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ABSTRACT: Grain boundaries (GBs) in two-dimensional (2D)
materials are known to dramatically impact material properties
ranging from the physical, chemical, mechanical, electronic, and
optical, to name a few. Predicting a range of physically realistic GB
structures for 2D materials is critical to exercising control over
their properties. This, however, is nontrivial given the vast
structural and configurational (defect) search space between
lateral 2D sheets with varying misfits. Here, in a departure from
traditional evolutionary search methods, we introduce a workflow
that combines the Graph Neural Network (GNN) and an
evolutionary algorithm for the discovery and design of novel 2D
lateral interfaces. We use a representative 2D material, blue
phosphorene (BP), and identify 2D GB structures to test the
efficacy of our GNN model. The GNN was trained with a computationally inexpensive machine learning bond order potential
(Tersoff formalism) and density functional theory (DFT). Systematic downsampling of the training data sets indicates that our
model can predict structural energy under 0.5% mean absolute error with sparse (<2000) DFT generated energy labels for training.
We further couple the GNN model with a multiobjective genetic algorithm (MOGA) and demonstrate strong accuracy in the ability
of the GNN to predict GBs. Our method is generalizable, is material agnostic, and is anticipated to accelerate the discovery of 2D
GB structures.
KEYWORDS: graph neural networks, genetic algorithm, 2D Materials, grain boundary, blue phosphorene, machine learning,
first-principle simulation

■ INTRODUCTION
Grain boundaries (GBs) and defects in two-dimensional (2D)
materials have a significant impact on various material
properties as compared to pristine monolayers, such as the
tensile strength decrease related to the inflection of 2D
material with a GB1 and changes to the charge carrier
transmission at the GB region in graphene.2 GBs and defects
are also difficult to control in the synthesis process,3 such as
chemical vapor deposition (CVD) for graphene,4 molybdenum
disulfide,5 and tungsten disulfide.6 Also of high interest is the
study of fabricating lateral heterostructures (LHS) for novel
electronic applications7−9 to design semiconducting devices,
including bipolar transistors10 and field-effect transistors.11

Therefore, understanding the relationship between a desired
property and atomic structure at a lateral interface is
fundamental to avoiding material performance loss due to a
defect or conversely to taking advantage of the property tuning
possibility of LHS and 2D materials. However, before
researchers can systematically implement computational tools
for material property studies of interface defects or LHS, one
must search for energetically stable atomic structures, as the
formation energy is the key feature indicating the stability of

the material. Traditional methods for new material discovery
rely heavily on the trial−error approach, which is extremely
inefficient for the discovery of new materials.

In our previous study,12 we introduced a workflow based on
a genetic algorithm (GA) for systematically searching through
the possible GBs or interfaces of 2D materials. We use
graphene as the benchmark material due to the wide breadth of
research studies related to graphene GBs, including mechanical
properties studied by Zhang et al.,1 electronic properties
studied by Yazyev et al.,2 and CVD synthesis of graphene done
by Tan et al.4 We were able to show that the workflow
produces energetically stable GB structures for graphene while
preserving a prescribed level of diversity. The statistical study
of the topological features of the GB structures also showed
that the workflow gives out information consistent with
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previous research results.3,13 However, despite the many
advantages of the GA, it also has a major limitation when it
comes to efficiently searching for novel materials where reliable
surrogates for energy evaluation are unavailable. Density
functional theory (DFT) simulations offer accurate predictions
for the energy of low-dimensional structures. However,
integrating DFT with the GA search is computationally
prohibitive. Although there are libraries of empirical
potentials14−17 available as surrogates, many are designed for
pristine 2D sheets and are not generalizable to defective 2D
materials. Thus, one can only take full advantage of the GA
workflow for a stable GB structure search when the energy
predictions are reliable.

Machine learning (ML) methods such as the Graph Neural
Network (GNN) have been implemented to predict the
formation energy of nanoscale systems and their material
properties such as the band gap and Fermi energy18−23 with
prediction errors comparable to DFT calculations. It is also
noted that 2D materials can be naturally described as graphs,
where the atoms are the graph nodes, and the chemical bonds
can be described as edges. However, to the best of our
knowledge, there has been no implementation of a GNN for
energy prediction targeting defective 2D structures. As seen in
Figure 1, the simulation supercell of a 2D interface is formed
by the GB region in the middle and two pristine bulk regions
with rotation angles (θL and θR for the left and right sides,
respectively) located on two sides. We implement this
methodology for generating GB structures in the GA.
However, when searching for a fixed orientation, meaning
when θL and θR are fixed in a GA search, only the GB region
will change and the majority of the supercell would be identical
due to the fixed bulk regions. This increases the difficulty of
distinguishing different structures for the GNN model. GNN
models19,20,22,24−26 reported in the literature typically train and
test on systems with multiple element types, for which a
different atomic number can be appended to each node as the
node feature of the GNN. In our case, when searching for GBs
for 2D material, all atoms are from the same element and the
GNN model cannot gain information when the atomic number
is assigned as the node feature. This further increases the

difficulty of training an accurate GNN model for energy
prediction of 2D GBs of a single element.

