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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the
coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell
attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD),
part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug
repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for
COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay
and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the
high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three
compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an
effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction
assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy
of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these
compounds in the RBD. In light of these findings, the screening system described herein can be
applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.

Keywords: SARS-CoV-2; COVID-19; drug repurposing; spike protein; receptor binding domain
(RBD); angiotensin-converting enzyme 2 (ACE2), high-throughput screening; small molecule in-
hibitors (SMIs)

1. Introduction

Coronavirus disease 2019 (COVID-19) is a worldwide pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has
infected over 150 million people, and over 3 million deaths have been reported [1]. The
emergence of COVID-19 has prompted a global effort to develop vaccines and drugs for
prevention and treatment. These efforts have led to the development of vaccines, several of
which are being administered worldwide under emergency use authorization [2–4]. How-
ever, only a few therapeutics (Remdesivir and monoclonal antibodies) are available under
emergency-use or conditional marketing authorization by the American and European
regulatory authorities [5–7].

SARS-CoV-2 infects host cells via the binding of its spike glycoprotein (S) to human
angiotensin-converting enzyme 2 (ACE2) on target cell surfaces [8,9]. The spike protein is
composed of two functional subunits, S1 and S2. S1 includes the ACE2 binding domain
(RBD), and the S2 subunit mediates the fusion of the virus to the infected cell membrane [9].
Due to its pivotal role in the virus infection process, the spike and, specifically, the RBD are

Molecules 2021, 26, 3213. https://doi.org/10.3390/molecules26113213 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-3249-4901
https://www.mdpi.com/article/10.3390/molecules26113213?type=check_update&version=1
https://doi.org/10.3390/molecules26113213
https://doi.org/10.3390/molecules26113213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26113213
https://www.mdpi.com/journal/molecules


Molecules 2021, 26, 3213 2 of 12

major targets for generating vaccines and antibodies aiming to block the ACE2–spike inter-
action [2–4]. However, drug development, optimization, manufacturing, and preclinical
and clinical studies are time consuming [10]. Alternatively, repurposing approved drugs
for treating COVID-19 can potentially promote rapid and safe therapy [11,12].

An efficient strategy for drug repurposing is the high-throughput screening of drug
libraries. Recent library screening studies have reported the discovery of several SARS-
CoV-2 replication inhibitors [13] and compounds that target host proteins and exhibit
antiviral activity by interfering with their interaction with viral proteins [14]. However, no
compounds that can inhibit the RBD-ACE2 interaction have been found in these reports.
Potential RBD-ACE2 inhibitors have been predicted in several in silico library screening
studies only [15–17]. The addition of an in vitro screen of drug libraries can promote the
discovery of potent inhibitors of the RBD-ACE2 interaction by gaining a functional layer
of data.

The urgent need for a treatment prompted us to screen for approved drugs and well-
known pharmaceutically active compounds to discover potential inhibitors of SARS-CoV-2
cell attachment in this study. To this end, an in vitro RBD-ACE2 binding assay was estab-
lished and used to discover inhibitors of the interaction via the high-throughput screening
of two compound libraries. One library, LOPAC®1280, contains 1280 pharmaceutically
active compounds, and the other, DiscoveryProbeTM, contains 1363 FDA-approved drugs.
We report herein the identification of three compounds (heparin sodium, aurintricarboxylic
acid (ATA), and ellagic acid) that exhibit high inhibition activities. A plaque reduction
assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition
efficacy of heparin sodium and ATA. A possible mechanism via molecular docking to the
RBD is described.

