to multiple hereditary exostoses (MHE).

Stickler syndrome is associated with MHEs [10]. It has been

reported in a zebrafish model that the development of

MHE is driven by changes to the matrix from loss of the

Extosin genes, which, while dispensable for early chondro-

cyte differentiation are required for chondrocyte maturation,

hypertrophy and intercalation, and which encode genes

lead to matrix sulfation [50]. Potentially, the loss of type II

collagen in the col11a2 mutants could perturb sulfation. Alter-

natively, these cells could fail to intercalate, then be extruded

due to altered joint function, as paralysis has been shown to

control chondrocyte intercalation in zebrafish [88]. The failure

of these cells to fully intercalate leads to shorter, thicker

elements in col11a2 mutants.

Taken together, our findings show that loss of col11a2 in

zebrafish leads to changes to matrix phenotype, and cell
behaviour that impacts the biomechanical and functional

performance of the developing joint, leading to premature

OA. By making use of the detailed dynamic imaging

unique to small translucent models like the zebrafish, we

were able to follow the alterations to the developing skeleton

at cellular resolution, identifying changes to cell behaviour

that go some way to explaining how loss of a relatively

minor collagen subtype can have such a profound effect on

the human skeleton in diseases such as Stickler syndrome

and fibrochondrogenesis.
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