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Graft-versus-host response after allogeneic hematopoietic stem cell transplantation 
(allo-HCT) represents one of the most intense inflammatory responses observed in 
humans. Host conditioning facilitates engraftment of donor cells, but the tissue injury 
caused from it primes the critical first steps in the development of acute graft-ver-
sus-host disease (GVHD). Tissue injuries release pro-inflammatory cytokines (such as 
TNF-α, IL-1β, and IL-6) through widespread stimulation of pattern recognition recep-
tors (PRRs) by the release of danger stimuli, such as damage-associated molecular 
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs and 
PAMPs function as potent stimulators for host and donor-derived antigen presenting 
cells (APCs) that in turn activate and amplify the responses of alloreactive donor T cells. 
Emerging data also point towards a role for suppression of DAMP induced inflammation 
by the APCs and donor T cells in mitigating GVHD severity. In this review, we summa-
rize the current understanding on the role of danger stimuli, such as the DAMPs and 
PAMPs, in GVHD.

Keywords: allogeneic hematopoietic stem cell transplantation, graft-versus-host-disease, danger signals, 
pathogen-associated molecular patterns, damage-associated molecular patterns

iNTRODUCTiON

Allogeneic hematopoietic stem cell transplantation (allo-HCT) has become widely used as a cura-
tive therapy for a variety of life-threatening hematological malignancies and congenital immune 
deficiencies (1). However, graft-versus-host disease (GVHD) remains as significant obstacle 
to improving the success of this treatment (2). The cause of GVHD reflects a complex process 
involving immune dysregulation in the context of recovering immunocompetent donor cells in 
recipients of allo-HCT. Donor T cells play a central role in the pathogenesis of acute GVHD. 
However, emerging data in the past 15 years have demonstrated a key role for donor, or recipi-
ent antigen presenting cells (APCs), derived from both hematopoietic and non-hematopoietic 
cells. Although current strategies of the prevention and treatment of acute GVHD mainly target 
T cells, modulating APC function represents a promising additional strategy for reducing acute 
GVHD. Therefore, a greater understanding of how APCs are activated and regulated is of sig-
nificant interest. Myeloablative or reduced intensity conditioning regimens are a prerequisite for 
facilitating engraftment of donor hematopoietic cells, and for eliminating residual tumor cells, 
but they also cause significant host tissue damage. The impact of damage responses on APCs 
has become an active area of research. Host tissue injuries by conditioning regimens release 
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FiGURe 1 | Danger signals play an important role in acute GvHD pathogenesis. Host tissue injuries by conditioning regimens release “danger signals” 
including pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharides (LPS) and β-D-glucans, and damage-associated molecular patterns 
(DAMPs), such as high mobility group box 1 (HMGB-1) and adenosine triphosphate (ATP). These danger signals activate host or donor antigen-presenting cells 
(APCs), such as dendritic cells and macrophages, which in turn present alloantigens via major histocompatibility complex (MHC) class I or class II to donor T cells. In 
addition, activated APCs produce an abundance of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and T-cell 
stimulating cytokines, such as IL-12, which further escalate the inflammatory response. Activated donor T cells proliferate and differentiate into effector T cells that 
migrate to target organs and cause GVHD. Upon target tissue destruction, additional PAMPs and DAMPs are released and they might perpetuate GVHD responses.
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“danger signals” including pathogen-associated molecular 
patterns (PAMPs), such as lipopolysaccharides (LPS), and 
damage-associated molecular patterns (DAMPs), such as high 
mobility group box 1 (HMGB-1) as well as pro-inflammatory 
cytokines, such as interleukin (IL)-1β, IL-6, and tumor necro-
sis factor (TNF)-α from the inflamed tissues. These danger 
signals activate host or donor APCs that in turn present allo-
antigens via major histocompatibility complex (MHC) class 
I or class II to donor T cells. In addition, activated APCs 
produce an abundance of T-cell stimulating cytokines, such 
as IL-12, which further escalate the inflammatory response. 
In this review, we describe several encouraging investigations 
that have been conducted in both experimental bone marrow 
transplantation (BMT) models and humans over the last two 
decades. We further summarize the updated findings of how 
DAMPs and PAMPs amplify or mitigate GVHD and explore 
potential new strategies for the regulation of these “danger 
signals” in the regulation of GVHD.

DANGeR SiGNALS iN GvHD 
DeveLOPMeNT

PAMPs are non-host derive molecules derived from microbes and 
are recognized by pattern recognition receptors (PRRs) that initi-
ate and sustain the innate immune responses for protecting host 
from foreign pathogens (3). DAMPs are host-derived molecules 
released by host tissue damages and binds to PRRs that initiate 
and sustain non-infectious immune responses (4). These DAMPs 
and PAMPs are released as a consequence of conditioning-related 
tissue damage after allo-HCT. They activate APCs that in turn 
stimulate donor T cell proliferation and differentiation into 
effector T cells that migrate to target organs and cause GVHD. 
Upon target tissue destruction, additional PAMPs and DAMPs 
are released that perpetuate and amplify GVHD (Figure  1). 
Therefore, our understanding of the release of PAMPs/DAMPs 
and ways to limit this potentially lethal immunologic cascade 
by ameliorating tissue damages by inhibiting danger signaling 
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TABLe 1 | The role of TLRs in the pathogenesis of acute GvHD.

