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TACCO, a Database Connecting 
Transcriptome Alterations, 
Pathway Alterations and Clinical 
Outcomes in Cancers
Po-Hao Chou1, Wei-Chao Liao1,2,3, Kuo-Wang Tsai4, Ku-Chung Chen5, Jau-Song Yu1,6,7 &  
Ting-Wen Chen8

Because of innumerable cancer sequencing projects, abundant transcriptome expression profiles 
together with survival data are available from the same patients. Although some expression signatures 
for prognosis or pathologic staging have been identified from these data, systematically discovering 
such kind of expression signatures remains a challenge. To address this, we developed TACCO 
(Transcriptome Alterations in CanCer Omnibus), a database for identifying differentially expressed 
genes and altered pathways in cancer. TACCO also reveals miRNA cooperative regulations and 
supports construction of models for prognosis. The resulting signatures have great potential for patient 
stratification and treatment decision-making in future clinical applications. TACCO is freely available at 
http://tacco.life.nctu.edu.tw/.

Although considerable cancer sequencing data are already publicly available, systematically discovering mean-
ingful correlations from these data is still challenging for cancer biologists lacking related computer skills. Large 
cancer sequencing projects, such as The Cancer Genome Atlas (TCGA), The International Cancer Genome 
Consortium (ICGC) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET), 
have produced large amounts of sequencing data and made these data publicly available1,2. Although countless 
next-generation sequencing analysis tools and pipelines for processing high-throughput genomic and transcrip-
tomic sequencing data have been developed, using these tools or pipelines still requires some basic command-line 
knowledge and sometimes even certain programming skills. Therefore, an easy-to-use interface that allows inves-
tigators to manage, integrate, and visualize cancer sequencing data across multiple cancer types without the need 
for computer skills would be a valuable tool for utilizing public cancer genomics data and advancing the cancer 
research field.

A number of databases, including FireBrowse, cBioPortal, OncoLnc, CancerMiner, GEPIA, miRCancerdb 
and MiRGator, are available for exploring transcriptome changes in cancers3–8. Using these databases, researchers 
can identify differentially expressed genes (DEGs), perform pathway analyses using these DEGs, explore corre-
lations between expression levels of miRNAs and their target genes and analyze associations between the expres-
sion of individual genes and overall survival, among other functionalities. A five-miRNA (micro RNA) signature 
was recently proposed for stratification of patients with pancreatic adenocarcinoma into high-risk and low-risk 
groups with 5-year overall survival rates of 10.2% and 47.8%, respectively9. Similarly, other combined expression 
signatures have been proposed for lung adenocarcinoma, head and neck squamous cell carcinomas, glioblasto-
mas, and breast cancers10–13. These signatures can potentially be used as clinical markers in personalized med-
icine; however, currently available databases only provide connections between the expression level of a single 
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gene and survival data3,6,7. Therefore, a cancer transcriptome database that incorporates a feature that allows 
prognosis model construction would be extremely valuable.

In addition to survival signatures, another important, but often neglected, factor is miRNA-mRNA regulatory 
networks. Dysregulation of miRNA expression is significant in cancer formation and development14. miRNAs are 
22-nucleotide long non-coding RNAs that target and regulate the expression of hundreds of target mRNAs; more-
over, one gene may be targeted by multiple miRNAs. Thus, transcriptome alterations in cancer are a consequence 
of these multiple-to-multiple regulatory relationships among miRNAs and their target genes15–17. However, this 
type of combinatorial regulation of miRNAs has not been considered or investigated in previous cancer transcrip-
tome databases. These miRNA cooperative modules can be taken into consideration by simply adding an analysis 
of how many miRNAs co-target the same genes. This additional information about such cooperative miRNAs can 
be helpful in selecting target genes for subsequent analysis or validation.

To fulfill all the analytical requirements for cancer transcriptomes, we propose the database, Transcriptome 
Alterations in CanCer Omnibus (TACCO). TACCO aims to provide an interactive interface that enables 
researchers to specify a group of significant differentially expressed miRNAs (DEmiRNAs) or DEGs, and sub-
sequently perform pathway enrichment analysis and model construction for prognosis. TACCO will be useful 
for developing models for prognosis and thus should prove beneficial to the entire cancer research community.

Results and Discussion
Browse the expression levels of genes of interest in different cancer types.  An overview of 
TACCO is shown in Fig. 1. TACCO provides gene and miRNA expression data for 26 and 22 cancer types, respec-
tively. TACCO is the first cancer transcriptome database that includes miRNA-target correlations and provides 
the signature construction for prognosis and pathological staging. On the browse page, the user can either select 
or key in a gene symbol or miRNA ID of interest to explore expression fold changes, average expression levels in 
normal and tumor tissue, and p-values calculated from expression levels in tumor and adjacent normal tissues 
for different cancer types. TACCO also presents correlations between the expression levels of miRNA and tar-
get genes for cancer types for which both miRNA and gene expression data are available. While Pearson’s r and 
Spearman’s ρ are suitable for discovering linear correlation and rank correlation, respectably, both correlation 
analyses have been used in exploring miRNA-mediated regulation of target genes5,8,18. Therefore, TACCO calcu-
lates both Pearson’s r and Spearman’s ρ, and offers a distribution plot.

