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Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host
defense in the gut and are under influence of the intestinal microbiome. Microbial metabo-
lites and dietary components, including short chain fatty acids (acetate, propionate, and
butyrate, SCFAs), have an impact on the physiology of IECs at multiple levels, including the
inhibition of deacetylases affecting chromatin remodeling and global changes in transcrip-
tional activity.The number and diversity of butyrate-producing bacteria is subject to factors
related to age, disease, and to diet. At physiological levels, SCFAs are inhibitors of histone
deacetylases (HDACs) which may explain the transcriptional effects of SCFAs on epithelial
cells, although many effects of SCFAs on colonic mucosa can be ascribed to mechanisms
beyond HDAC inhibition. Interference with this type of post-translational modification has
great potential in cancer and different inflammatory diseases, because HDAC inhibition has
anti-proliferative and anti-inflammatory effects in vitro, and in in vivo models of intestinal
inflammation. Hence, the influence of dietary modulators on HDAC activity in epithelia
is likely to be an important determinant of its responses to inflammatory and microbial
challenges.

Keywords: HDAC, intestinal epithelium, inflammatory bowel diseases, short chain fatty acids, butyrate

THE INTESTINAL EPITHELIUM CONTRIBUTES TO
INTESTINAL HOMEOSTASIS
The intestinal epithelial cells (IECs) act as a physical barrier
between the stromal cells and immune cells in the lamina propria
and luminal antigens. IECs contribute to intestinal homeostasis via
secretion of cytokines, metabolites, and anti-microbial peptides.
The intestinal epithelial layer in fact comprises specialized epithelia
of many different cell types: Paneth cells that secrete different anti-
microbial peptides, mucin secreting goblet cells, enteroendocrine
cells, enterocytes, and colonocytes outside the crypt and M-cells,
located on top of intestinal lymphoid follicles. Interspersed with
the IECs are different immune cells, including intra-epithelial γδ-
T cells and specialized mucosal macrophages with the capacity to
sampling antigen from the lumen.

Intestinal epithelial cells express different pattern recogni-
tion receptors, including Toll-like receptors and NOD-like recep-
tors but the tolerogenic phenotype of epithelia is not read-
ily understood. For example, IECs acquire endotoxin toler-
ance toward lipopolysaccharide despite the expression of TLR4
soon after birth (1), in some aspects comparable to the
TLR hyporesponsiveness found in intestinal macrophages (2).
In support of intestinal homeostasis, IECs secrete many fac-
tors that are needed for homeostasis of the mucosal com-
partment including transforming growth factor beta (TGF-
beta), IL-10, thymic stromal lymphopoietin (TSLP), retinoic
acid (RA), prostaglandin E2 (PGE2). Some of these fac-
tors have prominent autocrine effects. TGF-beta, for exam-
ple, suppresses proliferation of rat IECs thereby preventing
hyperproliferation and tumor formation (3). Cao et al. showed
that diet supplemented with 20% pectin (dietary fiber) could

increase TGF-beta/SMAD3 signaling in mouse jejunum, but not
in colon (4). TGF-beta is also a regulator of immune cell polar-
ization and function, but these effects have been discussed
elsewhere (5–7).

MICROBIOME, METABOLITES, AND EPITHELIAL BIOLOGY
Intestinal microbes have a mutualistic relationship with its host
in part by dictating epithelial cell responses and intestinal barrier
homeostasis. We coexist with our microbiota, but this relation-
ship sometimes becomes pathological, and contributes to diseases
such as inflammatory bowel disease (IBD). The impact of the gut
microbiome on immune homeostasis has been identified around
60 years ago, but recent metagenomic analyses of microbiome
changes associated with multiple diseases have advanced this
field enormously (8–10). These recent screens have advanced our
understanding of the changed microbiome in IBD (11, 12). A main
outcome of microbiome sequencing is an underrepresentation of
SCFA producing strains in IBD patients (13), corresponding with
earlier observations of for instance decreased SCFA levels in feces
of children with IBD (14).

Carbohydrates, resistant to breakdown in the stomach and
small intestine, are subject to colonic fermentation to result in the
production of SCFAs, fatty acids containing 1–6 carbon atoms.
Anaerobic bacteria generate the major SCFAs acetate, propionate,
and butyrate and the highest production is found in the proximal
colon. SCFA concentrations are dependent on the availability and
source of substrate, the microflora, and gut transit time. The esti-
mated total amount of SCFAs in the proximal colon is higher than
in the distal colon (from 70–140 mM in proximal to 20–70 mM
distal part), mainly because of availability of carbohydrates and
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presence of water (15, 16). Oxidation of SCFAs accounts for 60–
70% of the colonic epithelial energy need (16). Butyrate is through
β-oxidation the main, and preferred, energy source for colono-
cytes and also has a variety of other physiological effects, including
modulation of epithelial responses to cytokines, see for instance
Figure 1 and a summary of previous work on this matter in Table 1.