BMT models MHC Conditioning Donor cells Results Reference

TLR4

B6 (H2b) → C3H/HeJ (H2k) (TLR4 mutant) Mismatch 9 Gy BM: 5 × 106 GVHD: ↑ (9)
SP: 2.5 × 107

BALB/c (H2d) → B6-TLR4−/− (H2b) Mismatch 10.5 Gy BM: 1 × 107 GVHD: → (10)
SP: 2 × 107

B6-TLR4−/− (H2b) → BALB/c (H2d) Mismatch 9 Gy BM: 1 × 107 GVHD: ↓ (10)
SP: 2 × 107

C3H/Hej (H2k) (LPS resistant) →  
(C3FeB6)F1 (H2b/k)

Mismatch, haploidentical 11 Gy TCD-BM: 5 × 106 GVHD: ↓ (11)
Tcells: 0.25–1 × 106

BALB/c (H-2d) → B6-TLR2/4−/− (H-2b) Mismatch Treosulfan +  
cyclophosphamide

BM: 5 × 106 GVHD severity: ↓, 
mortality: →

(12)
SP: 3 × 106

129S6 (H2b) → B6-TLR4−/− (H2b) Match, multiple minor 
antigen mismatch

11 Gy BM: 5 × 106 GVHD: → (13)
SP: 30 × 106

B6-TLR4−/− (H2b) → 129 Rag2−/− (H2b) Match, multiple minor 
antigen mismatch

Anti-NK11 or  
anti-asialoGM1, ±7 Gy

SP: 30 × 106 GVHD: ↓ (13)

BALB/c (H2d) → B6-TLR4−/− (H2b) Mismatch 9 Gy BM: 1 × 107 GVHD: → (14)
SP: 4–5 × 107

C3Hsw (H2b) → B10ScNcr-TLR4−/− (H2b) Match, multiple minor 
antigen mismatch

10 Gy BM: 1 × 107 GVHD: → (15)
CD8+ T cells: 2 × 106

MyD88/TRiF

BALB/c (H2d) → B6-MyD88−/− (H2b) Mismatch Treosulfan +  
cyclophosphamide

BM: 5 × 106 GVHD severity: ↓, 
mortality: →

(12)
SP: 3 × 106

B6-MyD88−/− (H2b) → B6D2F1 (H2b/d) Mismatch, haploidentical 11 Gy TCD-BM: 5 × 106 GVHD: ↑ (16, 17)
Tcells: 1–2 × 106

B6-MyD88−/− (H2b) → 129 Rag2−/− (H2b) Match, multiple minor 
antigen mismatch

Anti-NK11 or  
anti-asialoGM1, ±7 Gy

SP: 30 × 106 GVHD: ↓ (13)

BALB/c (H2d) → B6-TRIF−/− (H-2b) Mismatch Treosulfan +  
cyclophosphamide

BM: 5 × 106 GVHD severity: ↓, 
mortality: →

(12)
SP: 3 × 106

C3Hsw (H2b) → B6 LPS2 (TRIF−/−)(H2b) Match, multiple minor 
antigen mismatch

10 Gy BM: 1 × 107 GVHD: → (15)
CD8+ T cells: 2 × 106

B6-TRIF−/− (H2b) → 129 Rag2−/− (H2b) Match, multiple minor 
antigen mismatch

Anti-NK11 or  
anti-asialoGM1, ±7 Gy

SP: 30 × 106 GVHD: → (13)

TLR2

B6-TLR2−/− (H2b) → B6D2F1 (H2b/d) Mismatch, haploidentical 11 Gy TCD-BM: 5 × 106 GVHD: → (20)
SP: 2 × 107

B6-TLR2−/− (H2b) → BALB/c (H2d) Mismatch 85 Gy TCD-BM: 5 × 106 GVHD: → (20)
SP: 2 × 107

(Continued)
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with specific inhibitors may be important for mitigating the  
intensity of GVHD.

ROLe OF SPeCiFiC PRRs iN GvHD

Danger signaling is transmitted through PRRs when they bind 
PAPMs and DAMPs. Several signaling pathways, such as toll-like 
receptor (TLR), Nucleotide-binding oligomerization domain 
(NOD)-like receptor (NLR), and retinoic acid-inducible gene 
1 (RIG-I) signaling, are recognized. The detailed mechanisms 
are recently reviewed in several articles (5–7). In this review,  

we focus on some of these receptors that have been implicated 
in GVHD.

TOLL-LiKe ReCePTORS

Toll-like receptors are one of the PRRs and play a key role in 
innate immune responses by recognizing PAMPs as well as 
DAMPs (8). TLRs are expressed on a variety of cells derived from 
both hematopoietic and non-hematopoietic lineages (8). We dis-
cuss below the experimental studies of TLRs in the pathogenesis 
of acute GVHD. The studies are also summarized in Table 1.
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BMT models MHC Conditioning Donor cells Results Reference

TLR5

B10BR (H2k) → B6 (H2b) with flagellin (50 μg) Mismatch 11 Gy TCD-BM: 5 × 106 GVHD: ↓ (28)
SP: 5 × 106

TLR9

B6 (H2b) → B10BR (H2k) with CpG (100 μg) Mismatch 8 Gy BM: 5 × 106 GVHD: ↑ (40)
SP: 25 × 106

BALB/c(H2d) → B6 (H2b) with CpG (100 μg) Mismatch 8 Gy BM: 5 × 106 GVHD: ↑ (40)
SP: 15 × 106

BALB/c (H2d) → B6 (H2b) with CpG (50–100 μg) Mismatch 10 Gy BM: 5 × 106 GVHD: ↑ (41)
SP: 1 × 107

BALB/c (H2d) → B6-TLR9−/− (H2b) Mismatch 9 Gy BM: 1 × 107 GVHD: ↓ (14)
SP: 4 × 107