2. Results
2.1. Experimental Design

The identification of compounds that inhibit the binding of RBD to ACE2 was carried
out by high-throughput screening of the LOPAC®1280 and DiscoveryProbeTM libraries
using an assay designed to specifically measure the RBD-ACE2 interaction. This assay
consisted of the SARS-CoV-2 receptor ACE2 adsorbed to 96-well plates and soluble hFc-
RBD (Figure 1). The first step of the assay included preincubation of hFc-RBD with the
tested compounds. The second step included incubation of the mixtures with the adsorbed
ACE2. Finally, following a washing step, the RBD-ACE2 interaction was quantified by the
addition of a detecting alkaline phosphatase-conjugated goat anti-human-Fc antibody. In
the presence of a compound that could interfere with the RBD-ACE2 interaction, a lower
signal was obtained. The hit compounds were further verified for their inhibitory effect by
a plaque reduction assay conducted in Vero E6 cells with a surrogate virus (rVSV-SARS-
CoV-2-S) expressing the SAR-CoV-2 spike protein.
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was incubated with Fc-RBD (1 µg/mL) for 1 h at 25 ◦C. Following incubation, mixtures were added
to the ACE2-coated plates and incubated for 1 h at 37 ◦C. After washing, the plates were incubated
for 1 h at 37 ◦C with the alkaline phosphatase-conjugated goat anti-human Fc fragment. The plates
were then washed, and a colorimetric reaction was developed by the addition of pNPP (measured at
405 nm). Left panel: a maximum signal of an uninterrupted RBD-ACE2 interaction was obtained in
the presence of noninhibitory compounds. Right panel: a reduced signal of an inhibited RBD-ACE2
interaction was obtained in the presence of inhibitory compounds.

2.2. Screening the LOPAC®1280 and DiscoveryProbeTM Libraries for RBD-ACE2
Binding Inhibitors

The developed binding assay was used to screen two compound libraries for inhibitors
of the RBD-ACE2 interaction. The relative binding in the presence of the tested compound
(10 µM) was calculated by dividing the absorbance of the compound-containing well by
that of the no-compound control wells (Figure 2A). The z-prime parameter of the screened
plates, indicating the quality and power of the screening assay, was in the high acceptable
range values (0.65–0.97) (Figure 2B).
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Figure 2. High-throughput screening of the LOPAC®1280 and DiscoveryProbeTM compound libraries
for inhibitors of the RBD-ACE2 interaction. Each compound was tested at 10 µM. (A) Distribution
of the relative RBD-ACE2 binding values in the presence of the compounds. (B) Distribution
of the Z-prime values of each plate. The purple and blue dots correspond to LOPAC®1280 and
DiscoveryProbeTM, respectively.

Applying an initial threshold of >40% inhibition (relative binding lower than 60%,
Figure 2A) resulted in the selection of 30 and 22 compounds from the LOPAC®1280 and
DiscoveryProbeTM libraries, respectively. These hits were reassayed, and three molecules—
heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid—exhibiting a binding
inhibition above 60% were further analyzed at different concentrations to determine
their 50% inhibitory concentration (IC50) values. The three compounds displayed typ-
ical dose–response curves (Figure 3 and Table 1). ATA yielded the most potent IC50 value
(0.6 µg/mL), followed by ellagic acid (2.5 µg/mL) and heparin sodium (5.5 µg/mL). The
maximal binding inhibition of ATA and ellagic acid was ~80%, whereas heparin sodium
exhibited a 63% inhibition.
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2.3. Evaluation of the Selected Compounds by a Plaque Reduction Assay

The efficacy of the three identified molecules, heparin sodium, ATA, and ellagic
acid, was further assessed by a plaque reduction assay conducted in Vero E6 cells using
a SARS-CoV-2 surrogate virus (rVSV-SARS-CoV-2-S). The virus was preincubated with
various concentrations of each molecule to ensure that potential interactions between the
compounds and RBD would occur prior to RBD-ACE2 interaction. The mixtures were then
added to cells in six-well plates for 72 h. The relative reduction in plaque formation was
calculated, and IC50 was determined (Figure 4). ATA and heparin sodium displayed potent
antiviral inhibition activities in cells (IC50 values of 5.6 and 73 µg/mL, respectively). For
both compounds, the IC50 values determined using the plaque reduction assay were an
order of magnitude higher than those determined using the binding assay, maintaining
their relative ranking. A dose–response curve for ellagic acid could not be established,
as concentrations in the range of 1–120 µg/mL of this compound did not inhibit rVSV-
SARS-CoV-2-S infection in Vero E6 cells. These results demonstrate that ATA and heparin
sodium are able to exert potent inhibition of viral infection, presumably by hindering the
binding of the spike to cellular ACE2. To rule out a possible reduction in plaque formation
due to cytotoxicity, the effect of the compounds at the highest tested concentrations on
cell viability was evaluated using alamarBlue reagent, by comparing the viability of cells
incubated with the compound to the viability of cells incubated only with media. None of
the tested compounds were cytotoxic as the cell viability percentages following incubation
with 120 µg/mL of ellagic acid, 169 µg/mL of ATA, and 650 µg/mL of heparin sodium
were 106%, 102%, and 97%, respectively.
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were then added to Vero E6 cells and incubated for 72 h. Cells were then stained using crystal violet,
and the relative plaque reduction was determined. The results are expressed as the percent inhibition
relative to that of the virus-only control incubated with the corresponding solvent (infection medium
without or with 2% DMSO for heparin sodium or ATA, respectively). The values are presented as the
mean of 6-well replicates ± SD. The lower images are three representative wells with the indicated
compound concentrations.