To overcome these obstacles and develop a reliable
surrogate for the GA searching workflow introduced in
previous work,12 we first transfer generated 2D GB structures
into graphs and build a GNN model that has convolution
layers based on the Graph Isomorphism Network (GIN),27

which was proposed by Xu et al. and shown to have the highest
discriminative power among classic GNNs.

The data sets for training this model were generated and
utilized in two ways. Considering the high cost of DFT
simulations, we first demonstrate that our model can replicate
the energy hypersurface of a Tersoff potential that was fitted
for blue phosphorene (BP).28 We generated a data set that
included GB structures that were geometrically optimized
(relaxed) by the Tersoff potential and structures that were not
geometrically optimized (unrelaxed). The total energy of all
the structures was evaluated using the Tersoff potential, and
this data set is therefore referred to as the complete Tersoff
data set. As both relaxed and unrelaxed structures are included
in the complete Tersoff data set, the total energy of all the
structures covers a broad range. This allows our GNN model
to train on various structures and improve the prediction
accuracy on lower energy structures. As discussed in the
“Complete Tersoff Dataset and Model Performance” section,
by gradually increasing the number of structures for training,
we found that 950 unrelaxed structures and 950 relaxed
structures were sufficient for the GNN model to reach an
optimum. When using 950 unrelaxed structures and 950
relaxed structures, the mean absolute error (MAE) was 1.617
and 1.507 eV for the predicted energy with the Tersoff
potential unrelaxed and relaxed structures, respectively.

After the GNN model’s accuracy was validated on the
Tersoff generated data set, we trained the GNN model on the
DFT energy hypersurface for a more accurate prediction of the
total energy. We sampled structures from the complete Tersoff
data set as discussed in the “Single Shot DFT Data Set and
Model Performance” section. Approximately 2200 unrelaxed
structures and 2200 structures relaxed using the Tersoff
potential were selected. The total energy for each sampled
structure was evaluated by single shot DFT calculations. We,

Figure 1. Top view of example simulation supercell of GB structure of GA searching. Heptagons and pentagons are labeled in yellow and blue,
respectively. The bulk region of the supercell is shown in red, and the GB region atoms and boundary are shown in blue. The bulk region is formed
by pristine BP sheets rotated at a certain angle (θL, θR) with respect to the zigzag orientation. The atoms and the boundary of the bulk region are
colored in black.
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therefore, name this data set the single shot DFT data set (SS
DFT data set). Similar to the previously mentioned complete
Tersoff data set, we again confirmed that 950 structures of
both unrelaxed and relaxed structures for training are sufficient
on the SS DFT data set. Our GNN model achieved a
percentage error of approximately 0.5% for the total energy
prediction on the test set, which shows that the GNN model
“learned” the DFT energy hypersurface with good accuracy.

We then combined the GNN model with the GA search. To
avoid trapping the search to a local minimum, we introduced a
novelty measure of the structures as one of the fitness
parameters and performed a multiobjective GA (MOGA)
search,29 as discussed in the Methods section. We used the
GNN model for the MOGA search to compare with the
MOGA search based on the Tersoff potential. The results for
searching with the two different surrogates were consistent,
where searches with the two different approaches converged to
the same structure.

Similarly, the GNN model was trained with the SS DFT data
set and used as the MOGA surrogate for the search.
Considering that the GA is a stochastic search method, three
independent searches were performed, and the search results
were studied as discussed in the “DFT Trained GNN for the
MOGA Search” section. For these three independent searches,
we extracted the structures in the Pareto front and obtain the
total energy using DFT calculations as the reference for
comparison. By comparing the MAE of the GNN model and
the DFT total energy difference between the structures, we
confirmed that the GNN model can distinguish among
different GB structures generated during the MOGA search.
Previous work done by Kirklin et al.30 assessed the general
accuracy of DFT when compared to the experimental results,
where the MAE of the formation energies was calculated.
Based on the extracted structures from the Pareto front of the
searches, we also compared the GNN predicted formation
energies with the DFT calculated ones, and the calculated
MAE for the GNN model predicted formation energies are
comparable with the above-mentioned MAE for the DFT
evaluated formation energies. This indicates that our GNN
model can provide a good estimation of DFT evaluated total

energy values with magnitudes lower computational cost, thus
enabling the evolutionary search of 2D GBs that was previously
prohibitive with DFT simulations.