REGULATION OF EPITHELIAL GENE EXPRESSION THROUGH
ACETYLATION AND DEACETYLATION
In the large bowel, SCFAs butyrate and propionate reach concen-
trations that are able to inhibit the activity of an important class of
epigenetic modifiers, histone deacetylases (HDACs). Mammalian
cells contain 18 different HDACs, grouped into 4 different classes:
11 HDACs within classes I, II, and IV are Zn2+ dependent, while
class III is comprised of 7 sirtuins which are NAD+ dependent.
Class 1 HDACs (HDAC1, HDAC2, HDAC3, and HDAC8) are
predominantly localized in the nucleus, have strong deacetylase
activity and are expressed in every cell. Class II HDACs shut-
tle between nucleus and cytoplasm and can be subdivided into
class IIa (HDAC4, HDAC5, HDAC7, and HDAC9) and class IIb
(HDAC6 and HDAC10). Class IIa enzymes are found in multi-
protein complexes and have weak deacetalyse activity, class IIb
enzymes are active deacetylases (31).

Acetylation and deacetylation of lysines are post-translational
modifications that occur on histone tails, but also on many other
non-histone proteins. Choudhary et al. used high-resolution mass
spectrometry to identify a total of 1750 acetylated proteins. Lysine
acetylation sites overlapped between different cell lines for 60–70%
and occurs preferentially in macromolecular complexes affecting
the regulation of almost all nuclear, but also many cytoplas-
mic processes, including chaperone complexes and cytoskeleton
remodeling (32).

Acetylation, particularly of histone H3 and histone H4 tails,
has almost invariably been linked to a loosened chromatin struc-
ture and activation of transcription (33–35). Conversely, his-
tone hypoacetylation correlates with condensed chromatin and
transcriptional repression. Histone acetyl transferases (HATs) are
enzymes that catalyze the addition of acetyl moieties to histones
and other proteins. HAT activity is counter-acted by the activity
of HDACs, which remove acetyl groups from lysines in histones
and other proteins (36). The function of acetylation on non

histone proteins, such as transcription factors, has been eluci-
dated by identification of acetylation of individual proteins (e.g.,
different STATs, p53, NF-κB) (37–39). The effects of HAT and
HDAC activity play direct and indirect roles in a variety of factors
including mRNA stability, cell signaling,protein localization,bind-
ing, and function and can also prevent or increase proteasomal
degradation (40).

ENDOGENOUS DEACETYLASE INHIBITORS
Among SCFAs, butyrate induces the highest acetylation (41). It is
generally thought that butyrate inhibits class I and class IIa HDACs
but not class IIb (HDAC6 and HDAC10) and sirtuins, however
supporting evidence is lacking. One possibility is that butyrate
inhibits deacetylation, but not HDAC activity directly (42). How-
ever, earlier studies have addressed the potential of SCFAs to alter
epigenetic marks in epithelial cells (43). In particular the SCFA
butyrate inhibits all class I HDACs. Not only this, it also seems
to affect many other epigenetic-related enzymes by regulating the
expression of the respective genes encoding HDACs. In bovine
epithelial cell cultures, RNA sequencing analyses revealed that
the expression of HDACs was modulated by butyrate treatment.
Whereas the expression of HCACs 7, 8, and 9 are down-regulated,
HDACs 5 and 11 are up-regulated (43). It is to be determined why
inhibition of enzymatic activities, seemingly regulates their own
expression at the mRNA level. We have summarized earlier data
on the effect of SCFA on HDAC activity in different epithelial cell
assays in Table 1.

In addition to SCFAs, the microbiome metabolic activity can
lead to secretion of metabolites that can interfere with HDAC
activity. There are a variety of dietary HDAC inhibitors described
earlier, either as dietary component or arising after metabolic
activity in the microbiome. Lactate and pyruvate are two of
these bacterial components. Lactate itself serves as a substrate for
butyrate formation, but has the capacity to inhibit the activity of
HDACs, but only in very high concentrations (IC50 of 40 mM) (44,
45). These levels of lactate are found in muscle cells only during
intense exercise, so it is unlikely that lactate acts as a deacetylase
inhibitor in the gut. As such, it is unlikely that the concentrations
of SCFAs, besides butyrate and propionate, or bacterial compo-
nents, like pyruvate and lactate, are high enough to significantly
inhibit HDAC function in epithelia, although local fluctuations
may render transient HDAC inhibiting properties.