2.4. Molecular Docking Analysis

Molecular docking was conducted to suggest a mechanism underlying the inhibition
of the RBD-ACE2 interaction by ATA and heparin sodium (Figure 5). Molecular docking
was based on the published crystal structure of the RBD-ACE2 complex (resolution of
2.45 Å) [18]. The compounds were allowed to freely dock to the receptor binding motif
(RBM)—the ACE2 binding site within the RBD [19]. The RBM spans amino acids 437 to
507 and forms a concave surface that interacts with ACE2. The compounds were docked to
the concave surface of the RBM, implying that their binding to the RBD may disrupt the
interaction with ACE2. The calculated Gibbs free energy (∆G) values for the interaction of
the compounds with the RBD were −8.9 and −7.05 kCal/mL for heparin sodium and ATA,
respectively. The predicted binding site for heparin included Tyr505, which participates in
the interaction of the RBD with ACE2. The predicted binding site for ATA was at a more
pivotal location as, in addition to Tyr505, it includes Tyr449, Tyr453, Gln493, Gln498, and
Asn501, found at the RBD-ACE2 interface.
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Figure 5. A docking model of the binding of heparin sodium and ATA to the RBD. (A) RBD-ACE2
interaction (pdb code 6M0J). The RBD forms a concave surface with a protruding loop on one side, to
which ACE2 binds (ACE2 is colored in light blue and is shown in a ribbon presentation; RBD is shown
in surface (gold colored) and ribbon (red colored) representations). Heparin sodium (one disaccharide
unit) and ATA were docked to the RBM using the SwissDock server [20]. The compounds are shown
in stick representation, where oxygen, sulfur, and hydrogen are colored in red, yellow, and white,
respectively, and carbon atoms are colored in magenta for heparin sodium (B) and green for ATA (C).
The figure was prepared using UCSF Chimera [21].

3. Discussion

The global COVID-19 pandemic led to an urgent demand for developing vaccines
and effective treatments. In view of this need, drug repurposing is a rapid approach for
discovering beneficial COVID-19 therapeutics by using established drugs. Inhibiting the
RBD-ACE2 interaction, thereby preventing viral attachment to target cells, is used as an
approach to develop vaccines and therapeutics. The latter include antibodies, aptamers,
peptides, and specific small-molecule inhibitors (SMIs) [22–28]. One effective and rapid
strategy for discovering inhibitors is by screening compound libraries, as was recently ap-
plied to find new therapeutics for COVID-19. For example, Gordon et al. identified 332 new
SARS-CoV-2-human protein–protein interactions and found two sets of pharmacological
agents that displayed antiviral activity [14]. In another study, the ReFRAME (repurposing,
focused rescue, and accelerated medchem) drug library was screened for inhibitors of viral
replication, and 100 molecules, including 21 known drugs, were found [13]. However,
no compound was associated with blocking the RBD-ACE2 interaction in either report.
Screening for inhibitors, particularly SMIs, that can potentially hamper RBD-ACE2 binding
has been reported in several in silico studies. Choudhary et al. identified five potential
SARS-CoV-2 cell entry inhibitors that were shown to virtually bind the spike protein [15].
Wu et al. analyzed therapeutic targets in SARS-CoV-2 and virtually screened several
compound databases for the inhibition of these targets. One compound (hesperidin) was
suggested to bind the binding interface between the spike and ACE2 [17]. In the study
of Wang et al., eight common types of potential inhibitor structures were outlined by ap-
plying a computational screening strategy based on blocking S RBD/hACE2 binding [16].
Despite the advantages of the in silico screening approach, the in vitro screening of drug
libraries can add a functional level to the process, further promoting the discovery of potent
inhibitors of the RBD-ACE2 interaction.