■ METHODS
GNN Model Architecture. The first step to develop the GNN

model was creating the 2D sheets with GB defects. As shown in
Figure 1, defects are formed within a GB region in the middle of the
simulation supercell, while most of the simulation cell is dominated by
the pristine 2D nanomaterial. The bulk regions prevent the influence
from neighboring GBs and satisfy a semi-infinite boundary condition.
However, this methodology for constructing the GB structure also
introduces similarities for all the GB structures generated for a fixed
combination of interfacing nanosheets. Compared to previous
research implementing the GNN for property prediction,18−23 our
data set includes deceiving structures with similar atomic structures.
When searching for atomic structures of GB, there is no atomic
number difference between the atoms, which makes the structures
harder to distinguish. To develop a method for an accurate DFT
surrogate, the total energy of each structure is the target value for the
GNN model and is essentially a graph-level regression problem.
Therefore, the ability to tell the difference between graphs and to
represent various GB structures using different high-dimensional
vectors in the latent space is crucial for this problem. Among GNN
operators, we took advantage of the theoretically proven expressive
power of the GIN model from Xu et al.,27 in which the multilayer
perceptrons (MLP) were used to update the node embedding for
each layer of a graph convolution as shown in the eq 1.
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where Vi
(k) is the feature vector of the ith node in the kth layer. The

initial feature vectors of the nodes are constructed as eq 2.

V X Y Z x y z( , , ) ( , , )i i i i
(0) = (2)

Since a cuboid supercell is used, here vector (X, Y, Z) is composed of
the supercell size in Cartesian coordinates. The vector (xi, yi, zi) is
composed of the fractional coordinates of the ith atom, where each
coordinate is normalized with respect to the corresponding size of the
supercell. The node feature is thus constructed as the concatenation
of these two vectors. The initial node vectors Vi

(0) are then processed
with r convolution layers, and the connectivity for the nodes in the

Figure 2. Schematic of the GNN model architecture. The architecture is divided into three parts. Details are introduced in the GNN Model
Architecture section.
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graph is learned and stored into high dimensional node embedding
vectors Vi

(r). To gather the information from all the nodes in the
graph, a pooling layer described by eq 3 below was used to generate
the feature vector representing the whole graph.

V V
i

i
r

g
( )=

(3)

Here, Vg is the graph-level feature vector that gathers the information
from the node embedding vectors. It was shown in previous work by
Xu et al.27 that the pooling layer using an average or maximum value
might not be able to distinguish certain distinct graphs. Therefore, we
implement the summation pooling layer for the maximum expressive
power.

The last part of the GNN architecture is the fully connected layers
of the neural network L, which will decipher the connectivity
information from the vector Vg generated by previous layers and
predict the target value. The schematic of the architecture is shown in
Figure 2, where the structures are first transferred to graphs with
atomic position information attached to each node as described
above. Then r layers of the graph convolution aggregate the
neighboring information for each node and generate the high-
dimensional node embedding. For the last part of the model, the node
embedding vectors are fed into a global pooling layer to generate the
vector that represents the whole graph. For the last step, the
information contained inside this vector is mapped into a single total
energy prediction by a MLP.
Multiobjective Searching GA. As mentioned in our previous

work,12 the GA search of 2D GB structures relies on empirical
potentials and modeling, as implemented with the large-scale atomic/
molecular massively parallel simulator (LAMMPS)31 code, which
allows us to perform structural relaxations for all the structures
generated during the searching process. The structural relaxations
during the GA search help the search process escape from local
minima and avoid generating similar GB structures resulting in a loss
of diversity. However, the GNN model trained using the above-
mentioned method does not support any geometry optimization, as it
is only trained for the single shot total energy evaluation of a defective
2D material structure. To overcome this problem, we added a novelty
score for each structure as a fitness parameter in addition to the total
formation energy. With multiple fitness parameters considered during
the search, we updated the original GA to a MOGA searching
method.29 Among available algorithms, we use the nondominated
sorting genetic algorithm II (NSGA II)32 implemented in the
distributed evolutionary algorithms in python (DEAP)33 package. For
each generation of a 2D structure with a GB, the selection of
individuals considered the novelty and formation energy. Two
archives of the structures are updated after each generation, the first
one to keep a record of the Pareto front for all the individuals, while
the second records structures with the lowest formation energy. The
formation energy Ef of each structure is evaluated using the following
equation:

E
E Ne

L
( )

2f
t= (4)

where Et is the total energy evaluated, N is the total number of atoms
within the GB structure, e is the energy per atom for the pristine blue
phosphorene, L is the length of the GB, and factor 2 corresponds to
two GBs in one supercell.

To measure the novelty of structures, the eigenvalue similarity
method from Koutra et al.34 was implemented as formulated in the
following equation:
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for which λ is the spectrum of the graph Laplacian, which can be
calculated using L = D − A, where D is the diagonal degree matrix
and A is the adjacency matrix. The k in the equation is selected
according to eq 6:
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where j is 1 or 2 labeling the two graphs being compared. An integer
value of k is selected so that the spectrum is truncated to ensure the
summation of all eigenvalues is larger than 90% of the total
summation. Graphs with similar connectivity will have Vnovelty close
to 0, and increasing novelty values indicate that the two structures are
increasingly dissimilar. The novelty was evaluated between each
structure and other structures in the best structure archive and current
population. The average value of the novelty was taken as the final
novelty score, and using this novelty score as one of the search fitness
helped maintain diversity during the search. With this definition of
novelty, we performed the MOGA search using both the Tersoff
potential with the LAMMPS code and the GNN surrogates.
Representative examples of the structures and their corresponding
novelty score are shown in the Supporting Information.
LAMMPS and DFT Simulation Details. For energy evaluation

and minimization of structures as implemented in LAMMPS (May
27, 2021 version), a Tersoff potential28 fitted for phosphorene was
used. The minimization criterion was selected where the forces on all
the atoms were relaxed until they were smaller than 10−6 eV/Å or a
maximum of 105 evaluations of energy or forces were performed.

The DFT simulations were done using the projector-augmented
wave method (PAW)35 implemented with the VASP36 code (5.4.1).
The PBE functional37 was used with a kinetic energy cutoff set to 500
eV. Considering the small variations of the structures’ sizes due to the
different widths of the GB region, we set the k-point distance to
approximately 0.035 Å−1 for the periodic direction of all the
structures. The k-point for the nonperiodic direction was set to 1.
The global break condition for the electronic SC-loop was set to 10−6

eV. To simulate the semi-infinite plane of the 2D sheet for GB,
pristine BP sheets with a width of approximately 17 Å were added to
each side of the GB. A vacuum with a thickness of 8 Å was added
above and below the 2D sheet to avoid the influence of periodic
neighboring images.
Code and Model Implementation. All the GA and GNN codes

were written in Python 3.7, and the Pytorch v1.1138 and PyTorch-
Geometric v2.0.439 libraries were used to implement the GNN model.

■ RESULTS AND DISCUSSION
In this section, details for training and testing of the GNN
model in the previous section are discussed. Considering the
high computational cost of the DFT simulations for generating
data sets, we first used the Tersoff potential with the LAMMPS
code to generate an unrelaxed Tersoff data set of 5000 GB
structures. The maximum height, midsection width, and
interatomic distance of all structures were controlled. By
gradually reducing the training set size, we confirmed that 400
is the minimum training set size to use without dramatically
increasing the error when testing the trained model. We also
verified that a random sampling method for sampling the
structures for training has an insignificant impact on the error
when compared with the even sampling technique. To test our
model and to replicate the energy hypersurface of the Tersoff
potential, 5000 additional geometrically optimized (relaxed)
structures using the Tersoff potential were generated. We
named this data set containing both relaxed and unrelaxed
structures (10 000 in total) the complete Tersoff data set.
Based on this data set, we confirmed that 950 unrelaxed
structures along with 950 relaxed structures are the minimum
training set size to allow our model to achieve the average
MAE for relaxed and unrelaxed structures of 1.507 and 1.617
eV, respectively. Finally, ∼2200 Tersoff relaxed structures and
∼2200 unrelaxed structures were then selected to calculate the
total energies with a single shot DFT calculation, henceforth

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c01161
ACS Appl. Mater. Interfaces 2023, 15, 20520−20530