BALB/c (H-2d) → B6-TLR9−/− (H-2b) Mismatch Treosulfan +  
cyclophosphamide

BM: 5 × 106 GVHD: ↓ (12)
SP: 3 × 106

TLR3

C3Hsw (H2b) → [TLR3−/− (H2b) → B6 (H2b)] Match, multiple minor 
antigen mismatch

9 Gy TCD-BM: 5 × 106 GVHD: → (48)
CD8+ T cells: 0.5 × 106

TABLe 1 | Continued
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TLR4
TLR4 is a cell-surface receptor for PAMPs such as LPS and also 
for DAMPs. TLR4 is broadly expressed on many immune cells, 
such as dendritic cells (DCs). TLR4 signaling is transmitted 
through intracellular adaptor molecules myeloid differentia-
tion primary response gene 88 (MyD88) and Toll/IL-1receptor 
(TIR)-domain-containing adaptor-inducing interferon β (TRIF) 
that activate NF-κB signaling that potently enhances expres-
sion of pro-inflammatory cytokines. The role of TLR4 in APCs 
for mediating acute GVHD remains controversial. Mutations 
in TLR4 are involved in the reduction of GVHD responses by 
hyporesponsiveness of APCs to LPS stimulation while over acti-
vation of TLR4 signaling results in exacerbation of GVHD (9). 
When TLR4−/− animals were used as either donor or recipient, 
acute GVHD severity and mortality were significantly amelio-
rated in MHC-mismatched B6 into BALB/c model by altering 
DC functions in TLR4−/− APCs (10). This finding was consistent 
with a previous report in which recipients receiving LPS resistant 
donor cells demonstrated less GVHD and prolonged survival in 
MHC-mismatched haploidentical BMT (11). TLR2/4−/− animals 
receiving MHC-mismatched BMT (BALB/c into B6) also showed 
significantly less intestinal GVHD, but reduction was appeared 
dependent on conditioning intensity (12). In minor mismatched 
BMT context, MyD88-mediated TLR4 signaling on donor, but 
not recipient cells, was required for mediating acute GVHD (13). 
In addition, when TLR4 signaling was impaired in host APCs, 
that is, in the case of the absence of MyD88, TRIF, or both MyD88 
and TRIF expression, acute GVHD severity and mortality were 
equivalent to WT animals (14, 15). While there is an increasing 
understanding of the key role of TLR4 signaling in contributing 
to the initiating event of GVHD, such disparate findings indicate 

that the role of TLR4 signaling for mediating GVHD may differ 
depending on the strain, the cell type where TLR4 is mutated, and 
the conditioning.

MyD88/TRiF
As MyD88 is required for the signaling of many TLRs, when 
MyD88−/− animals were used as the host, acute GVHD was sig-
nificantly improved (12). In contrast, the recipients that received 
MyD88−/− T cell depleted BM (TCD-BM) cells showed greater 
intestinal GVHD (16) but reduced hepatic GVHD. This was found 
to be dependent on myeloid-derived suppressor cells (MDSCs) 
(17). In addition, MyD88−/− donor T cells reduced graft-versus-
tumor (GVT) activity through the expansion of Foxp3- and IL-4-
producing T cells in MHC-mismatched haploidentical B6 into 
B6D2F1 model (18). However, donor MyD88 was shown to be 
required in minor mismatch GVHD (13). TRIF is also required 
to transmit TLR signaling, but its role seems to be negligible in 
the development of GVHD (12, 13, 15). Collectively, these studies 
suggest that MyD88 may have pleiotropic functions that are cell 
intrinsic during allo-HCT.

TLR2
TLR2 is a cell-surface receptor expressed on APCs as well as 
T cells. TLR2 recognizes cell-wall components such as pepti-
doglycan (PGN) from gram-positive bacteria as well as zymosan 
from yeast. Intriguingly, granulocyte-colony stimulating factor 
(G-CSF) mobilized donor grafts showed the increase level of 
TLR2 expression on myeloid cell populations (19), but upregu-
lated TLR2 expression did not correlate with enhanced allogeneic 
responses (20). The studies utilizing TLR2−/− animals as either 
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donor or host demonstrated that TLR2 has little effect on acute 
GVHD (12, 20).

TLR5
TLR5 recognizes flagellin that is an essential component of 
bacterial flagella from both gram-negative and -positive bacteria 
and regulates immunity (21–26). CBLB502, a TLR5 agonist and 
a polypeptide drug derived from Salmonella flagellin, protects 
intestinal and hematopoietic cells from total body irradiation 
(TBI) in mice and primates (27). Consistent with this observa-
tion, when TLR5 agonist was administered before conditioning, 
acute GVHD was reduced with enhanced anti-CMV immunity in 
both MHC-mismatched and haploidentical murine models (28, 
29). By contrast, TLR5 mRNA expression on peripheral blood, 
especially in the Lin(−)HLADR(−)CD33(+) CD16(+) and 
CD14(++)CD16(−) monocytes, was increased in the patients 
with GVHD after receiving adaptive Treg infusion for prevention 
of GVHD in human (30).

TLR7
TLR7 recognizes endosomal single strand ribonucleic acids 
(RNAs) leading to production of type I interferons (IFNs), pro-
inflammatory cytokines, as well as regulatory cytokines (31, 32). 
TLR7 is critical for antiviral immunity and the development 
of autoimmune diseases (33–36). The contribution of TLR7 to 
acute GVHD is not well characterized. TLR7 ligand imiquimod 
was shown to increase alloreactivity of host-derived DCs and 
Langerhans cells (LCs) in the skin and to enhance donor lympho-
cyte infusions (DLIs)-mediated GVHD in MHC-matched multi-
ple minor antigen-mismatched model of BMT (37). Because Type 
I IFNs are indispensable in the antitumor responses, whether 
TLR7 agonists increase GVT activities without enhancing GVHD 
after allo-HCT is of significant interest.

