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Oscillators that sync and swarm
Kevin P. O’Keeffe1, Hyunsuk Hong 2 & Steven H. Strogatz 1

Synchronization occurs in many natural and technological systems, from cardiac pacemaker

cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the

timing of their oscillations, but they do not move through space. A complementary form of

self-organization occurs among swarming insects, flocking birds, or schooling fish; now the

individuals move through space, but without conspicuously altering their internal states. Here

we explore systems in which both synchronization and swarming occur together. Specifically,

we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call

them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto

model predicts five collective states as possible long-term modes of organization. These

states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of

magnetic particles, and other biological and physical systems in which self-assembly and

synchronization interact.
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This year marks the fiftieth anniversary of a breakthrough in
the study of synchronization. In 1967, Winfree proposed a
coupled oscillator model for the circadian rhythms

that underlie daily cycles of activity in virtually all plants and
animals1. He discovered that above a critical coupling strength,
synchronization breaks out spontaneously, in a manner
reminiscent of a phase transition. Then Kuramoto simplified
Winfree’s model and solved it exactly2, leading to an explosion of
interest in the dynamics of coupled oscillators3–5. Kuramoto’s
model in turn has been generalized to other large systems of
biological oscillators, such as chorusing frogs6, firing neurons7–11,
and even human concert audiences clapping in unison12. The
analyses often borrow techniques from statistical physics, such as
mean-field approximations, renormalization group analyses13,14,
and finite-size scaling15,16. There has also been traffic in the other
direction, from biology back to physics. For example, insights
from biological synchronization have shed light on neutrino
oscillations17, phase locking in Josephson junction arrays18, the
dynamics of power grids19,20, and the unexpected wobbling of
London’s Millennium Bridge on opening day21.

A similarly fruitful interplay between physics and biology has
occurred in the study of the coordinated movement of groups of
animals. Fish schools, bird flocks, and insect swarms22–26 have
been illuminated by maximum entropy methods27, agent-based
simulations28, and analytically tractable models based on self-
propelled particles29, and continuum limits30–33.

Studies of swarming and synchronization have much in
common. Both involve large, self-organizing groups of individuals
interacting according to simple rules. Both lie at the intersection
of nonlinear dynamics and statistical physics. Nevertheless the
two fields have, by and large, remained disconnected. Studies of
swarms focus on how animals move, while neglecting the
dynamics of their internal states. Studies of synchronization do
the opposite: they focus on oscillators’ internal dynamics, not on
their motion. In the past decade, however, a few studies of
“mobile oscillators,” motivated by applications in robotics and
developmental biology, have brought the two fields into
contact34–38. Even so, the assumption has been that the oscilla-
tors’ locations affect their phase dynamics, but not conversely.
Their motion has been modeled as a random walk or as externally
determined, without feedback from the oscillators’ phases.

We suspect that somewhere in nature and technology there
must be mobile oscillators whose phases affect how they move.
For instance, many species of frogs, crickets, and katydids call
periodically, and synchronize in vast choruses6,39–41. The natural
question is whether they tend to hop toward or away from others
depending on the relative phases of their calling rhythms, and if
so, what spatiotemporal patterns are produced.

A clue comes from the physics of magnetic colloids42–44 and
microfluidic mixtures of active spinners45,46, both of which show
rich collective behavior. In these systems, the particles or spinners
attract or repel one another, depending on their orientations.
Given that orientation is formally analogous to the phase of
an oscillation (both being circular variables), a similarly rich
phenomenology is expected for mobile oscillators whose
phases affect their motion. We call these hypothetical systems
‘swarmalators’ because they generalize swarms and oscillators.

One possible instance of a swarmalator system is a population
of myxobacteria, modeled in 2001 by Igoshin and colleagues47.
The movements of these bacteria in space are thought to be
influenced by an internal, biochemical degree of freedom, which
appears to vary cyclically. Igoshin et al.47 modeled it as a phase
oscillator. Experimental evidence suggests that the evolution of
this phase is influenced by the spatial density of neighboring cells;
thus there appears to be a bidirectional coupling between spatial
and phase dynamics, as required of swarmalators.

Tanaka and colleagues also made an early contribution to the
modeling of swarmalators48,49. They analyzed a broad class of
models in the hope of finding phenomena which were not
system-specific. They considered chemotactic oscillators,
whose movements in space are mediated by the diffusion of a
background chemical. The oscillators’ consumption of this
chemical depends on their internal states, thereby completing the
bidirectional space-phase coupling. Tanaka et al.48,49 began with
a general model with these ingredients, from which they derived a
simpler model by means of center manifold and phase-reduction
methods.

Here we take a bottom-up approach. We propose a simple
model of a swarmalator system which lets us study some of
its collective states analytically. We hope our work will draw
attention to this class of problems, and stimulate the discovery
and characterization of natural and technological systems of
swarmalators.

Results
The model. We consider swarmalators free to move in the plane.
The governing equations are

_xi ¼ vi þ 1
N

XN
j¼1

Iatt xj � xi
� �

F θj � θi
� �� Irep xj � xi

� �� �
; ð1Þ

_θi ¼ ωi þ K
N

XN
j¼1

Hatt θj � θi
� �

G xj � xi
� �

ð2Þ

for i = 1, …, N, where N is the population size, xi= (xi, yi) is the
position of the i-th swarmalator, and θi, ωI, and vi are its phase,
natural frequency, and self-propulsion velocity. The functions Iatt
and Irep represent the spatial attraction and repulsion between
swarmalators, while the phase interaction is captured by Hatt. The
function F in Eq. (1) measures the influence of phase similarity on
spatial attraction, while G in Eq. (2) measures the influence of
spatial proximity on the phase attraction.

Consider the following instance of this model:

_xi ¼ vi þ 1
N

XN
j≠i

xj � xi
xj � xi
�� �� Aþ J cos θj � θi

� �� �� B
xj � xi

xj � xi
�� ��2

" #
ð3Þ

_θi ¼ ωi þ K
N

XN
j≠i

sin θj � θi
� �
xj � xi
�� �� : ð4Þ

For simplicity, we chose power laws for Iatt, Irep, and G along
with analytically convenient exponents. The sine function in Hatt

was similarly motivated, in the spirit of the Kuramoto model2.
We first consider identical swarmalators so that ωi=ω and vi= v.
Further, we assume propulsion with constant magnitude and
direction v ¼ v0n̂ where n̂ is a constant vector (we relax these
simplifications later). Then by a choice of reference frame we can
set ω= v0= 0 without loss of generality. Finally, by rescaling time
and space we set A= B= 1. This leaves us with a system with two
parameters (J, K).