20523

https://pubs.acs.org/doi/suppl/10.1021/acsami.3c01161/suppl_file/am3c01161_si_001.pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c01161?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


referred to as the SS DFT data set. As before, the minimum
size of the training set was 950 unrelaxed structures and 950
relaxed structures. Using this size of a training set, a percentage
MAE of less than 0.5% was achieved with the SS DFT data set.
Finally, we performed MOGA searches with the GNN model
trained on the complete Tersoff data set and again with the SS
DFT data set. By analyzing the search results, we demonstrate
that our model can replicate the energy hypersurface and
provides a good estimation of DFT energy values.
Unrelaxed Tersoff Data set and Downsampling. To

test the performance of our model and avoid wasting
computational resources, a test data set was generated using
a Tersoff potential before we generated a data set using DFT
simulations. We first randomly created GB structures, as shown
in Figure 1, consistent with the GA generated structures where
only the midsection varies. Then, the Tersoff potential28 was
used to evaluate the energy values of these structures. For the
structures in the data set shown below, both the left and right
bulk regions of the structures have rotation angles equal to
19.11°. The width of the GB region was randomly set to 1−9
Å, and the maximum height difference of the atomic
coordinates was limited to a maximum of 2 Å. The interatomic
distance for atoms within the cell was also set larger than 2.14
Å, which is 2 times the covalent radius40 from the Atomic
Simulation Environment package.41 A total of 5000 structures
were generated with this method, and their total energy was
evaluated using an in-house Tersoff potential28 with the
LAMMPS code. We found that the total energy distribution
follows a bell curve, as shown in Figure 3, and the energy range
is between −221.83 eV and −190.94 eV.

Using this Tersoff generated test data set, we determined the
minimum number of structures required for training the GNN
model by gradually decreasing the number of structures for
training. Starting at 4000 structures as the training set, which is
80% of all structures, this number was decreased step by step
until only 100 structures remained for training. The remaining

structures in the set were evenly split into a validation set and a
test set for each step.

For the model hyperparameters, eight convolutional layers
were tested to achieve the best performance and were adopted
to maximize the connectivity information from the graph while
avoiding oversmoothing,42,43 which happens when nodes are
connected with too many neighbors and small differences
between convoluted node features lead to a performance drop.
For each GIN convolution layer, a two-layer MLP with 600
neurons in each layer is used to generate the node embedding
for each layer. Two fully connected layers were attached after
the global pooling layer to make the final prediction. For the
training of the model, the L1 loss and Adam optimizer44 were
used, and the initial learning rate was set to 1 × 10−4. The step
decay learning rate annealing was implemented, for which the
initial learning rate will be multiplied by a factor equal to 0.8
every 5 epochs. The GNN model was trained for a total of 100
epochs, with a training batch size equal to 128 structures and a
0.25 dropout rate for both the convolution layers and the fully
connected layers to avoid overfitting during the training. All
hyperparameters are summarized in Table S1 in the
Supporting Information.

For each training set, three independent trainings of the
GNN were performed. For each independent training of the
GNN, the data set was randomly shuffled before being split
into new training, validation, and test sets. The model with the
best performance on the validation set was chosen during 100
epochs of training. The MAE on the test set for this model was
recorded. The average MAE for the three independent
trainings of the same training set size was plotted against the
training set size as shown in Figure 3. As one can see, the MAE
increases sharply after the training set size becomes smaller
than 500. With 400 structures for training, the model can
achieve a MAE of 2.051 eV.

To better understand the impact of the training set size and
its distribution on the results, we further analyzed the total
energy distribution for the smaller training set size. Figure 4
shows the distributions of the total energy for smaller training
sizes (100−400) for one of the three iterations. As one can see,
the energy range coverage for the sparse training set sizes is
narrower than the range for the complete data set. To avoid
possible performance reduction due to poor sampling among
the energy range, adjustments were made to the sampling
method. All structures were first ranked according to their
energy value and then divided into 30 intervals. Different sizes
of the training set were then made by sampling evenly within
each interval. Figure 4 also shows the average MAE of three
independent training tests, for which the structures are
sampled using the above-mentioned sampling method. One
can see that the MAE for the smallest training set decreases.
However, the improvement for larger training sizes diminishes
as compared to the original random sampling. Thus, this
suggests that if the smallest training size is needed, then
sampling evenly through the total energy spectrum will
improve the training set results. As the training set sizes
increase, random sampling can be performed without any
performance loss. For both sampling methods, the MAE
dramatically changes when 400−500 structures are used for
training.
Complete Tersoff Data Set and Model Performance.