TLR9
TLR9 recognizes unmethylated cytosine-phophorothionate-
guanine (CpG) dinucleatides in the bacterial DNA and triggers 
a Th1-mediated inflammatory response (38). CpG-mediated 
immune responses through TLR9 distinguish bacterial DNA 
from self-DNAs. TLR9 is expressed intracellularly in both 
immune and non-hematopoietic derived cells, such as endothe-
lial and epithelial cells (39). Administration of CpG oligonu-
cleotides (CpG ODNs), a synthetic TLR9 ligand, exacerbates 
acute GVHD in a host APC and IFN-γ dependent manner (40, 
41). In addition, CpG ODNs enhances rejection donor HSCs in 
donor-derived APC dependent manner (40). When lethally or 
sub-lethally conditioned TLR9−/− animals were used as hosts, 
acute GVHD severity and mortality was ameliorated. This was 
dependent on the expression of TLR9 expression on the non-
hematopoietic cells (12, 14). However, clinical studies exploring 
TLR9 polymorphisms in allo-HCT hosts suggested that those 
with homozygous CC gene variant of TLR9 (which correlates 
with lower expression of TLR9 mRNA) showed significantly 
improved overall survival (OS) and reduced relapse rate with no 
difference in acute GVHD when compared with patients hav-
ing TC/TT gene variants (42, 43). Donor TLR9 gene tag single 
nucleotide polymorphisms (SNPs), +1174A/G (rs352139) and 

+1635 C/T (rs 352140), respectively, correlated increased sever-
ity of acute GVHD and CMV reactivation (44).

TLR3
TLR3 recognizes double-stranded RNA (dsRNA), which is pro-
duced by most of viruses. It signals through interferon regulatory 
factor (IRF)3 and activates NF-κB and enhances production of 
type I IFNs (45, 46). TLR3 also plays an important role in enhanc-
ing antigen presentation in APCs (47). Using chimeric recipients 
with TLR3−/− hematopoietic cells, we have already demonstrated 
that TLR3 deficiency in host APCs showed equivalent GVHD 
severity and mortality to WT animals but impaired GVT activ-
ity in MHC-matched multiple minor mismatched BMT model. 
Activation of TLR3 by polyinosine-polycytidylic acid (Poly I:C) 
improved GVT activity without enhancing GVHD (48). Because 
type I IFNs are essential role in antitumor immune responses (49, 
50), TLR3 may have greater influence on GVT activity.

NLR Signaling
Nucleotide-binding oligomerization domain-like receptors are 
subtype of PPRs that function as cytoplasmic sensors of PAMPs 
and DAMPs. NLRs are expressed by majority of immune cells 
and some non-immune cells. NLRs have been extensively studies 
for their role in innate immunity. NOD1 and NOD2 are the most 
widely investigated NLRs in GVHD. NOD1 and NOD2 recognize 
different kinds of PGN fragments from bacterial cell wall. NOD1 
binds to diaminopimelate-containing N-acetyl glucosamine-N-
acetylmuramic acid (GluNAc-MurNac) tripeptide from gram-
negative bacterial PGN (51, 52), while NOD2 binds to muramyl 
dipeptide (MDP) that is produced by all bacteria (53). Once 
NOD1 and NOD2 are ligated, NF-κB and mitogen-activated 
protein kinase (MAPK) pathways are activated through the cas-
pase recruitment domain (CARD)-containing serine/threonine 
kinase, receptor-interacting protein 2 (Rip2) (54), and induce 
pro-inflammatory cytokines. NOD1 and NOD2 signaling is also 
involved in endoplasmic reticulum (ER) stress induced inflam-
mation through the IRE1α/TRAF2 signaling pathway (55) and 
production of antimicrobial peptides in the intestinal tract (56). 
The role of NOD2 signaling pathway in allo-HCT is somewhat 
controversial. NOD2 polymorphism in both donor and recipient 
was associated with increased transplant-related mortality in 
humans after HLA-identical sibling HCT or T cell depleted HCT 
as well as increased GVHD severity (43, 57–64). However, other 
studies demonstrated that NOD2 had no impact on outcome 
including GVHD severity and mortality (44, 65–69). In addition, 
intriguingly, NOD2 polymorphism was associated with increased 
relapse of leukemia after unrelated HCT (70). In experimental 
models, NOD2−/− recipient animals showed exacerbated GVHD 
severity and morality, particularly intestinal GVHD. This was due 
to host APC activation in experimental BMT (71). By contrast, 
donor NOD−/− BM cells reduced GVHD-related mortality in 
MHC-mismatched haploidentical BMT model (72).