The parameter K is the phase coupling strength. For K> 0, the
phase coupling between swarmalators tends to minimize their
phase difference, while for K< 0, this phase difference is
maximized. The parameter J measures the extent to which phase
similarity enhances spatial attraction. For J> 0, “like attracts like”:
swarmalators prefer to be near other swarmalators with the same
phase. When J< 0, we have the opposite scenario: swarmalators
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are preferentially attracted in space to those with opposite phase.
And when J= 0, swaramalators are phase-agnostic, their spatial
attraction being independent of their phase. To keep Iatt> 0, we
constrain J to satisfy −1≤ J≤ 1.

Before stating our results, we pause to discuss our model’s
features. As mentioned above, the model’s purpose is to study the
interplay between synchronization and swarming. Let us clarify
what we mean by swarming. While, to our knowledge, there is no
unanimous classification, elements of a swarming system typically
attract and repel each other, leading to aggregation, and align
their orientations so as to move in the same direction. Succinctly
then, a swarming system models aggregation and/or alignment.

Our model accounts for aggregation, but not for alignment: the
spatial dynamics (1) model phase-dependent aggregation, while
the phase dynamics (2) model position-dependent synchroniza-
tion. There are no alignment terms. Indeed, the particles of our
system do not have an orientation so there is nothing to align! We
chose to neglect an orientation state variable, and thus alignment,
for two reasons. The first was simply because we believe there are
swarmalator systems in which orientation does not play a role,
such as the Japanese tree frogs6,41 or chemotactic oscillators48,49.
The second was that modeling orientable swarmalators adds an
additional layer of complexity; it gives each swarmalator an
orientation β, increasing the number of state variables per
swarmalator from three (a two-dimensional position (x, y) and an
internal phase θ) to four.

In the interest of minimalism we wished to avoid this
complication for now. Hence as it stands our model applies only
to swarmalators without an orientation. However we later show
that our results are robust to the inclusion of simple alignment
dynamics, indicating their potential to hold for systems of
orientable swarmalators as well.

Numerics. We performed numerical experiments to probe the
behavior of our system. Unless otherwise stated, the simulations
were run using python’s ODE solver ‘odeint’. We initially posi-
tioned the swarmalators in a box of length 2 and drew their
phases from [−π, π], both uniformly at random. We found the
system settles into five states (Supplementary Movies 1–5). In

three of these states, the swarmalators are ultimately static in
space and phase. In the remaining two, the swarmalators move.
However in all states, the density of swarmalators ρ(x, θ, t) is
time-independent, where ρ(x, θ, t)dx dθ gives the fraction of
swarmalators with positions between x and x + dx, and phases
between θ and θ + dθ at time t. In Fig. 1 we show where these
states occur in the (J, K) parameter plane. In Figs. 2–6 we show
their key properties. We next discuss these five states.

Static synchrony: The first state is shown in Fig. 2a. The
swarmalators form a circularly symmetric, crystal-like distribu-
tion in space, and are fully synchronized in phase, as indicated by
all of them having the same color in Fig. 2a. Since the
swarmalators are ultimately stationary in x, and they all end up
at the same phase θ, we call this the ‘static sync’ state. It occurs for
K> 0 and for all J, as seen in Fig. 1.

In the continuum limit, this state is described by ρ(r, ϕ, θ, t)
= 1

2πg1(r)δ(θ − θ0), where ϕ is the spatial angle ϕ ¼ tan�1ðy=xÞ,
and the final phase θ0 is determined from the initial conditions. In
Supplementary Note 1 we used a technique by Kololnikov et al.50

when studying swarms to derive the following pair of integral
equations for g1:Z R

0
s� rð ÞK 4rs

r þ sð Þ2
 !

þ r þ sð ÞE 4rs

r þ sð Þ2
 !

þ π2

2J
r � sð Þ

" #
2Js
r
g1ðsÞ ds ¼ 0

ð5Þ

g1ðrÞ ¼ 2ð1þ JÞ
π

Z R

0
K 4sr

ðr þ sÞ2
 !

g1ðsÞ
sþ r

s ds; ð6Þ

where K; E are the complete elliptic integral of the first and
second kinds, and R is the radius of the disk in the (x, y) plane
which must be determined. We were unable to solve these
equations for g1(r) and R, so instead solve them numerically, and
show the results in Supplementary Note 1. Analytic progress can
however be made if a linear attraction kernel Iatt(x)= x, is used
instead of the unit vector kernel we are currently considering.
Then, as shown in Kolokolnikov et al.50, the radial density
becomes g1(r)= 1, i.e., swarmalators are uniformly distributed. In
this special case we can also calculate R analytically,

Rsync ¼ ð1þ JÞ�1=2: ð7Þ

We show a full derivation in the Methods section. In
dimensionful units, this reads R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=ðAþ JÞp
. Thus the radius

is determined by the ratio of the strengths of the attractive to the
repulsive forces Iatt, Irep (in the static sync state, the effective
attraction force is A + J cos(θj − θi)= A + J, since all swarmalators
have the same phase). Figure 4a shows the prediction (7) agrees
with simulation results.

Static asynchrony: Swarmalators can also form a static async
state, illustrated in Fig. 2b. At any given location x, all phases θ
can occur, and hence all colors are present everywhere in Fig. 2b.
This is seen more clearly in a scatter plot of the swarmalators in
the (ϕ, θ) plane, depicted in Fig. 3a. Notice that the swarmalators
are distributed uniformly, meaning that every phase occurs
everywhere. This completely asynchronous state occurs in the
quadrant J< 0, K< 0, and also for J> 0 as long as J lies in the
wedge J< Kcj j shown in the phase diagram in Fig. 1. As for the
static sync state, we were able to calculate the radius of the
circular distribution when a linear attraction kernel Iatt(x) was
used. In the Methods section we show this radius is given by