In the current study, a new binding assay was developed and used to screen two drug
libraries for inhibitors that interfere with the RBD-ACE2 interaction. Three compounds
that inhibited over 60% of the interaction were selected. Two compounds, heparin sodium
and ellagic acid, are FDA-approved drugs. In addition to its anticoagulant activity, hep-
arin has previously been found to inhibit infection by several viruses, including human
immunodeficiency virus (HIV), coronavirus NL63, and Zika virus [29–31]. In line with
our screening results, it has recently been shown that the spike protein of SARS-CoV-2



Molecules 2021, 26, 3213 7 of 12

strongly binds immobilized heparin [32]. A docking analysis suggested putative heparin
(and other glycosaminoglycans) binding motifs in the RBD when it is in an open conforma-
tion [32]. Interestingly, Clausen et al. [33] provided evidence that heparan sulfate, a cell
membrane glycosaminoglycan, shifts the RBD to an open conformation to facilitate ACE2
binding. Additionally, it was suggested in their work that heparin could inhibit the role
of heparan sulfate as a coreceptor for SARS-CoV-2 infection [33]. Most recently, heparin
was found to inhibit SARS-CoV-2 infection in Vero cells [34]. The fact that heparin was
specifically identified by the screening assay as a potent inhibitor strongly supports the
reliability of the assay developed and applied herein for discovering effective compounds
capable of directly blocking the RBD-ACE2 interaction. It is important to note that in an
unrelated manner to SARS-CoV-2 inhibition, heparin is administered as an anticoagulant
to COVID-19 patients suffering from coagulopathy and thromboembolism [35]. Thus, it
appears that heparin is able to exert a beneficial synergistic effect in treating COVID-19
patients based on two distinct mechanisms. The third inhibiting compound is ATA, a
polyanionic aromatic compound, which is recognized as a potent DNA topoisomerase II
inhibitor [36]. Additionally, ATA exhibits inhibitory properties against several viruses and
bacteria. Interestingly, among the viruses is the SARS coronavirus [37]. Other pathogens
include HIV-1 [38], influenza virus [39], Vaccinia [40], Zika virus [41], and Yersinia pestis [42].
Ellagic acid, a polyphenol, is an investigational drug used to treat cancer, cardiovascular
disease, and brain injury [43–54]. Similar to heparin and ATA, ellagic acid is also associated
with antiviral activity against various viruses [55–57]. Recently, ellagic acid was identified
by network analysis and molecular docking as a possible modulator of casein kinase II
subunit alpha, a host protein that may be involved in the pathology of SARS-CoV-2 [58].

The three hit compounds were further characterized for their ability to inhibit the
infection of Vero E6 cells by a pseudotyped virus expressing the SARS-CoV-2 spike protein
using a plaque reduction assay. Only ATA and heparin sodium preserved their inhibitory
activity in the cellular system. The IC50 values obtained in the cellular assay were an order
of magnitude higher than those obtained in the binding assay, and in both assays, ATA
demonstrated a higher inhibitory potency. Of note, the IC50 value obtained herein for
heparin sodium is in line with that described in a recent report for the inhibition of the
SARS-CoV-2 virus [34].

The ranking of IC50 values of ATA and heparin coincides with the results of the
docking analysis. The higher potency of ATA can be explained in light of the prediction
that ATA binds multiple residues of RBD at the interface of the RBD-ACE2 interaction,
whereas heparin binds only one residue. The docking analysis may also serve to predict the
binding of the identified compounds to SARS-CoV-2 variants. Of note, it has been reported
that Asn501 is a critical residue for ACE2 binding by the RBM of SARS-like viruses [19].
This residue, according to the docking model, is part of the binding site of ATA. In this
regard, several SARS-CoV-2 variants of concern listed by the CDC [59] (B.1.1.7, B.1.351, and
P.1) contain an Asn501Tyr mutation. Although it can be hypothesized that a mutation in
Asn501 might alter the binding of ATA to the RBD, the impact of the Asn501Tyr mutation on
the potency of ATA is yet unknown. In the case of heparin, the docking analysis predicted
that the binding site does not include residues mutated in the SARS-CoV-2 variants of
concern. This suggests that the heparin binding to RBD of SARS-CoV-2 variants may not
be altered.