inflammasomes
Inflammasomes are multiprotein molecules that are in the 
cytoplasm of immune cells, such as APCs, as well as non-
hematopoietic cells. They consist of an adaptor protein, apoptosis 
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associated speck-like protein containing a caspase recruit domain 
(CARD) (ASC), which has pyrin domain (PYD) and CARD, 
pro-caspase 1, and certain receptor proteins, such as NLR fam-
ily members (NLRP1, NLRP3, NLRC4, NLRP6, NLRP7, and 
NLRP12), the protein absent in melanoma 2 (AIM2) (73, 74). 
Once inflammasomes are activated, they produce inflammatory 
cytokines, specifically IL-1β and IL-18, and induce pyroptosis, a 
highly inflammatory form of programed cell death (73, 74). This 
is called canonical inflammasome pathway, which in contrast to 
the non-canonical pathway activates caspase 11 in mouse and 
caspases 4 and 5 in humans (75). The detailed molecular and 
activation pathways of inflammasomes have recently been sum-
marized in excellent reviews (73, 74). Studies exploring the role 
of inflammasomes in acute GVHD have recently been published. 
NLRP3 activation by the intestinal commensal bacteria and uric 
acid released after conditioning, enhanced GVHD severity and 
mortality by increasing levels of caspase-1, IL-1β, and TH17 cells 
(76). Another mechanism of enhanced GVHD by NLRP3 was 
shown to be associated with microRNA-155 dependent host DC 
migration toward sites of ATP release (77). In addition, inflam-
masome activation in the inflammatory milieu ameliorated the 
immune suppressive function of MDSCs and exacerbated GVHD 
(78). Relevant to clinical translation, the addition of TBI or busul-
fan and cyclophosphamide (BU/CY) conditioning is capable of 
mediating NLRP3 activation in the liver and enhancing inflam-
mation (79). As therapeutic strategy, inhibiting NLRP3 activation 
by nucleotide reverse transcriptase inhibitors decreased GVHD 
severity and mortality (80). Further, NLRP3 inflammasome in 
human CD4+ T cells promotes IFN-γ production and Th1 dif-
ferentiation by enhancing caspase 1-dependent IL-1β secretion 
mediated through intracellular C5 activation (81). These data 
suggest that NLRP3 inflammasome contribute to the functional 
important mediators of GVHD: donor T cells, APCs, and non-
hematopoietic cells in target tissue. Consistent with experimental 
models, donor polymorphisms in the NLRP3 inflammasome 
have been associated with outcomes after allo-HCT. TT genotype 
at rs10925027 in NLRP3 was associated with disease relapse and 
donor GG genotype at rs1043684 in NLRP2 was associated with 
non-relapse mortality (NRM) and OS. Also, patient AA genotype 
at rs5862 in NLRP1 was associated with NRM and OS after HLA-
matched sibling HCT (82). We recently found that a related but 
distinct inflammasome, NLRP6, expressed in intestinal epithelial 
cells regulates innate immune responses and intestine homeo-
stasis though the regulating normal commensal bacteria (83, 
84). Absence of NLRP6 improved GVHD contrary to models of 
inflammatory bowel disease (IBD). Intriguingly, NLRP6−/− ani-
mals showed enhanced mucin family protein MUC2 expression 
in epithelial cells after allo-BMT (85). These results suggest that 
depending on the context, NLRP6 may exert opposite effects in 
various inflammatory disorders.

RiG-i Signaling
RIG-I, melanoma differentiation-associated gene 5 (MDA5), 
and laboratory of genetics and physiology 2 (LGP2) are known 
as RIG-I-like receptors (RLRs). RIG-I and MDA5 contain a 
DExD/H box RNA helicase domain and CARD, but LGP2 has no 
CARD-like domain. These receptors bind to intracellular dsRNA 

or ssRNA and trigger innate antiviral responses by producing 
type I IFNs (86–91). Therefore, RIG-I pathways also play an 
important role in PAMPs and DAMPs-mediated inflammatory 
responses. However, whether RIG-I pathways facilitate GVHD 
development is presently unknown. Preliminary study suggests 
RIG-I-induced type I IFNs promote the regeneration of intestinal 
stem cells during acute tissue damage may ameliorate GVHD 
severity with preserving GVL activities in mouse model (92, 93).

C-Type Lectin Receptors
C-type lectin receptors (CLRs) are expressed on myeloid-derived 
APCs as soluble or transmembrane embedded proteins. They 
directly activate NF-κB through spleen tyrosine kinase (SYK) 
(94) or indirectly, by cooperating with other PRRs such as TLRs 
(95–97). Stimulation of CLRs promotes the production of pro-
inflammatory cytokines, effector T cell differentiation into Th1 
and Th17 (98). CLRs are divided into two groups; group 1 CLRs 
belong to the mannose receptor family and group 2 CLRs belong 
to the asialoglycoprotein receptor family which has subfamilies, 
the DC-associated C-type lectin1 (Dectin-1) and DC immu-
noreceptor (DCIR) subfamily including Dectin-2 (95). These 
recognize mannose, fucose, and glucan carbo-hydrate structures 
of bacteria, fungi. Both Dectin1 and Dectin2 activate NF-κB by 
enhancing SYK signaling through either the cytoplasmic immu-
noreceptor tyrosine-based activation motif (ITAM) in Dectin1 
(94) or the ITAM-containing adaptor molecules, such as Fc recep-
tor γ-chain (Fcr γ) or DAP12 in Dectin2 (99). Clinical studies 
have suggested that the incidence of acute GVHD increases with 
candida colonization in dectin1 gene dependent manner (100, 
101). In murine model, α-mannan, which is a major component 
of fungal cell wall, mediated Th17 dependent pulmonary GVHD 
in a host dectin2 dependent manner (102).

ROLe OF SPeCiFiC PAMPs AND DAMPs 
PROTeiNS iN GvHD

Both exogenous and endogenous danger signal proteins are 
released from damaged tissues and abnormal intestinal microbial 
colonies after conditioning. In addition, blood stream infection 
(BSI) caused by gut translocation of colonized bacteria is another 
critical source of PAMPs after allo-HCT (103). Experimental 
data showed that individual PAMPs and DAMPs proteins can 
function either independently or cooperatively to initiate GVHD.