Rasync ¼ 1 ð8Þ

which agrees with simulation as shown in Fig. 4a.
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Fig. 1 Phase diagram. Locations of states of the model defined by Eqs. (3)
and (4) with A= B= 1 and vi=ωi= 0 in the (J, K) plane. The straight line
separating the static async and active phase wave states is a semi-analytic
approximation given by (18). Black dots show simulation data. These were
calculated by finding where the order parameter S bifurcates from zero,
defined by where its second derivative with respect to K is largest. Similarly,
the red dots separating the active phase wave and splintered phase wave
states were found by finding where the order parameter γ bifurcates from
0. The red dashed line simply connects these points and was included to
make the boundary clearer
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Fig. 3 Scatter plots in (ϕ, θ) space. Distributions in (ϕ, θ) space corresponding to different states, where ϕ ¼ tan�1ðy=xÞ. Simulations were run with
N= 1000 swarmalators for variable numbers of time units T and stepsize dt= 0.1. a Static async state for (J, K)= (0.1, −1) and T= 100. b Static phase wave
state (J, K)= (1, 0) and T= 100. c Splintered phase wave state (J, K)= (1, −0.1) and T= 1000. d Active phase wave state (J, K)= (1.0, −0.75) and T= 1000.
Black arrows indicate the shear flow motion of swarmalators. Supplementary Movies 6 and 7 correspond to panels c, d
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Fig. 2 Stationary states. Scatter plots of three states in the (x, y) plane, where the swarmalators are colored according to their phase. Simulations were
for N= 1000 swarmalators for T= 100 time units and stepsize dt= 0.1. Supplementary Movies 1–3 correspond to panels a–c. a Static sync state for
(J, K)= (0.1, 1). b Static async state (J, K)= (0.1, −1). c Static phase wave state (J, K)= (1, 0)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01190-3

4 NATURE COMMUNICATIONS | 8:  1504 |DOI: 10.1038/s41467-017-01190-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Static phase wave: The final stationary state occurs for the
special case K= 0 and J> 0. This means the swarmalators’ phases
are frozen at their initial values. Still, the population evolves by
rearranging itself in space. Since J> 0, ‘like attracts like’:
swarmalators want to settle near others with similar phase. The
result is an annular structure where the spatial angle ϕ of each
swarmalator is perfectly correlated with its phase θ, as seen in
Figs. 2c and 3b. Since the phases run through a full cycle as the
swarmalators arrange themselves around the ring, we call this
state the ‘static phase wave’.

In density space, this static phase wave state is described by
ρ(r, ϕ, θ)= g2(r)δ(ϕ± θ + C1) where the ± and the constant C1,
are determined by the initial conditions. In the Methods section
we again consider the linear attraction kernel, and find that g2(r)
can be obtained analytically,

g2ðrÞ ¼ 1� ΓJ

r
; R1 � r � R2 ð9Þ

with ΓJ ¼ 2J R3
2 � R3

1

� �
3J R2

2 � R2
1

� �þ 12
� ��1

. This in turn lets us
calculate the inner and outer radii R1, R2 of the annulus:

R1 ¼ ΔJ
� ffiffiffi

3
p

J � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 5J

p ffiffiffiffiffiffiffiffiffiffi
J þ 4

p þ 12
ffiffiffi
3

p

12J
; ð10Þ

R2 ¼ ΔJ

2
ffiffiffi
3

p ð11Þ

with ΔJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J� ffiffiffiffiffiffiffiffiffiffiffi

36�15J
p ffiffiffiffiffiffi

Jþ4
p �12

J�2

q
. Figure 3b shows agreement

between these predictions and simulation.
Splintered phase wave: Moving from K= 0 into the K< 0

half-plane, we encounter the first non-stationary state, shown
in Figs. 3c and 5a. As can be seen, the static phase wave
splinters into disconnected clusters of distinct phases. Accord-
ingly we call this state the ‘splintered phase wave’. It is
unclear what determines the number of clusters. Fewer are found
when smaller length scales for the interaction functions Iatt, Irep,
G are used. However the parameters J, K also play a role,
although how precisely has not yet been determined. Within
each cluster, the swarmalators “quiver,” executing small ampli-
tude oscillations in both position and phase about their mean
values.

Active phase wave: As K is further decreased, these oscillations
increase in amplitude until the swarmalators start to execute
regular cycles in both spatial angle and phase. This motion is best
illustrated in Fig. 3d, in which shear flow about the ϕi= θi± C
axis is evident. This type of flow follows from a conserved

quantity in the model: _ϕ
� 	 ¼ _θ

� 	 ¼ 0, which can be seen by
averaging Eqs. (3) and (4) over the population. There are also
oscillations in the radial position, where each swarmalator travels
from the inner rim to the outer rim and back, in one orbit around
the annulus.

This new, and final, state is similar to the double milling states
found in biological swarms51, where populations split into
counter-rotating subgroups. It is also similar to the vortex arrays
formed by groups of sperm52, where the angular position ϕ of
each sperm is correlated with the phase θ associated with the
rhythmic beating of its tail.

At the density level, the state is like a blurred version of the
static phase wave, insofar as the spatial angle and phase of a given
swarmalator are roughly correlated, as evident in Fig. 3d.
However unlike the static phase wave, the swarmalators are
non-stationary. To highlight this difference, we name this state
the ‘active phase wave’.

Order parameters. Having described the five states of our system,
we next discuss how to distinguish them. We define the following
order parameter,

W± ¼ S± e
iΨ ± ¼ 1

N

XN
j¼1

ei ϕj ± θjð Þ; ð12Þ

where ϕi :¼ tan�1 yi=xið Þ. As shown in Fig. 6, the magnitude
S± varies from 1 to 0 as we decrease K from 0, passing through
all the states in the upper left quadrant of the (J,K) plane.
(Note that all states except for static sync occur in this part of
parameter space, so we hereafter confine our attention to just this
region.)

To see why S± varies in this manner, recall that in the static
phase wave, the spatial angle and phase of each swarmalator are
perfectly correlated, ϕi=±θi + C1 (recall that the ± and C1 are
determined by the initial conditions. This means either S+ or S− is
non-zero). Therefore S± = 1 at K= 0, where the static phase wave
state is realized. Moving into the K< 0 plane we encounter the
splintered phase wave. Here the correlation between ϕi and θi is
not perfect, and so S± < 1. As K is decreased the decay of this
correlation is non-monotonic, which induces a dip in S± as
seen in Fig. 6. Once the active phase wave is reached however this
non-monotonicity disappears. As a result S± declines uniformly
until it finally drops to zero when the static async state is reached,
in which ϕi and θi are fully uncorrelated.