FIGURE 1 |The effects of SCFA butyrate on epithelial cell responses in
Caco-2 enterocyte-like cells. Cells were stimulated with 10 ng/mL of ILlb
and tested against indicated butyrate concentrations added simultaneously.

Expression levels of IL-8, and CCL2, were measured after 24 h treatment.
Butyrate modulates the epithelial responses to cytokines at relevant
concentrations. Tytgat Institute, 2013.
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Table 1 | Examples of SCFA-induced effects on intestinal epithelium.

SCFA HDAC

inhibition

Effects on intestinal epithelium Tested in Reference

Acetate Inactive HDAC inhibition Nuclear extracts of HT-29 Waldecker et al. (17)

HT-29 Kiefer et al. (18)

Propionate Active, unknown HDAC inhibition Nuclear extracts of HT-29

Caco-2

Waldecker et al. (17),

Sanderson (19)

Transcription factor Activation of AP-1 signaling pathway HT-29 and caco-2 Nepelska et al. (20)

Cell cycle Reduced cell growth and inhibition of

differentiation by decreased p21 and

CB1 mRNA

HT-29, HCT-116 Hinnebusch et al. (21)

Butyrate Class I and class IIa HDAC inhibition Nuclear extracts of HT-29 Waldecker et al. (17)

Energy supply Energy supply Isolated human

colonocytes

Roediger (22)

Cell cycle Reduced cell growth and inhibition of

differentiation by decreased p21 and

CB1 mRNA

HT-29, HCT-116 Hinnebusch et al. (21)

Inhibition of proliferation HT-29 cells Siavoshian et al. (23)

Stimulation of alkaline phosphatase

and dipeptidyl peptidase IV activity

Transcription factor Activation of AP-1 signaling pathway HT-29 and caco-2 Nepelska et al. (20)

Transactivation of Krüppel-like factor 4 HT-29 Chen et al. (24)

Barrier function Reduction of paracellular permeability Caco-2 Mariadason et al. (25)

Enhancement of barrier function by

tight junction assembly facilitation

Caco-2 Peng et al. (26)

Cytokine expression Induction of A20 (negative regulation

of NFkB), downregulation of IL-8

Fetal human intestinal

epithelial cells and fetal

intestinal explants

Weng et al. (27)

Increased expression of IL-32α HT-29, SW480, T84 Kobori et al. (28)

Other Enhanced expression of di/tripeptide

transporter hepT1

Caco-2-BBE cells and

in vivo

Dalmasso et al. (29)

Up-regulated transcription of several

mucin genes

Human goblet cell line

HT-29-Cl.16E

Gaudier et al. (30)

Valerate Active, unknown HDAC inhibition Caco-2 Sanderson (19)

Cell cycle Reduced cell growth and inhibition of

differentiation by decreased p21 and

CB1 mRNA

HT-29, HCT-116 Hinnebusch et al. (21)

Caproate Active, unknown HDAC inhibition Caco-2 Sanderson (19)

Inactive HT-29, HCT-116 Hinnebusch et al. (21)

Further examples are isothiocyanates and allyl sulfides, and the
foods from which they are derived (46). Sulforaphane is another
example, an isothiocyanate, derived from glucoraphanin in broc-
coli and broccoli sprouts, first identified as a potent inducer of
phase 2 detoxification enzymes (46). A common denominator of
these compounds is food constituents with chemical structures
that contained a spacer “arm” that might fit the HDAC active site,
and a functional group that could interact with the buried catalytic
zinc atom (47).

RECEPTORS FOR SCFAs
Over 90–95% of the produced SCFAs are taken up in the colon
and the remaining 5–10% is secreted in the feces. Over 60% of this

uptake happens by diffusion of SCFAs across the epithelial mem-
brane, the rest is transported into the cell (16). In human colon, the
G-protein coupled nicotinate receptor GPR109A is expressed at
the apical membrane of the epithelial layer. Activation of GPR109A
by butyrate and other ligands blocked basal and LPS-induced NF-
κB activation (48). Butyrate concentration in the lumen is over
10 times higher than what is needed to half-maximal activate this
receptor, 1.6 vs. 20 mM, respectively (48).