Lipopolysaccharides
Lipopolysaccharides (endotoxin) are membrane component of 
many gram-negative bacteria representing one of the earliest and 
most investigated PAMPs in GVHD. The role of LPS in GVHD is 
complex and controversial. LPS translocation due to gastrointes-
tinal (GI) tract damage is correlated with conditioning intensity 
(104) and shown to contribute to GVHD in select model systems. 
LPS activates APCs including DCs and macrophages (MFs) trig-
gering production of pro-inflammatory cytokines, such as TNF-α, 
IL-1β and IL-6 (105, 106). These events contribute idiopathic lung 
injuries after allo-BMT (107). Persistent exposure of LPS pre-
cipitates pulmonary GVHD pathogenesis because recipient mice 
directly exposed to repeated inhaled LPS after allo-BMT showed 
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pulmonary GVHD in hematopoietic donor-derived C-C motif 
ligand 2 (CCL2) and C-C motif receptor (CCR2) dependent man-
ner (108, 109). In addition to host-derived cells, sensitivity to LPS 
in donor non-T cells has been suggested to be involved in GVHD 
severity (11). LPS is one of the ligands of TLR4, which plays a 
key role in innate immune responses (110), and its signaling is 
transmitted through the common MyD88 and TRIF pathway 
that can nuclear translocation of NF-kB to induce expression of 
inflammatory cytokine genes (111–113). TLR4 mutations lead to 
LPS hyporesponsiveness (110). As noted above, role of TLR4 and 
MyD88 in GVHD seems to depend on the model system.

Flagellin
The recipient animals treated with flagellin before allo-HCT 
demonstrated reduced GVHD mortality and enhanced immune 
reconstitution with preservation of antiviral and GVT effects 
after allo-HCT (28). Modulating TLR5 functions with flagellin 
enhanced GVT without exacerbating GVHD in CD8+ T cell and 
NK cell dependent model (114). Tumor reactive T cells engineered 
to produce flagellin along with expression of a melanoma-specific 
antigen-augmented antitumor responses. Contrary to enhanced 
T cell-mediated antitumor responses, TLR5-dependent commen-
sal bacteria promote tumor development by expanding MDSCs 
and dampen antitumor immunity in TLR5- and IL-6-dependent 
manner (115). In addition, mesenchymal stem cells (MSCs), pre-
treated by flagellin showed increased Foxp3 expression, enhanced 
IL-10 production, and suppressed GVHD (116). Interestingly, 
TLR5 stimulation with flagellin protects gut mucosal tissue from 
damages caused by irradiation (27, 117).

Damage-Associated Molecular Patterns
HMGB1
HMGB1 is a ubiquitous DNA-binding nuclear protein of all 
eukaryotic cells, binds to nucleosome and regulates gene 
transcriptions (118). By contrast, HMGB1 plays an important 
role in initiating innate immune responses because endogenous 
HMGB-1 that is located in nucleus in resting cells is acetylated 
and is released from damaged tissues. HMGB-1 binds to TLRs 
(TLR2 or TLR4) or receptor for advanced glycation endproducts 
(RAGE) and activates NF-κB or MAPK signaling to produce 
pro-inflammatory cytokines in especially DCs or MFs (119–123). 
Therefore, extracellular HMGB1 functions as a DAMP. In addi-
tion, the inflammatory milieu with abundant IFN-γ, TNF-α, as 
well as LPS may promote further HMGB1 release from DCs 
and MFs (124). Inflammasome and Janus kinase (JAK)/signal 
transducer and activator of transcription (STAT) 1 pathways 
are involved in molecular mechanisms of HMGB-1 release, 
which requires its acetylation and translocation from nucleus 
to cytoplasm and released to extracellular space through unique 
protein releasing pathway, such as pyroptosis. Recent reports 
suggests that HMGB1 promotes not only immune suppressive 
function through the facilitating MDSCs proliferation in cancer 
(125) but also protection from tissue injury in IBD by regulating 
cellular autophagy and apoptosis (126). Patients with HMGB1 
polymorphism, the 2351insT minor allele, showed reduced grade 
II to IV acute GVHD following myeloablative allo-HCT (127). 
Increased serum levels of HMGB1 were observed in acute GVHD 

patients and donors treated with granulocyte-colony-stimulating 
factor (G-CSF) (128, 129). Myeloablative conditioning such as 
TBI or cyclophosphamide + TBI also increased serum HMGB1 
levels consistent with its function as a DAMP (130).

Adenosine Triphosphate
All cells generate adenosine triphosphate (ATP) as the primary 
energy source via glycolysis and oxidative phosphorylation 
(OXPHOS) that is stored within cytoplasm and mitochondria 
(131). Once cells are exposed to stress or injury, ATP is released 
from damaged cells and the concentration of ATP in extracellular 
space is increased. Released ATP binds to purinergic receptor 
families, such as P2X expressed on the hematopoietic and non-
hematopoietic cells, and can function as a potent DAMP (132, 
133). In GVHD, extracellular ATP is dramatically increased 
after TBI and binds to P2X7R on host APCs. After its ligation, 
host APCs expressed greater co-stimulatory molecules, such as 
CD80 and CD86, and enhanced stimulation of donor CD4+ T 
cells and production of IFN-γ, and decreased Tregs. These results 
were associated with reduction of STAT5 phosphorylation and 
enhanced GVHD (134). Another purinergic receptor, P2Y2, 
in host hematopoietic derived APCs was shown to enhance 
GVHD (135). Increased extracellular ATP is regulated by ecto-
nucleotidases, such as CD39, which phosphohydrolyzes ATP to 
adenosine diphosphate (ADP) and adenosine monophosphate 
(AMP) and then dephosphorylate into adenosine by CD73, also 
known as ecto-5′-nucleotidase (136). In line with this, agonists 
of the adenosine receptors (AR) decreased GVHD (137). Loss 
of this regulatory mechanism by CD73−/− T cells or in APCs 
exacerbated GVHD (138, 139). The recent study showed that 
inhibiting Notch 1 signaling by inducing expression of A2A 
receptor in CD73 dependent manner is a critical mechanism 
of Treg-induced GVHD suppression (140). The immunosup-
pression of BM-derived MSCs in GVHD was also shown to be 
partially dependent on CD73 activity (141).