A sparse training data set is crucial to determine the minimum
number of necessary calculations when a first-principles
method is used to generate a reliable data set. In addition, to

Figure 3. Total energy distribution of the unrelaxed Tersoff data set
and the average MAE on the test sets for different training set sizes
used on this data set.
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accurately capture the energy hypersurface predicted by the
Tersoff potential and DFT, it is also necessary to include
structures with a broad range of the total energy in the data set.
From the previous data set shown in Figure 3, the average
energy value of the data set is −207.58 eV and the difference
between the maximum and minimum of the total energy is
approximately 30.89 eV. To generate relaxed structures for
training, new structures were first randomly generated as

discussed in the previous section, and each structure was then
relaxed using the Tersoff potential with the LAMMPS package.
After the relaxation, we transferred the structures into a graph
and used the subgraph and bridge concept in graph theory to
check if the structure had low connectivity. If bridges or
subgraphs exist in the graph, which correspond to a single
bond connection or complete fracture between left and right
bulk sides, respectively, then the structures were removed

Figure 4. Total energy distributions for sparse training set sizes equal to (a) 100 structures, (b) 200 structures, (c) 300 structures, and (d) 400
structures; MAE on the test set vs training set size. Training structures are evenly sampled from each energy interval.

Figure 5. Energy distribution for the complete Tersoff data set and average of MAE obtained on the test sets plotted against the training set size for
Tersoff relaxed and unrelaxed structures. All energy values are evaluated by the Tersoff potential with the LAMMPS code.
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because these low connectivity structures would not be
considered as physically viable 2D nanosheets with a GB.
Example structures with low connectivity and the details for
ruling out these structures are discussed in the Supporting
Information. Otherwise, the relaxed structure and correspond-
ing energy were added to the data set. This process was
iterated until 5000 relaxed structures were generated. The
combined data set containing 5000 unrelaxed structures and
5000 relaxed structures is herein referred to as the complete
Tersoff data set. The total energy histogram for the complete
Tersoff data set is shown in Figure 5. Details for minimization
can be found in “LAMMPS and DFT Simulation Details”
section in the Methods section.

As seen in the inset of Figure 5, for the complete Tersoff
data set, the energy range for the relaxed structures is from
−269.4 eV to −228.2 eV, with a mean value equal to −247.5
eV and a standard deviation of 6.3 eV. For the unrelaxed
structures, the energy falls within the interval of −228.7 eV to
−190.9 eV, the mean value is −208.9 eV, and the standard
deviation is 5.9 eV, which is slightly smaller than the value for
relaxed structures. Although an energy range of 40.6 eV for
relaxed structures is slightly larger than 37.77 eV for the
unrelaxed structures, we noticed that the distribution for both
types is similar and there is no energy overlap. Therefore, the
relaxed and unrelaxed structures were treated as two separate
data sets and the GNN was trained with an equal number of
structures for each type.

Figure 5 also shows the number of structures used for
training as the number increased from 400 to 1500 and the
average MAE was obtained. The remaining structures were
split into two sets for test and validation. For each set, the
number of relaxed and unrelaxed structures was kept equal.
Three training iterations were performed for different sizes of
the training set, and for each iteration, the structures are
randomly selected from the data set. During all the epochs of
training, the model that performed the best on the validation
set was chosen and the MAE on the test set was recorded. The
average value of the MAE for three training iterations is plotted
versus the number of structures used for training in Figure 5.

From this plot, one can see that compared to the data set
containing only unrelaxed structures, the training on the
complete Tersoff data set needs a higher number of structures
to achieve the best performance. The MAE reduced to a
plateau when approximately 950 structures for both unrelaxed
and relaxed structures were used for training, and the average
MAE for the relaxed and unrelaxed structures was 1.507 and
1.617 eV, respectively. Figure 6a is the parity plot for one of
the training iterations using 950 relaxed and 950 unrelaxed
structures. The average MAE obtained using 950 relaxed and
unrelaxed structures are 1.01 and 1.69 eV, respectively. With
lower energy structures added to the data set, the GNN model
was able to predict a much broader range of the total energy,
therefore replicating a larger area of the energy hypersurface.
Single Shot DFT Data Set and Model Performance.