No effective inhibition of the rVSV-SARS-CoV-2-S virus could be demonstrated in
Vero E6 cells by ellagic acid. It should be noted that the elimination of hit compounds
between the primary and secondary screens is a characteristic of the screening funnel.
However, we cannot rule out the possibility that, although ineffective in cells, ellagic acid
could still be potent in vivo. Eubanks et al., for example, reported that two botulinum toxin
inhibitors were effective in vivo even though they were ineffective in a cellular assay [60].
Further investigation is required to determine the inhibitory activity of ellagic acid against
SARS-CoV-2.
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In the absence of a specific anti-SARS-CoV-2 therapy, repurposing approved drugs
may be useful for treating COVID-19 [11,61]. The current study can expand the limited
drug toolkit by identifying approved drugs and pharmaceutically active compounds that
can potentially be repurposed to inhibit the viral cell attachment step. The results provide
a basis for further research with SARS-CoV-2 to evaluate the efficacy of hit compounds.
Future structure–activity research (SAR) may allow one to design modifications that en-
hance the affinity of the compounds, required to achieve improved therapeutic efficacy
and selectivity. Interestingly, as these drugs have been reported to counteract additional
viruses as well, they may serve as broad-spectrum antiviral therapeutics. These drugs can
also be considered for use in a combined administration to increase the treatment efficacy,
which may be further advantageous as their doses in a combined regimen can be reduced,
thus minimizing the risk of side effects. Moreover, the binding assay developed herein can
be applied for the high-throughput screening of additional compound libraries to facilitate
the discovery of additional potent compounds.

4. Materials and Methods
4.1. Expression and Purification of ACE2 and Fc-RBD

A synthetic gene encoding the peptidase domain of Homo sapiens ACE2 (amino acids
19-615, GenBank: BAB40370.1), with optimized codon usage for expression in Escherichia
coli and a C-terminal His-tag, was prepared by GenScript (Piscataway, NJ, USA) and cloned
into pET-9a between the NdeI and BamHI sites. The plasmid pET-9a-ace2 was transformed
into E. coli BL21(DE3). To express the protein, E. coli BL21(DE3)+pET-9a-ace2 was grown at
18 ◦C in TB media and was harvested after 40 h of incubation. To purify the protein, the cell
pellet was resuspended in binding buffer (20 mM of sodium phosphate, 0.5 M of NaCl, and
20 mM of imidazole; pH 7.4; 100 mL per 25 g of wet cells) and disrupted by three passages
in a cell homogenizer at 25 kPa (C series cell disruptor 1.1 KW, Constant Systems). The
cell extract was centrifuged (14,000 g, 30 min) and the supernatant was loaded onto a 5 mL
HisTrap FF column (GE Healthcare, Chicago, IL, USA) mounted on an AKTA Explorer
FPLC system (GE Healthcare). The column was washed with 10 CV of binding buffer and
10 CV of binding buffer containing 40 mM of imidazole. The protein was eluted from
the column with elution buffer (20 mM of sodium phosphate, 0.5 M of NaCl, 500 mM of
Imidazole, pH 7.4). The purified protein was dialyzed against PBS and stored at −70 ◦C.
The recombinant hFc-RBD fusion protein, expressed as recently described [22], was kindly
provided by Dr. Ohad Mazor Lab (IIBR, Ness Ziona, Israel).