Uric Acid
Uric acid is a metabolite of purine nucleotide and hyperuricemia 
is known to lead gout (142). Uric acid is also released from 
injured cells, stimulates DC maturation, activates CD8+ T cell 
cytotoxic functions, and is recognized as an endogenous DAMP 
(143). Recent data show that uric acid contributes to GVHD 
severity by stimulating with NLRP3 inflammasome (76). 
Patients with acute GVHD show a high level of serum uric acid 
during the pretransplantation period and the patients received 
a recombinant urate oxidase appeared to show significantly 
reduced GVHD in phase I study. These results are consistent 
with a study that blood uric acid homeostasis may be altered 
after allo-HCT by conditioning and using cyclosporine A (144). 
However, a recent study showed low serum level of uric acid was 
associated with GVHD severity (145).

Heat Shock Proteins
Heat shock proteins (HSPs) work as molecular chaperones that 
enhance protein folding and intracellular transportation (146). 
HSPs have been demonstrated the association with chronic 
inflammatory diseases as well as autoimmune disease (147, 148). 
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TABLe 2 | Targeting danger signals to ameliorate GvHD.

Drug Function Results of preclinical model Results of clinical trials Reference

PPADS P2X7R antagonist FVB → BALB/c: GVHD↓ Not tested (134, 165)

Brilliant blue G (BBG) B6 → BALB/c: GVHD↓
B6 → BALB/c: GVHD↓

Apyrase ATP diphosphohydrolase FVB → BALB/c: GVHD↓ Not tested (134)
B6 → BALB/c: GVHD↓

ATL146e Adenosine A2A receptor agonist B6 → B6D2F1: GVHD↓ Not tested (137, 166)
ATL370 B6 → B6D2F1: GVHD↓
ATL1223 B6 → BALB/c: GVHD↓

Alpha-1 antitrypsin (AAT) Serine protease inhibitor  
(targeting heparin sulfate, IL-32)

B10.D2 → BALB/c: GVHD↓ Phase I/II: GVHD↓ w  
less toxicity

(163, 167–169, 
175, 176)C3H.sw → B6: GVHD↓

B6 → B6D2F1: GVHD↓
B6 → C3H.sw: GVHD↓

CD24 fusion protein CD24 agonist (Siglec-G agonist) BALB/c → B6: GVHD↓ Phase IIa (to be initiated  
in 2016)

(181, 182)
B6 → BALB/c: GVHD↓
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HSPs bind to TLR2/4 and mediate inflammatory responses. In 
GVHD, expression of HSP70 in lymphoid and target organs is 
increased and correlated with severity in both human and experi-
mental GVHD (149–151). HSP70 homogene polymorphism 
(+2763 A/A) was associated with the development of GVHD 
(152). Another study demonstrated that antibodies to HSP70 
and HSP90 increased in the patients with GVHD after allogeneic 
peripheral blood stem cell transplantation (allo-PBMCT) (153). 
HSP90 expression is increased in activated T cells and facilitates 
effector function and survival in activated T cells (154). HSP90-
specific inhibitor decreased allogeneic T cell responses in vitro 
(155), but the in vivo effects on GVHD were not studied.

Heparan Sulfate Proteoglycans
Heparan sulfate proteoglycans (HSPGs) are component of extra-
cellular matrix and play fundamental role in cell development, 
metabolism, and immunity (156, 157). HSPGs are crucial role 
in enhancing innate immune responses by stimulating DCs to 
enhance production of pro-inflammatory cytokines through 
TLR4 pathway (158). HSPGs promote neutrophils recruitment 
into the site of inflammation (159, 160) while enhance neutro-
phil infiltration exacerbates GVHD (161). The serum level of 
syndecan-1, which is one of the HSPGs, and heparin sulfate are 
increased in patients with GVHD (162, 163). In experimental 
models, heparin sulfate activates TLR4 signaling on DCs and 
leads to enhanced DC maturation and allogeneic T cell prolifera-
tion and increased GVHD severity (163). On the other hand, the 
absence of syndecan-4, which is one of the HSPGs and a ligand 
of DC-HIL that functions as a co-inhibitory pathway of donor T 
cell immune responses worsened GVHD (164).

Alpha-Mannan
The alpha-mannan (α-mannan) is a component of fungal cell wall 
as a known DAMP. The α-mannan is recognized by dectin1 and 
dectin2, which is one of the CLRs and activates NF-κB signal-
ing through SYK and produces pro-inflammatory cytokines 
and effector T cell differentiation (96). α-mannan stimulated 
macrophages through dectin2, enhanced Th17 differentiation, 

and worsened lung GVHD (102). Colonization of candida species 
exacerbated GVHD in clinical studies (100, 101).

THeRAPeUTiC STRATeGieS THROUGH 
MODULATiNG DANGeR SiGNALiNG

“Danger signals” are indispensable role in initiating and develop-
ing acute GVHD. Regulating danger signal in an efficient manner 
in early phase of allo-SCT would ameliorate GVHD and have 
a great therapeutic strategy. Herein, we summarize potential 
therapeutic strategies for prevention and treatment of GVHD 
through modulating this signaling pathway. The studies are also 
summarized in Table 2.

Purinergic Receptor Antagonist
P2X7 receptor on APCs binds to extracellular ATPs, which 
released from damaged tissues by conditioning, and activates 
APCs to produce pro-inflammatory cytokines. Therefore, P2X7R 
plays a key role in DAMPs-mediated inflammatory responses. 
Systemic administration of the broad-spectrum P2X7R antago-
nist, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid 
(PPADS), or an ATP diphosphohydrolase, apyrase attenuated 
GVHD by suppressing APC activation (134). Additionally, 
another P2X7R receptor antagonist, brilliant blue G (BBG) 
improved liver function by regulating the infiltration of donor 
MFs and neutrophils in liver and attenuated GVHD (165). Beside 
P2X7R antagonist, adenosine A2A receptor agonist, ATL146e, 
decreased GVHD severity by modulating T cell activation 
and Treg function in experimental model (137, 166). Whether 
modulating other purinergic receptors ameliorates GVHD in the 
context allo-HCT needs to be studied.