Considering the high cost of the DFT geometry optimization,
structures were sampled from the complete Tersoff data set.
The structures from the complete Tersoff data set were first
sorted based on their Tersoff evaluated energy and then put
into two subsets, one for relaxed and one for unrelaxed,
respectively. Each subset was divided into 30 intervals based on
their energy. The structures were sampled evenly within these
intervals to guarantee diversity across the energy range.
Approximately 2200 structures relaxed using the Tersoff
potential, and another ∼2200 unrelaxed structures were
selected to ensure there were enough structures for training,
validation, and testing purposes. The energies of all sampled
structures were then evaluated with single shot DFT
calculation, and the details of DFT simulations are discussed
in the “LAMMPS and DFT Simulation Details” in the
Methods section. We label the data set with these structures
and the resulting DFT evaluated total energy values as the SS
DFT data set. The total energy range for the structures in this
data set is from −375.32 eV to −305.22 eV. For training with
the SS DFT data set, we increased the convolution layer
number from 8 to 10. The number of neurons in the
convolution layer and the fully connected layer was increased
to 1024, and the cutoff value used to determine the
connectivity between atoms was increased to 3.3 Å since

Figure 6. Parity plots on the test set when using 950 data for each type of structure for training on (a) the complete Tersoff data set and (b) the
single shot DFT data set.
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DFT simulations capture a longer range of interactions
compared to the Tersoff potential. The discussion of the
influence of this cutoff value is included in the Supporting
Information.

Adopting the same training and evaluation method from the
last section, we determined that on the SS DFT data set, using
950 relaxed and 950 unrelaxed structures for training is
adequate. The average MAE on the test sets when using this
number of structures for training is 1.71 and 1.33 eV for
relaxed and unrelaxed structures, respectively. The percentage
MAE is 0.53% and 0.38% for relaxed and unrelaxed structures,
respectively. Figure 6b shows one of the parity plots between
the DFT total energy and the GNN model prediction, where
the percentage mean absolute error was 0.55% and 0.41% for
relaxed and unrelaxed structures, respectively. These small
MAE errors demonstrate that our GNN model was able to
accurately predict the total energy on the SS DFT data set
enabling an evolutionary search with strong accuracy.

The motivation for using the Tersoff potential relaxed
structures was to generate a large data set based on DFT
energy hypersurface while reducing the computational cost for
performing DFT geometry optimization. However, for Figure
6b, one may notice that some of the Tersoff relaxed structures
have a higher DFT evaluated energy as compared to the
unrelaxed structures, and data points in the parity plot are
clustered. Both the reversal of the total energy between relaxed
and unrelaxed structures and the clustering of the data set
points in the plot are because we sampled the structures from
the complete Tersoff data set for SS DFT energy calculations
as mentioned at beginning of this section. The difference
between the energy hypersurface of the Tersoff potential and
DFT led to these effects. A more detailed explanation of the
differences in the hypersurfaces can be found in the Supporting
Information, where we have a histogram and parity plot for
DFT energies of a small data set which included 81 DFT fully
relaxed structures and 200 unrelaxed structures. Despite the
above-mentioned effects, the SS DFT data set covers a broad
range of total energies on DFT energy hypersurface and the
GNN model trained on this data set can accurately predict the
total energy of the BP structures with GBs as discussed above.
Evolutionary Search with GNN. GNN and Tersoff

Surrogate Comparison. Considering that MOGA is a
stochastic search method, to compare the search results
between the different surrogates, six independent searches
were performed: three using Tersoff as the surrogate and
another three using GNN trained on the complete Tersoff data
set. For each search process, a hall of fame (HOF) archive that
contained structures with the best formation energy was
updated at each generation, and searching was stopped when
the maximum generation number of 5000 was reached. For the
three searches using the Tersoff potential with LAMMPS, two
of the searches converged to the structure shown in Figure 7,
which has the lowest formation energy in the archive. This
result is consistent with the results obtained for all three
searches using the GNN surrogate. The remaining Tersoff-
based search converged to a Stone−Wales defect; however, the
structure in Figure 7 was also archived in the HOF of this
search. This test demonstrates that the GNN model can
successfully replicate the energy hypersurface of the Tersoff
potential. To generate an accurate but also inexpensive
surrogate, we further test the methodology with a DFT-
generated data set.