SCFAs can be transported into the cell by monocarboxylate
transporters (MCT), which are coupled to H+ transport. Because
there is almost no H+ gradient over the luminal membrane, this
type of transport does not seem to be very active. An alternative
transport which is more likely to be the main type of transport
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is mediated through SLC5A8 (or sodium-coupled MCT, SMCT),
which is coupled to Na+ over the electrochemical Na+ gradient.
SLC5A8 is expressed in colonic epithelium at the apical membrane
and transports substrates lactate, pyruvate, acetate, propionate,
and butyrate (49).

Two additional epithelial receptors for SCFAs were identified.
FFAR3 (GPR41) and FFAR2 (GPR43), both G-protein coupled
receptors, are activated by high micromolar or millimolar SCFA
concentrations, but have different substrate activation poten-
cies (50–52). FFAR2 is expressed in immune cells: mast cells,
B lymphocytes, monocytes, eosinophils, and also neutrophils, in
which FFAR2 is the only functional receptor for SCFAs in mice.
Expression of FFAR2 on immune cells seems to be important in
the regulation of immune responses, since mice lacking FFAR2
develop exacerbated inflammation in models for colitis, asthma,
and arthritis due to higher production of inflammatory mediators
and increased recruitment of immune cells (43, 53). The expres-
sion of FFAR2 is also needed for the SCFA-mediated regulation
of size and function of the colonic regulatory T-cell pool (54).
In addition, FFAR2 functions as a chemotactic receptor, moving
neutrophils, and probably other immune cells expressing FFAR2,
toward sources of SCFAs (55). FFAR3 mRNA is expressed in many
different tissues, but high expression was found primarily in adi-
pose tissue (50, 51). Tazoe et al. identified FFAR3 protein expres-
sion in enterocytes and peptide YY containing enteroendocrine
cells (56), which also express FFAR2 (57).

How SCFAs are transported from the colonocytes into the
circulation is not entirely clear yet. One possibility is by trans-
port via the MCT. This transporter is expressed at the basolateral
membrane, which is in line with this hypothesis (58), see Figure 2.

HDAC INHIBITING AGENTS IN INFLAMMATORY BOWEL
DISEASE
Because of the anti-inflammatory and anti-tumor properties
of HDAC inhibition, deacetylase inhibitors have potential for
treatment of IBD and IBD associated colorectal cancer, further
reviewed in Refs. (59, 60). Increased intake of SCFAs has the
capacity to ameliorate colitis disease parameters (53), possibly
via the impact on HDAC activity. Glauben et al. tested HDAC
inhibitors and SAHA in innate (DSS) and T-cell driven (TNBS)
colitis models. In DSS and TNBS models, oral intake of both
SAHA and valproic acid reduced several disease parameters. Treat-
ment with VPA in DSS conditions increased acetylation, which
was found locally in lamina propria mononuclear cells, but not
in liver homogenate or splenocytes (61). A clear impact of HDAC
inhibitors is described on the generation of regulatory T cells, an
effect that may well contribute to the efficacy of HDAC inhibitors
to colitis (62).

HISTONE DEACETYLASES, COLONIC CELL DIFFERENTIATION,
AND CANCER
Given the ability of HDAC inhibitors to induce growth arrest, mat-
uration, and apoptosis of colon cancer cell lines, it is likely that
HDACs themselves play a physiological role in the maintenance of
cell proliferation and survival and suppression of IEC maturation.
In comparison with HATs, HDACs are of particular interest in
medical research because of the ability to inhibit their deacetylase

activity. Inhibition of deacetylases leads to hyperacetylation and
results in a block of proliferation in tumor cells, by a variety of
mechanisms, including the induction of differentiation, apopto-
sis, and transcriptional upregulation of tumor suppressors (63).
Two chemical HDAC inhibitors, vorinostat and romidepsin, have
been approved by the FDA for treatment of cutaneous T-cell lym-
phoma (46). HDAC inhibitors also negatively effect tumorigenesis
by affecting angiogenesis and modulating immune responses (64).
In addition, SAHA has prominent effects on the inflammatory
response (65). This gives rise to potential use in a range of other
diseases, including chronic inflammatory disease like IBD (66).