To sum up, S± is zero in the static async state, bifurcates from
zero at a critical coupling strength Kc, is non-zero in the non-
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Fig. 4 Radii of stationary states. Simulation were for 800 swarmalators with a linear attraction kernel Iatt(x)= x. Red dots show simulation data, while black
curves show theoretical predictions. a Radius of crystal formed in static sync state (for K= 1) and static async state (for K= −2) vs. J. b Inner and outer radii
of annulus in static phase wave state vs. J
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stationary splintered and active phase wave states, and is one in
the static phase wave state.

Notice however that since S± is non-zero for both the
splintered and active phase wave, it cannot distinguish between
these states. To do this, we use another order parameter γ. We
define this to be the fraction of swarmalators that have executed
at least one full cycle in phase and position, after transients have
been discarded. Then γ is zero for the splintered phase wave, and
non-zero for the active phase wave. Using γ in concert with S±
then allows us to discern all the macroscopic states of our system
as illustrated in Fig. 6.

Stability analysis. To calculate the critical coupling strength Kc

at which the static async state loses stability, we consider per-
turbations η in density space defined by

ρ x; θ; tð Þ ¼ ρ0 x; θð Þ þ εη x; θ; tð Þ ð13Þ

where ρ0(x, θ, t)= (4π2)−1g1(r) is density in the static async state.
In Supplementary Note 2, we substitute this ansatz into the

continuity equation, expand η in a Fourier series,
ηðx; θ; tÞ ¼Pn¼0 bnðx; tÞeinθ þ c:c:, and derive evolution equa-
tions for the harmonics bn. We show the critical mode is b1(x, t)
(higher modes are zero, and the zeroth mode is stable) which
obeys

_b1ðx; tÞ ¼ � J
2
∇ρ0ðxÞ:

Z
~x � x
~x � xj j b1 ~x; tð Þ d~x

þ ðJ þ KÞ
2

ρ0ðxÞ
Z

1
~x � xj j b1 ~x; tð Þd~x:

ð14Þ

We next expand in an additional Fourier series:
b1ðr;ϕ; tÞ ¼

P1
m¼0 fmðr; tÞeimϕ þ c:c:. Substituting this ansatz

into (14) leads to a evolution equation for each mode fm(r, t). We
then set fmðr; tÞ ¼ eλmtcmðrÞ and derive the following eigenvalue
equation:

λmcmðrÞ ¼
Z R

0
Hmðr; sÞcmðsÞsds ð15Þ

where R is the radius of the support of the density in the static
async state. We focus first on the zeroth mode f0 for which we can
compute H0(r, s) analytically:

λ0c0ðrÞ ¼
Z R

0
H0ðr; sÞc0ðsÞsds; ð16Þ

H0ðr; sÞ ¼ J r2 � s2ð Þg′ðrÞ þ 2rgðrÞðJ þ KÞ
4π2rðr þ sÞ K 4rs

ðr þ sÞ2
 !

þ Jðr þ sÞg′ðrÞ
4π2r

E 4rs

ðr þ sÞ2
 ! ð17Þ

where K; E are the complete elliptic integral of the first
and second kinds. We were unable to solve (16) for λ0
analytically. Instead, we found it numerically by approximating
the integral using Gaussian quadrature. This reduces (16) to
the form λ′ci=Mijcj where Mij=H0(ri, rj)wj, wj are Gaussian
quadrature weights, ri ¼ i � ðR=N′Þ and i= 1…N′. The eigenva-
lues λ′0 N′ð Þ of Mij, which depend on the number of grid points N′
used in the quadrature, then approximate λ0.

The eigenvalues λ′0 N′ð Þ have unexpected properties. The
real part of the most unstable eigenvalue, denoted λ�′0 N′ð Þ, is
positive for all J, K. This tells us that f0 is always unstable, which
in turn tells us that the static async state is always unstable!
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Fig. 5 Non-stationary states. Simulation were run for N= 1000 swarmalators for T= 1000 time units and stepsize dt= 0.1. In all cases, swarmalators were
initially placed in a box of length 2 uniformly at random, while their phases were drawn from [−π, π]. a Splintered phase wave (J, K)= (1, −0.1). Note, there
is a long transient until this state is achieved. See Supplementary Movie 4. b Active phase wave (J, K)= (1, −0.75). See Supplementary Movie 5
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In Fig. 7 we plot λ�′0 N′ð Þ vs. K for J= 0.5 and N′= 200 grid points.
As can be seen it is small but positive for sufficiently negative K.
Note however that there is a transition-like point K�

0 � �0:5
beyond which λ�′0 N′ð Þ increases sharply. Figure 7 also shows
λ�′m N′ð Þ for m= 1, 2, 3, 4, which have the same behavior as
λ�′0 N′ð Þ: they are small but positive for K<K�

m, and grow sharply
for K>K�

m.
Small but positive eigenvalues for K<K�

m were a surprise.
We were expecting them to be negative, since simulations
show the static async state is stable. We were thus suspicious
of these results, and doubted the accuracy of the approximation
λ�′0 N′ð Þ to the true λ�0. We therefore repeated the calculation
for different values of N′ up to N′= 1600 in Supplementary
Note 2. Contrary to our expectations, we found that while the
λ�′m N′ð Þ got smaller, they consistently remained positive for
K<K�

m.
We also crudely investigated the N′ → ∞ limit in two ways:

first, by fitting our data to curves of the form a + b(N′)c and
second, by using Richardson extrapolation. Due to the small
magnitudes of the λ�′m N′ð Þ however, the results were rather
unconvincing. Typical values for the best fit parameter a, which
represents the limiting behavior of λ�m, were a � 10�6. The
confidence interval for this parameter also contained positive and
negative values. On top of that, the approximations from the first
and second methods gave inconsistent results. Hence we were
unable to reliably determine the sign of λ�′m when K<K�

m and N′→
∞, which preventing us from accurately ascertaining the stability
of the static async state. We restate however that the fact that
λ�′m>0 for the large but finite value of N′ we used is significant
evidence that the unanticipated instability of the static async state
is genuine.