4.2. RBD-ACE2 Binding Assay

Ninety-six-well plates (Maxisorp, Nunclon) were coated with ACE2 (100 ng/well) for
1 h at 37 ◦C. The plates were blocked for 1 h at 37 ◦C with TSTA buffer (2% (w/v) bovine
serum albumin (BSA), 0.9% NaCl, 0.05% Tween 20, 50 mM of Tris, pH 7.6). For initial
screening, a concentration of 10 µM of each compound from the LOPAC®1280 (Sigma,
St. Louis, MO, USA) and DiscoveryProbeTM FDA-approved drug (APExBIO) libraries
was incubated with 1 µg/mL of Fc-RBD in a total reaction mixture volume of 50 µL. For
the IC50 experiments, 3-fold serial dilutions of the indicated compound (1 mM to 5.6 nM)
were incubated with Fc-RBD (1 µg/mL). The mixtures (50 µL) were incubated for 1 h
at 25 ◦C. Following incubation, the mixtures were added to the ACE2-coated plates and
incubated for 1 h at 37 ◦C. After washing, the plates were incubated for 1 h at 37 ◦C with
that alkaline phosphatase-conjugated goat anti-human Fc fragment (Sigma, St. Louis, MO,
USA), diluted 1:1000 in blocking solution. The plates were washed, and the colorimetric
reaction was developed using p-nitrophenyl phosphate (pNPP, Sigma, St. Louis, MO,
USA). The absorbance was measured at 405 nm with a Synergy HTX ELISA reader (Biotek,
USA). The assay included a rabbit anti-SARS-CoV-2 RBD polyclonal antibody as a positive
control. The antibody was kindly provided by Dr. Ohad Mazor Lab (IIBR, Ness Ziona,
Israel). Naïve rabbit serum served as a negative control. The IC50 values were calculated
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using a 4-parameter logistic fit by Gen5 software (Biotek, Winooski, VT, USA). The z-prime
parameter for each plate was calculated by Gen5 software.

4.3. Plaque Reduction Assay

The assay was conducted in Vero E6 cell monolayers (ATCC® CRL-1586™). The cells
were grown in growth medium (Dulbecco’s modified Eagle’s medium (DMEM) containing
10% fetal bovine serum (FBS), 1% MEM nonessential amino acids (NEAA), 2 mM of
L-glutamine, and 0.5% Pen/Strep, all from Biological Industries, Kibbutz Beit-Haemek,
Israel) and were cultured at 37 ◦C and 5% CO2. The cells were infected with 60 PFU/well
of rVSV-SARS-CoV-2-S, which served as a SARS-CoV-2 surrogate virus. This virus is a
replication-competent recombinant VSV-∆G-spike virus in which the glycoprotein of VSV
(vesicular stomatitis virus) is replaced by the spike protein of SARS-CoV-2 [62]. Cells were
seeded in 6-well plates (7 × 105 cells/well) and grown overnight in growth medium. A
fixed dose (600 PFU/mL) of rVSV-SARS-CoV-2-S was incubated with different inhibitor
concentrations of ATA, ellagic acid, and heparin (1:1, v/v) in infection medium (MEM
containing 2% FBS with 1% NEAA, 2 mM of glutamine, and 0.5% P/S) and was used to
infect Vero E6 monolayers in six replicates (200 µL/well). After incubation for 1 h at 37 ◦C,
3 mL/well of overlay (MEM containing 2% FBS and 0.4% tragacanth (Merck, Herzliya
Pituach, Israel)) was added to each well, and the plates were incubated at 37 ◦C and 5%
CO2 for 72 h. The media were then aspirated, and the cells were fixed and stained with
3 mL/well of crystal violet solution (Biological Industries, Kibbutz Beit-Haemek, Israel).
The number of plaques in each well was determined, and the reduction in infection was
calculated relative to the control wells containing no compound. The IC50 values were
calculated using GraphPad Prism.

4.4. Cytotoxicity assaY

A cytotoxicity assay was performed in Vero E6 cell monolayers using the alamarBlue
cell viability reagent (Thermo Fisher Scientific). Cells (2 × 104 cells/well in 100 µL) were
seeded in 96-well plates. After an overnight incubation at 37 ◦C, 80 µL of medium was
aspirated, and 20 µL of inhibitors was added in triplicate to the wells. After 1 h of
incubation, 20 µL was aspirated, 150 µL of overlay was added, and the cells were incubated
at 37 ◦C for three days. Then, 19 µL of alamarBlue reagent was added per well and
incubated for 2.5 h at 37 ◦C. The fluorescence results were determined by excitation at
530 nm and the collection of emission at 580 nm was determined using a CLARIOstar®

reader (BMG labtech, Ortenberg, Germany). The cell viability was calculated by dividing
the fluorescence results of the compound-containing wells by those of the control wells
(containing no compounds).

4.5. Molecular Docking Analysis

Molecular docking of the selected compounds was performed using the SwissDock
server (www.swissdock.ch accessed on 7 October 2020 [20]). The RBD of pdb file 6M0J [18]
was set as a target, and the 3D structures of the hits were from the ZINC database [63].
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