Alpha-1 Antitrypsin
Serine protease inhibitor alpha-1 antitrypsin (AAT) attenuates 
GVHD by inhibiting HS, one of the DAMPs, and reducing HS 
mediated allogenic T cell responses in murine model (163). 
Clinical investigation demonstrates that the patients who have 
GVHD increased the serum level of HS after allo-HCT (163). 
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FiGURe 2 | Siglec-G-CD24 axis is critical for regulating acute GvHD. Sialic acid-binding immunoglobulin-like lectins (Siglecs) have an immunoreceptor 
tyrosine-based inhibitory motifs (ITIM) or ITIM-like regions in their intracellular domains and negatively regulate DAMPs-mediated innate inflammatory responses. 
Siglec-G expression in host APCs plays an important role in protecting from DAMPs-mediated GVHD following conditioning-mediated tissue damage. Interaction of 
Siglec-G with CD24, a small glycosyl-phosphatidyl-inositol (GPI)-anchored glycoprotein on T cells that is recognized as a ligand of Siglec-G was critical for 
protection from GVHD. Enhancing Siglec-G-CD24 axis by a novel CD24 fusion protein (CD24Fc) mitigated GVHD (A). In addition, enhancing the interactions 
between Siglec-G on T cells and CD24 on APCs with CD24Fc mitigated GVHD (B).
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In addition, we and others found that AAT attenuates GVHD 
with reducing serum levels of pro-inflammatory cytokines but 
increasing IL-10 levels by modulating function of donor and 
host APCs as well as altering the ratio of donor effector T cells 
to Tregs (167, 168). AAT also inhibits IL-32 activation mediated 
by proteinase-3, which is a neutrophil granule serine proteinase 
(169, 170). AAT homeostasis after allo-HCT may be important 
for regulating allogeneic responses because elevated AAT clear-
ance in stool was correlated with the severity of GI-GVHD and 
steroid resistant GVHD (SR-GVHD) in some studies (171–173), 
but not others (174). Consistent with this, we and others have 
demonstrated that AAT treatment for SR-GVHD-improved 
GVHD manifestations without significant adverse effects or 
increased rates of infection in a multicenter prospective or 
single institution phase I/II study (175, 176). This data indicates 
that AAT may be a rational first-line therapy for SR-GVHD or 
other high risk GVHD, which is associated with high mortality. 
Although the mechanism how AAT suppresses SR-GVHD has 
not been clearly elucidated, these encouraging findings warrant 
further prospective, randomized, and multi-centered study.

Siglec-G: A Potential Negative Signaling 
for DAMPs-Mediated inflammation
Sialic acid-binding immunoglobulin like lectins (Siglecs) have 
an immunoreceptor tyrosine-based inhibitory motifs (ITIM) or 
ITIM-like regions in their intracellular domains and negatively 
regulate DAMPs-mediated innate inflammatory responses (177, 
178) or induce B-cell tolerance by suppressing NF-κB pathways 
(179, 180). We observed that Siglec-G expression in host APCs 
plays an important role in protecting DAMPs-mediated GVHD 
following conditioning mediated tissue damage. Interaction 
of Siglec-G with CD24, a small glycosyl-phosphatidyl-inositol 
(GPI)-anchored glycoprotein on T cells that is recognized 
as a ligand of Siglec-G (181), was critical for protection from 

GVHD. Enhancing Siglec-G-CD24 axis by a novel CD24 fusion 
protein (CD24Fc), consisting of the extracellular domain of 
mature human CD24 linked to the human immunoglobulin 
G1 (IgG1) Fc domain, mitigated GVHD in multiple experi-
mental BMT models (181). We also found that enhancing the 
interactions between Siglec-G on T cells and CD24 on APCs 
with CD24Fc mitigated GVHD while preserving GVT effects 
in experimental models as well as human PBMCs (182). The 
summarized mechanism of Siglec-G-CD24 axis for controlling 
GVHD is shown in Figure 2. Based on these preclinical studies, 
a prospective, randomized multi-centered phase IIa study is cur-
rently investigating whether the addition of CD24Fc to standard 
immune-prophylaxis can limit the incidence and severity of 
acute GVHD following myeloablative allo-HCT.

CLOSiNG ReMARK

Danger signals mediate inflammatory responses through a mul-
titude of PRRs that play a key role in the pathogenesis of GVHD. 
Once danger signals are released after conditioning, multiple 
innate immune signaling pathways are activated and amplified. 
Therefore, regulating danger signaling pathways in an effective 
manner is complex. Preclinical data suggest that targeting one spe-
cific signaling pathway or molecule may have only limited effects 
in reducing GVHD. In addition, the specific timing of regulation 
by blockade using antagonists may be a critical factor to consider. 
However, it is plausible that stimulating the negative regulating 
pathway that is commonly employed by several DAMPs may be 
a more rational way to mitigate GVHD. Thus exploring novel 
mechanisms of negative regulation of danger DAMP signaling 
that mediate lethal inflammatory responses should be carefully 
examined as new strategy of the prevention and treatment of 
GVHD. One potential benefit of regulating danger signaling is 
that GVT responses may be preserved due to selective attenuation 
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of APCs with presumably limited effects on donor tumor-specific 
T cells necessary for mediating GVT responses. Clinical trials that 
investigate critical mediators of the danger response hold promise 
in the prevention of GVHD without affecting GVT responses.
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