While a rigorous determination of the sign of λ�′m when K<K�
m

remains elusive, our analysis certifiably shows its magnitude
is very small. Hence, whatever the stability or instability of the
m-th mode fm turns out to be, it must be weak. In turn,
then, the static async state has weak stability properties for
K< Kc, where Kc ¼ minmK�

m (i.e., at the point the most
unstable fm loses stability). To find this Kc we look for the least

stable mode. In Fig. 7 we see the f1 becomes unstable first. There
are of course an infinite number of modes, but as can be seen, λ�m
appears to decrease with increasing m. Thus we assume
minmK�

m ¼ 1. In Supplementary Note 2, we approximate
K�
1 ¼ argmax d2λ�′1

dK2 , calculate it for different J, and find the
following linear relation:

Kc � �1:2J: ð18Þ

Summarizing our main result: in the continuum limit
N → ∞, the static async state is unstable for K> Kc, and
either weakly stable, neutrally stable, or weakly unstable for
K< Kc. Further, numerical evidence suggests that the third
option, weakly unstable, is the most likely. While this result is
perhaps unsatisfying from a technical perspective, in practice
it has utility. For example as shown in Fig. 1, the approximation
(18) for Kc agrees reasonably well with finite N simulations.

Genericity. Our analysis so far has been for the instance (3), (4),
of the model defined by (1), (2). This begs the question of whe-
ther the phenomena we found are generic to the model, or spe-
cific to this instance of the model. To answer this question, we ran
simulations for different choices of the functions Irep, Iatt and G;
see Supplementary Note 4.

In all but one case, we found the same phenomena. The
exception is when a linear attraction kernel Iatt(x)= x is used.
Here we found new states, which we call ‘non-stationary phase
waves’. They are similar to the active phase wave, except now the
phase Ψ± of the order parameterW± begins to rotate, reminiscent
of the traveling wave states found in the Kuramoto model with
distributed coupling strengths53,54. We further discuss this and
other properties in Supplementary Note 4.

Noise and disordered natural frequencies. The swarmalators
previously considered were identical and noiseless. We now relax
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Fig. 7 Spectrum. The real part of the most unstable eigenvalue, λ�′m , of the
first five modes fm calculated from Eq. (15) for J= 0.5. Notice that they are
all is positive for all K. Each λ�′m was calculated by approximating the integral
of the R.H.S. of (15) using Gaussian quadrature with N′= 200 grid
points and diagonalizing the resulting matrix. The upper limit of integration
R= 1.15 was measured from simulations. The radial density g(r) was
determined numerically as discussed in Supplementary Note 1. The kernels
Hm in Eq. (15) for m> 1 were calculated numerically. The dashed line marks
the approximation to the critical coupling strength (18)
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Fig. 8 Order parameter with disorder. Asymptotic behavior of order
parameter S=max(S+, S−) vs. K for J= 0.5 and different amounts of
disorder as quantified by the width of the distribution of natural frequencies
σ and the noise strengths, Dθ, Dx, and Dy. As can be seen, greater amount of
disorder stabilize the async state, as indicated by −Kc becoming smaller and
smaller. Note also the disappearance of the dip in the S(K) curve, which
tells us the splintered phase wave state does not exist in the presence of
noise of this strength. Simulations were run for N= 500 swarmalators
using Heun’s method for T= 1000 time units with stepsize dt= 0.01, the
first half of which were discarded. Each data point represents the average of
10 realizations
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these idealizations. Then the governing equations are

_xi ¼ 1
N

XN
j≠i

xj � xi
xj � xi
�� �� 1þ J cos θj � θi

� �� �� xj � xi

xj � xi
�� ��2

" #
þ ξxi ðtÞ;

ð19Þ

_θi ¼ ωi þ K
N

XN
j≠i

sin θj � θi
� �
xj � xi
�� �� þ ηiðtÞ; ð20Þ

where ωi are random variables drawn from a Lorentzian
gðωÞ ¼ ðσ=πÞ ðω� μÞ2 þ σ2

� ��1
. By a change of frame we set

μ= 0, leaving just σ, which quantifies the strength of the disorder.
We choose white noise variables ηi(t) and ξxi ðtÞ with zero
mean and strengths Dx, Dy, Dθ characterized by
hξxi ðtÞξxj ðt′Þi ¼ 2Dxδijδðt � t′Þ, etc.

Simulations show that when just phase noise Dθ is turned on,
noisy versions of all the states are realized. The splintered phase
wave however degenerates into the active phase wave for all but
the smallest noise Dθ≳ 10−3. In the remaining states, the spatial
densities remain compact supported with the same radii, except
now the swarmalators have noisy phase motion (this induces
some spatial movement, which disappears when N → ∞ as we
show in Supplementary Note 3). Hence the following states,
where we have swapped the descriptor ‘static’ with ‘noisy’, are
robustly realized when Dθ> 0: noisy phase wave, active phase
wave, noisy async.

Frequency disorder σ> 0 has a more serious effect. Since
g(ω) is symmetric about zero, there are equal numbers of
swarmalators with oppositely signed natural frequencies. This
turns the static/noisy phase wave into the active phase wave, in

the sense that counter-rotating groups develop. This is not seen in
the async state. Here, there are noisy spatial movements which
vanish as N→∞, as in the noisy async state. In contrast however,
the swarmalators execute noisy, but full, phase cycles. To
highlight this distinction, we rename the state the active async
state. The states realized are then the active phase wave and the
active async.

Finally spatial noise Dx, Dy> 0 simply blurs the spatial
densities of the states. No other phenomena are induced. Hence
when Dθ, σ, Dx, Dy> 0, we again get the active phase wave and
active async states.

In Fig. 8 we plot the order parameter S(K) for different
amounts of noise and frequency disorder. As for the original
model, S simply declines to zero as K is decreased, with the noise
and disordered frequencies changing just the shape of the curves
and the value of Kc. Note the disappearance of the dip in S for
small K, which indicates the absence of the splintered phase wave
state. Note also we do not plot the second order parameter γ
which discerns the splintered phase wave since this state does not
robustly exist when σ, Dθ≠ 0.

Swarmalators in 3D. So far we have considered swarmalators
moving in two dimensions. While there are physical systems
where this approximation is valid, such as certain active colloids55

or sperm, which are often attracted to two-dimensional sur-
faces56, this restriction was mostly for mathematical convenience.
Here we explore the more physically realistic case of motion in
three spatial dimensions (in Supplementary Note 6 we also
explore motion in one dimension). For simplicity we consider the
case of identical swarmalators with no noise, although we relax
these idealizations in Supplementary Note 5. Our system is then

_xi ¼ 1
N

XN
j≠i

xj � xi
xj � xi
�� �� 1þ J cos θj � θi

� �� �� xj � xi

xj � xi
�� ��3

" #
; ð21Þ

_θi ¼ K
N

XN
j≠i

sin θj � θi
� �
xj � xi
�� �� ; ð22Þ

where xi= (xi, yi, zi). These are the same as Eqs. (3) and (4),
except the exponent of the hard shell repulsion is now 3 (we
choose this because it yields simple formulas for the radii of
certain states).