DFT Trained GNN for the MOGA Search. Due to the high
cost of DFT simulations, it cannot be directly used to evaluate
the energy during MOGA searching. Therefore, we were not
able to perform a similar comparison as in the previous section.
To validate the searching performance of the GNN model
trained on the SS DFT data set, three iterations of independent
searching using the GNN model were performed, and the
structures from the Pareto front of each search were extracted
after the search was ended. Their energy was evaluated using
single shot DFT calculations, and the difference in the total
energy between permutation of all the structures was
evaluated. The difference is then averaged over the number
of permutations, and we label this average value as d. The MAE
of the GNN predictions for the total energy of those structures
was also calculated. The comparison of these two values for
three searches is shown in Table 1. The three most stable

structures obtained during the three MOGA searches were
then fully relaxed using DFT simulations, and the formation
energies were calculated as 0.181 eV/Å, 0.012 eV/Å, and 0.042
eV/Å. These formation energy values are comparable with that
of black phosphorene (0.09−0.24 eV/Å)45 and much smaller
than graphene (0.28−0.8 eV/Å).46 Additional details and a
discussion of the structures are included in the Supporting
Information. As shown in Table 1, the average total energy
difference between the structures (d) in the Pareto front is at
least 5 times larger than the MAE of the GNN model
prediction. This demonstrates that the GNN model is capable
of distinguishing different structures in the Pareto front in
terms of their energy difference. The accuracy of the GNN
model is sufficient for performing MOGA searching. We also
evaluated the formation energies of all the structures using eq
7:

E E Notf t= (7)

where Etot is the total energy evaluated with DFT or the GNN
model. The variable μ is the energy per atom for the pristine

Figure 7. All three MOGA searches using the GNN model trained
with the complete Tersoff data set as a surrogate predicted the
following structure as well as two of the MOGA searches using the
Tersoff potential.

Table 1. Average Difference of DFT Total Energy (d) and
Mean Absolute Error of GNN (MAE) for Three
Independent MOGA Searches Using the GNN Surrogate

search number d (eV) MAE (eV) formation energy MAE (eV/atom)

1 13.20 2.09 0.030
2 10.59 2.00 0.030
3 35.23 1.81 0.025
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BP sheet, and N is the number of atoms within the GB
structures. We calculated the MAE for formation energies with
the GNN and DFT calculations. The MAE of the formation
energies is then normalized over the number of atoms for
comparison with previously reported results and referred to as
formation energy MAE in Table 1. In the work by Kirklin et
al.30, the general accuracy of DFT evaluated formation energies
was assessed by calculating the MAE between DFT predictions
and experimental data. Our formation energy MAE values
between the GNN model and DFT results are comparable to
the 0.096 eV/atom MAE obtained by Kirklin et al., which
indicates that our model provides a good estimation of DFT
energy values with orders of magnitude lower required
computational time.

■ CONCLUSION
In this work, a GNN model to predict the energy of 2D GBs
for BP was implemented and trained. Implementing the GIN
convolution layers, we aimed to obtain the maximum
expressive power of the GNN model, so that the model can
to distinguish 2D sheets with different GB structures in the
middle section. For training the GNN model, a Tersoff data set
was first generated, and the number of structures needed for
training the GNN model for the desired accuracy was
determined. After the training set size is determined for the
complete Tersoff data set, part of the randomly generated
structures and the previously Tersoff minimized structures
were fed into DFT simulations to generate a data set with
DFT-evaluated energy values. The optimal training set size was
again determined, and percentage errors lower than 0.5% were
obtained using 950 unrelaxed structures and 950 Tersoff
relaxed structures for training. With the validated GNN model,
we performed MOGA searches for BP GB structures. We
confirmed that, with the complete Tersoff data set trained
GNN model, the GA search tended to converge to the same
result as the Tersoff potential. This again shows that this
trained model can replicate the energy hypersurface of Tersoff
potential. We also performed MOGA searching with the GNN
model trained on the SS DFT data set. We extracted the
structures in the Pareto front of the searches and evaluated the
total energy using DFT. The MAE for the formation energies
of those structures is comparable to the previously reported
MAE of DFT simulations. This indicates that our model
provides a good estimation of the DFT energy values with a
magnitude lower computational cost. By comparing the
average DFT total energy difference and the MAE for the
GNN prediction of those structures, we confirmed that the
DFT-trained GNN can distinguish different energies and
structures in the Pareto front and supports using MOGA
searching to predict geometries of 2D lateral interfacing
nanosheets with GB defects. The GNN model predicts energy
values purely from the atomic positions, and this method
tested on BP is generalizable to other 2D materials. For future
work, we aim to develop GNN architecture that can also
predict the forces on atoms as the derivative of energy. This
will allow the GNN model to be more versatile and improve
the MOGA search performance. We believe this method will
accelerate 2D GB discovery and property study.
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