The modulating effects of HDAC inhibition on epithelial cell
differentiation can have major effects on the development of colon
cancers. Functional genetic screenings to elucidate potential path-
ways targeted by HDAC inhibitors were described earlier (67). In
these screens overexpression of genes involved in RA signaling
selectively rendered tumor cells resistant to treatment with HDAC
inhibitors. In these resistant cells, overexpression of two genes
allowed cells to bypass proliferation arrest and apoptosis imposed
by HDAC inhibitors: RA receptor alpha (RARα) and preferentially
expressed antigen of melanoma (67). The latter gene encodes a
tumor antigen and has been identified as a repressor of RA signal-
ing (68). Hence, HDAC inhibitor treatment caused de-repression
of RA target genes in these cells, suggesting a role for RA signaling
in the anti-cancer effects induced by HDAC inhibitors.

This is particularly interesting in the light of effects of butyrate
on epithelial modulation of cell proliferation, survival, and apop-
tosis (16, 43). In particular HDAC3 was put forward because
overexpression of HDAC overcomes the butyrate repression of
p21, a potent cyclin-dependent kinase inhibitor that functions as
a regulator of cell cycle progression at G1 (69, 70). Additionally,
protein expression of HDAC3 was significantly up-regulated in
a panel of human colon tumors compared with adjacent nor-
mal mucosa and in small intestinal adenomas derived from APC
mutant mice epithelia, establishing a link between HDAC3 expres-
sion and intestinal cell transformation. From these findings it is
expected that aberrant expression of HDAC3 and other class I
HDACs play a role in the progression of colon cancer. HDAC3
activity may be dependent on the activity of class IIa HDAC4 pro-
tein, as Sp1-dependent targeting of HDAC4 to the proximal p21
promoter in colon cancer cells was shown (70). Hence, repression
of the activity of the proximal p21 promoter is likely mediated by
HDAC4 through association with the catalytically active HDAC3,
within the N-CoR/SMRT co-repressor complex (69, 71). Fur-
thermore, it has been shown that HDAC4 acts as a “scaffold”
protein with the HDAC3–NCo-R/SMRT complex without con-
tributing to the overall deacetylase activity of the complex, consis-
tent with the weak catalytic activity of HDAC4 and other class IIa
HDACs (71, 72).

FUTURE PERSPECTIVES
The human intestinal flora has an important role in homeostasis
in health and disease, not only because the help to digest food, but
also because of the secretion of many metabolites. Differences in
diversity were found between feces from healthy individuals and
feces from patients with various disease states, obesity, type 2 dia-
betes, IBD, allergies (11). It remains unknown whether the shifts
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FIGURE 2 | Intestinal SCFA receptors and transporters. SCFAs are taken
up by the epithelial cells by diffusion, H+ coupled transport by
monocarboxylate transporters (MCT) or by Na+ coupled transport by SLC5A8.

Other receptors that are activated by SCFA are localized on colonocytes,
peptide YY expressing enteroendocrine cells, or different immune cells.
Receptor FFAR2 is involved in neutrophil chemotaxis toward sources of SCFA.

in flora are consequential of disease or whether they also have
a causative nature. Interestingly, in feces from IBD patients, the
diversity of butyrate-producing bacteria is lower than in feces of
healthy controls (13, 14). Even though fecal samples do not reflect
the actual intestinal flora, such a shift has the potential to affect
the intestine considerably by the altering metabolite and SCFA
secretion (73).

In line with this, it will also be interesting to see to what extend
the SCFA levels and HDAC-mediated processes can be modulated
by administration of prebiotics and probiotics (74–76). In patients
with chronic pouchitis and ulcerative colitis patients in remission,
probiotic treatment was effective in the prevention of relapse.
However, additional controlled clinical trials are needed to fully
appreciate the potential of prebiotic or probiotic administration
in IBD (77–79).

Other promising studies that are ongoing are fecal micro-
biota transplantation studies performed in different diseased
settings, including obesity, metabolic syndrome, IBD, and in

recurrent Clostridium difficile infections (80). In a recent trail
with patients with recurrent C. difficile infections, 81.3% of the
patients cured from infection after a single infusion of donor
feces, which was substantially higher than the 30% with stan-
dard antibiotic treatment. Microbiota diversity of the patients
increased 2 weeks after infusion to reach levels of donors (81). In
another study, intestinal microbiota transfer was used to increase
insulin sensitivity in patients with metabolic syndrome. Again,
microbial diversity was increased after infusion, among them
were different strains of butyrate-producing bacteria (82). Care-
ful analysis of these therapies can possible give an indication
whether the altered microbiota composition is the consequence of
chronic ongoing inflammation or whether it has a more causative
nature.
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