Simulations show that analogs of the states found in 2D are
realized. We show these as scatter plots in the (x, y, z) plane in
Fig. 9. We also provide movies of the evolution to these states in
Supplementary Movies 9–12. The static sync and async states
become spheres (note we do not plot the static sync state due to
space limitations) as seen in panel (a). As in the 2D case, we can
calculate their radii when a linear attraction kernel is used,

Rsync ¼ ð1þ JÞ�1=3; ð23Þ

Rasync ¼ 1; ð24Þ

which agree with simulation as shown in Supplementary Note 5.
In panel (b) we show the static phase wave becomes a sphere

with a cylindrical hole through its center. The orientation of this
cylinder is determined by the initial conditions. The phase and
azimuthal angle ϕ ¼ tan�1ðy=xÞ are correlated in the same way
for each value of the polar angle α ¼ cos�1 z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p� �
(when the azimuthal and polar angles are measured relative to the
axis of the cylindrical hole). We show this more clearly in a
scatter plot in the (θ, ϕ) plane in Supplementary Note 5.
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Fig. 9 Scatter plots in 3D. Four states in the (x, y, z) plane, where the
swarmalators are colored according to their phase. Data were collected for
J= 0.5 and N= 1000 swarmalators for T= 5000 time units with stepsize
dt= 0.001 using Heun’s method. a Static async state for K= −1. b Static
phase wave for K= 0 c Splintered phase wave for K= −0.05. d Active
phase wave state for K= −0.6. Supplementary Movies 9–12 correspond to
panels a–d
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As in the 2D model, this correlation between ϕ and θ persists
for the splintered phase waves and active phase wave states as can
be seen in panels (c) and (d) of Fig. 9. The motion of the
swarmalators in these states are as before: in the splintered phase
wave they ‘quiver’, executing small oscillations in space and
phase, while in the active phase wave they execute full rotations
(note the spatial component of these rotations are in the
azimuthal direction ϕ̂ only, not in the polar direction α̂). In
Supplementary Note 5 we show how the order parameters S±, γ
can also be used to differentiate these 3D states.

Alignment and self-propulsion. Up to now we have considered
the trivial case of swarmalators that propel themselves with
constant magnitude and direction, in a manner uninfluenced by
their neighbors. This allowed us to set this term to zero via a
change of reference. In many real systems, however, such beha-
vior is unrealistic: individuals often adjust the direction of their
motion to align with that of their neighbors. Vicsek studied this
alignment effect in a seminal work29.

We here partially explore the effect of alignment on
swarmalator systems. Accordingly we endow each swarmalator
with an orientation β, which characterizes the direction of its self-
propulsion. The inclusion of alignment makes our model
complicated; there are now four state variables (x, y, θ, β) per
swarmalator, which could interact with each other in potentially
many ways. Furthermore, there are six parameters (J, K, σ, Dθ, Dx,
Dy), not to mention any additional parameters governing the
evolution of β. An exhaustive study of orientable swarmalators is
thus beyond the scope of the present work. Hence, we restrict
ourselves to checking if the states of our swarmalator system are
robust to the inclusion of simple alignment dynamics.

To this end, we study the simplest possible extension to our
current model: we choose Vicsek type interactions between x and
β, and leave β and the phase θ uncoupled (although they are
indirectly coupled through the position x). Our system then reads

_xi ¼ 1
N

XN
j≠i

xj � xi
xj � xi
�� �� 1þ J cos θj � θi

� �� �� xj � xi

xj � xi
�� ��2

" #
þ ξxi ðtÞ þ v0n̂;

ð25Þ

_θi ¼ ωi þ K
N

XN
j≠i

sin θj � θi
� �
xj � xi
�� �� þ ηiðtÞ; ð26Þ

_βi ¼ �βi þ
1
Λij j
X
j2Λi

βj þ ζiðtÞ; ð27Þ

where n̂ ¼ cos β; sin βð Þ, Λi is the set of swarmalators within a
distance δ of the i-th swarmalator, and Λij j is the number of such
neighbors. The ζi(t) is a white noise variable with zero mean and
strength Dβ characterized by hζiðtÞζjðt′Þi ¼ 2Dβδij δðt � t′Þ.

Simulations show that for certain parameter values aligned
versions of all our states persist. We plot two of these in panels (a)
and (b) of Fig. 10, where each swarmalator is depicted as a
colored arrow, oriented according to β, and colored according to
phase. As can be seen the swarmalators are aligned, with their
space-phase distributions being the same as before. In contrast to
the original model, however, the center of mass of each
distribution now moves (in a direction determined by the initial
conditions). In this sense the states are mobile. They are however
equivalent to their static versions via a change of reference frame,
x → x + v0t. For larger Dβ, the unaligned versions of the same
states are realized, as illustrated in panels (c) and (d) of Fig. 10.

We have demonstrated that the phenomena of our system are
insensitive to the inclusion of simple alignment dynamics. We
restate however that we have not comprehensively explored the
space defined by the other parameters (J, K, σ, v0, Dx, Dy) given its
large size. Thus it remains to be seen if new states will be found.

Discussion
We have examined the collective dynamics of swarmalators.
These are mobile particles or agents with both phase and spatial
degrees of freedom, which lets them sync and swarm. Further-
more, their phase and spatial dynamics are coupled. By studying
simple models, we found this coupling leads to rich spatio-
temporal patterns which we explored analytically and numeri-
cally. These patterns were robust to modifications to the model,
namely motion in one, two, and three spatial dimensions, dis-
tributed natural frequencies, noisy interactions, and alignment
dynamics. We thus believe they could be realized in nature or
technology.

A pertinent future goal, then, is to investigate the behavior of
real-world systems of swarmalators. As mentioned in the intro-
duction, colloidal suspensions of magnetic particles42–44 or active
spinners45,46 are promising candidates. For example, structures
equivalent to the static phase wave state have been experimentally
realized by Snezhko and Aranson, when studying the behavior of
ferromagnetic colloids at liquid-liquid interfaces43 (the particles
comprising the colloids can be considered swarmalators if we
interpret the angle subtended by their magnetic dipole vectors as
their phase). As shown in Fig. 4 of ref. 43, the colloids can form
asters. These are structures composed of radial chains of mag-
netically ordered particles, which “decorate slopes of a self-
induced circular standing wave”43, analogous to the annular
pattern of correlated phases and positions of the static phase wave
shown in Fig. 2c.

Perhaps colloidal equivalents of the splintered and active phase
wave states could also be realized. Aside from being theoretically
interesting, the ability to engineer these states could have practical
application. For instance, Snezhko and Aranson also show that
asters can be manipulated to capture and transport target parti-
cles. The non-stationary behavior of the splintered and active
wave states might also have locomotive utility. Tentative evidence
for this claim is provided by populations of cilia, whose collective
metachronal waves, similar to the motion of swarmalators in the
aforementioned states, are known to facilitate biological
transport57–59.

Other plausible systems of real-world swarmalators are biolo-
gical microswimmers, self-propelled micro-organisms capable of
collective behavior60. One such contender is populations of
spermatoza, which exhibit rich swarming behavior such as
trains61,62 and vortex arrays52, the latter of which is reminiscent
of the active phase wave state, as mentioned in the Results section.
The phase variable for each sperm is associated with the rhythmic
beating of the sperm’s tail, which can synchronize with that of a
neighboring sperm63,64. It has been theorized that this can induce
spatial attraction65, leading to clusters of synchronized sperm,
consistent with experimentally observed behavior66.

There are also theoretical avenues to explore within our pro-
posed model of swarmalators. For instance the curious stability
properties of the static async state deserve further study. Another
route would be to include more realism by including hetero-
geneity in the coupling parameters K, J, or by choosing more
complicated interaction functions Iatt, Irep, G, Hatt. For example
we chose Hatt(θ)= sin(θ) to mimic the Kuramoto model, but as
we saw, it led to just the trivial static sync state when K> 0.
Perhaps choosing the more realistic Winfree model for the phase
dynamics, which gives rise to richer collective behavior, would
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lead to more interesting swarmalator phenomena in this para-
meter regime.

Perhaps the most important direction for future work is to
more fully explore the interplay among aggregation, alignment,
and synchronization—or put another way, to explore the collec-
tive behavior of particles with a position x, an orientation β, and
an internal phase θ. The primary goal of our work is to draw
attention to this class of problems, which we believe define a wide
landscape of emergent behavior. In this work, we have started to
map out this landscape by studying a simple model that contains
a subset of these three effects, namely aggregation and
synchronization.

Others have considered the remaining subsets. For example,
Leon and Liverpool have explored the interaction between
alignment and synchronization67. They introduced a new class of
soft active fluids whose units have an orientation and phase. They
found this mixture can either enhance or inhibit the transition
from disordered states to states with polar order. The latter states
are roughly similar to the aligned static async states. They also
found transitions from disordered states to states with phase
order, which are analogous to unaligned static sync states. Yet
counterparts of the static, splintered, and active phase waves were
not reported.

The final combination, aggregation and alignment, is perhaps
the most well studied, in both new models and old. For instance,
Starnini et al.68 recently introduced a model of mobile particles
capable of aggregating and aligning their opinions, and found the
emergence of echo chambers. Even in the classic Vicsek model

and its numerous extensions, new phenomena are still being
found. For instance, Kruk et al.69 found that delayed alignment in
the Vicsek model produces self-propelled chimeras; perhaps
delayed phase interactions could lead to similar states for swar-
malators. Liebchen and Levis70 considered units with an intrinsic
rotation, and found ‘phase separated droplets’: clusters of
rotation-synchronized particles surrounded by a sea of incoherent
particles (multiple droplets are also possible). These droplets are
similar to our static sync states, but they differ in the crucial
respect that the entire population is synchronized in our static
sync state. Here too, the counterparts of our static, splintered, and
active phase waves were not seen.

Thus, to the best of our knowledge, no other models display
states analogous to the splintered phase waves and active phase
waves found in our swarmalator model. In that sense, those two
states are unprecedented.

Methods
Properties of static sync and async state. We here use techniques used by
Fetecau et al.50 when studying swarm dynamics to study the static sync and static
async states with a linear attraction kernel Iatt(x)= x is used. We start with the
async state whose density is

ρðr;ϕ; θ; tÞ ¼ 1
4π2

g1ðrÞ; 0 � r � R: ð28Þ

We wish to solve for the radial density g1(r) and the radius R of its support. In this
state the swarmalators are at rest and their phases are unchanging, so v � 0, where
v ¼ vx ; vy ; vθ

� �
. As we will show, it is also useful to consider the divergence of the

velocity, which must also be zero (from the continuity equation for the con-
servation of swarmalators, and by applying the assumptions that the density for the
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Fig. 10 Scatter plots with alignment. Four states in the (x, y) plane where the swarmalators are depicted as colored arrows, whose orientation represents β,
and whose color represents the phase θ. Data were collected for N= 300 swarmalators for T= 5000 time units with stepsize dt= 0.01 using Heun’s
method. In each panel, parameter values were J= δ= 0.5, σ= Dθ= Dβ= 0.01, Dx= Dy= 0 and v0= 0.001. a Aligned active async for (K, Dβ)= (−1.0, 0.01). b
Aligned noisy phase wave for (K, Dβ)= (−0.1, 0.01). c Unaligned active async for (K, Dβ)= (−1.0, 1.0). d Unaligned noisy phase wave for (K, Dβ)= (−0.1, 1.0)
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static async state is stationary and the velocity is zero). This gives us a pair of
simultaneous equations,

v � 0; ð29Þ

∇ � v � 0: ð30Þ

We begin with divergence term given by (30). In Cartesian coordinates the velocity
reads

vxðx; θ; tÞ ¼
Z

~x � xð Þ 1þ J cos ~θ � θ
� �� �� ~x � x

~x � xj j2

 �

ρ ~x; ~θ; t
� �

d~xd~θ; ð31Þ

vθðx; θ; tÞ ¼
Z

sin ~θ � θ
� �
~x � xj j ρ ~x; ~θ; t

� �
d~x d~θ: ð32Þ

The divergence has a spatial and phase component: ∇ � v ¼ ∇x � vx þ ∂θvθ . The
phase component ∂θvθ is trivially zero, since the swarmalators’ phases are uni-
formly distributed in phase in the static async state. We find the spatial component
by applying ∇x to (31):

∇x � vx ¼
Z

� 2 1þ J cos ~θ � θ
� �� �

ρ ~x; ~θ; t
� �

d~xd~θ ð33Þ

þ2πδ ~x � xð Þρ ~x; ~θ; t
� �

d~xd~θ: ð34Þ

Here we have used the identity (expressed most cleanly in Cartesian coordinates)

∇x � ~x � x

~x � xj j2 ¼ �2πδ ~x � xð Þ: ð35Þ

Simplifying this, and substituting ∂θvθ= 0 gives the full divergence

∇ � v ¼ 2πρðx; θÞ � 2
Z

1þ J cos ~θ � θ
� �� �

ρ ~x; ~θ; t
� �

d~x d~θ: ð36Þ

By (30) we require this to be zero, which gives a self-consistent equation for ρ:

ρðx; θ; tÞ ¼ 1
π

Z
1þ J cos ~θ � θ

� �� �
ρ ~x; ~θ; t
� �

d~x d~θ: ð37Þ

Finally substituting the ansatz given by (28) into this and performing the inte-
gration over ϕ gives

g1ðrÞ ¼ 2
Z R

0
g1 ~rð Þ~r d~r ¼ M ¼ const: ð38Þ

This tells us ρ is constant inside a disc of radius R. The radius R can be determined
via self-consistency: M ¼ R R0 rgðrÞdr ¼ R R0 rMdr ) R ¼ 1. By normalizing ρ as
per (28) we find M= 1 which means g(r)= 2. Putting this all together gives

ρasyncðr;ϕ; θ; tÞ ¼
1
2π2

; 0 � r � Rasync ð39Þ

Rasync ¼ 1: ð40Þ

We must now check if the solutions given by (39) and (40) imply v � 0 as required
by (29). We do this in Cartesian coordinates, in which

ρðx; θ; tÞ ¼ 1
πR2

δ θ � θ0ð Þ; xj j � R; ð41Þ

where θ0 is the final, common phase of each swarmalator. Substituting this into
Eqs. (31) and (32) for vx, vθ and performing the integration gives

vxðx; θ; tÞ ¼ 1
4πR2

R2 � 1þ J cos θ � θ0ð Þ½ 	� �
x; ð42Þ

vθðx; θ; tÞ ¼ 0; ð43Þ

where we have used the identityZ
exj j<R ~x � x

~x � xj j2 ¼ πx; xj j<R: ð44Þ

We see that vx= 0 at θ = θ0 if R= 1, as required. Hence we have shown that the
solutions (39), (40) satisfy Eqs. (29) and (30).

Carrying out the same analysis for the static sync state leads to

ρsyncðr;ϕ; θ; tÞ ¼
1
π2

δ θ � θ0ð Þ; 0 � r � Rsync ð45Þ

Rsync ¼ ð1þ JÞ�1=2; ð46Þ

where θ0 is the final common phase of the swarmalators in the static sync state.

Properties of static phase wave state. Here we calculate the density of swar-
malators, and inner and outer radii R1, R2 of the annulus, in the static phase wave
state, when a linear attraction kernel is used.

The calculation is the same as for the static sync and async states: we assert

v � 0; ð47Þ

∇ � v � 0: ð48Þ

The density of the static phase wave state is

ρðr;ϕ; θ; tÞ ¼ ð2πÞ�1g2ðrÞδðϕ� θÞ; R1<r<R2: ð49Þ

We first calculate the divergence, which in polar coordinates is given by

∇ � v ¼ 1
r
∂ rvrð Þ
∂r

þ ∂ rvϕ
� �
∂ϕ

þ ∂vθ
∂θ

: ð50Þ

The velocity v ¼ vr ; vϕ; vθ
� �

is given by

vr ¼ R ~r cos ~ϕ� ϕ
� �� r

� �
1þ J cos ~θ � θ

� ��
� 1

~r2�2r~rcos ~ϕ�ϕð Þþr2

�
ρ ~r; ~ϕ; ~θ
� �

~r d~r d~ϕ d~θ;
ð51Þ

vϕ ¼ R~r sin ~ϕ� ϕ
� �

1þ J cos ~θ � θ
� ��

� 1
~r2�2r~r cos ~ϕ�ϕð Þþr2

�
ρ ~r; ~ϕ; ~θ
� �

~r d~r d~ϕ d~θ;
ð52Þ

vθ ¼
Z

sin ~θ � θ
� �

~r2 � 2r~r cos ~ϕ� ϕ
� �þ r2

ρ ~r; ~ϕ; ~θ
� �

~rd~r d~ϕ d~θ: ð53Þ

Taking the derivatives on these, plugging in Eq. (49) for ρ, and substituting the
result into (50), gives

∇ � v ¼ �2þ g2ðrÞ þ J
2r

Z R2

R1

~r2g2ð~rÞd~r: ð54Þ

Setting this to zero, we see g2(r) satisfies

g2ðrÞ ¼ 2� J
2r

Z R2

R1

~r2g2ð~rÞd~r; ð55Þ

which means it can be determined self-consistently in terms of R1 and R2. The
result is

g2ðrÞ ¼ 1� ΓJ

r
; R1 � r � R2 ð56Þ

with ΓJ ¼ 2J R3
2 � R3

1

� �
3J R2

2 � R2
1

� �þ 12
� ��1

.
Next we use the result (56) in v ¼ 0 to compute the inner and outer radii R1, R2.

We first evaluate vr by substituting (56) into (51). Performing the integration we
get

vrðrÞ ¼ Cr þ D
r

ð57Þ

with

C ¼ �R2
1 þ

4JR1 R3
2 � R3

1

� �
3J R2

2 � R2
1ð Þ þ 12

; ð58Þ

D ¼ 1þ R2 � R1

6
�6 R2 � R1ð Þ þ 8JR1 R3

2 � R3
1

� �
3J R2

2 � R2
1ð Þ þ 4

� 

: ð59Þ

Since v � 0, the coefficients C, D must be zero. This yields two equations for R1, R2,
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with solutions

R1 ¼ ΔJ
� ffiffiffi

3
p

J � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 5J

p ffiffiffiffiffiffiffiffiffiffi
J þ 4

p þ 12
ffiffiffi
3

p

12J
; ð60Þ

R2 ¼ ΔJ

2
ffiffiffi
3

p ; ð61Þ

with

ΔJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3J � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36� 15J
p ffiffiffiffiffiffiffiffiffiffi

J þ 4
p � 12

J � 2

s
ð62Þ

and small-J expansion given by

R1 ¼ J
3
þ O J2

� �
; ð63Þ

R2 ¼ 1þ J
6
þ O J2

� �
: ð64Þ

Data availability. The data that support the findings of this study (simulation
source code and figure raw data) are available from the author K.P.O.K. upon
request.
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