Identify DEGs from a volcano plot.  TACCO illustrates transcriptome changes in the form of volcano 
plots together with slider bars for both p-values and fold changes. Hence, users can use customized criteria for 
identification of DEGs or look specifically for upregulated/downregulated gene lists. The volcano plots and num-
ber of DEGs refreshes on the fly upon user modification of the p-value or fold-change filter. After users apply 
their own criteria to identify a group of significant DEGs, these genes can be used in pathway enrichment analysis 
or model construction for survival prediction. TACCO also analyzes the number of DEmiRNAs that target the 
same gene, allowing users to investigate miRNA cooperative regulatory networks. To further investigate miRNA 
cooperative modules in cancers, we implemented KEGG pathway enrichment analysis in TACCO. We analyzed 
enriched pathways for genes co-targeted by at least 1, 2, 3, 4, or 5 DEmiRNAs for several cancer types which have 
related genes included in the KEGG database. We then calculated the percentage of genes among all targeted 
genes that have been reported in specific-cancer pathways. We found that the ratio of co-targeted genes that 
are found in the cancer pathways are positively correlated with the number of regulating DEmiRNA (Fig. 2). 
Although there are other cancer transcriptome databases, TACCO is the only one that provides information on 
miRNA co-target regulation. In our experience, the cooperative behavior of miRNAs—an important factor to 
consider in investigating alterations in the cancer transcriptome—may often be ignored.

Specify enriched pathways in KEGG, MSigDB or GO categories.  For each cancer type, TACCO 
provides GSEA analysis for GO categories, gene sets from MSigDB and KEGG pathways19–23. Users can survey 
the enriched pathways together with the GSEA plot, normalized enrichment score adjusted p-value, and Q-value. 
Additionally, if DEGs were selected or users are interested in a specific gene list, TACCO also offers pathway 
enrichment analysis for subgroups of genes. TACCO utilizes a hypergeometric test to examine overrepresented 
pathways. For example, users can take the 803 up-regulated and 736 down-regulated genes (genes having absolute 
fold changes larger than 2 and p-values smaller than 0.01) in breast invasive carcinoma for the KEGG pathway 
and GO term enrichment analysis. KEGG pathway enrichment plots show the enrichment in many cancer-related 
pathways (Fig. 3a). TACCO also provides hyperlinks for all these pathways to the KEGG database and highlights 
the DEGs in the pathway (Fig. 3b). As for GO categories, TACCO provides a list of enriched GO terms and 
depicts a directed acyclic graph. The directed acyclic graph shows the parent-child relationships between GO 
terms and TACCO highlights the overrepresented GO terms (Fig. 4).

Construct a model for prognosis or pathologic staging.  The significant DEGs identified in cancers 
are likely related to tumorigenesis; thus, their expression levels are potentially correlated with clinical outcome 
or cancer stage. Hence TACCO provides model construction for prognosis or pathologic staging. In addition 
to DEGs/DEmiRNAs, users can upload a specific gene list and select a cancer type for model construction. 
To identify a signature for prognosis, TACCO first evaluates the power of each gene or miRNA to distinguish 
patients with a good outcome from those with a bad outcome and then uses Lasso regression, Ridge regression, 
Classification and Regression Tree (CART), Random forest or Generalized Linear Models (GLM) to construct 
prediction models. TACCO also produces a Kaplan-Meier survival plot and log-rank p-value for the predic-
tion results. For pathologic staging, TACCO evaluates the power of each gene or miRNA to distinguish patients 
from different cancer stage or TNM categories and then use aforementioned algorithms for prediction model 
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construction. To illustrate the performance of TACCO, we tested two survival-associated miRNAs signatures 
provided from previous studies in pancreatic adenocarcinoma and lung adenocarcinoma9,13. We uploaded the 
reported list of miRNAs to TACCO and successfully constructed the prediction models which can distinguish low 
and high risk groups. As shown in Fig. 5, TACCO generates Kaplan-Meier survival plot for the predicted low and 
high risk groups from the 480 patients with lung adenocarcinoma as well as the importance of each predictor i.e. 
miRNA. Identification of a model or a signature that can predict overall or disease-free survival for various cancer 
types would be helpful, potentially guiding treatment decisions in the clinic.

In addition to GLM, TACCO utilizes Lasso regression and Ridge regression to identify transcriptome signa-
tures for prognosis. Regression is one of the most commonly used machine-learning tasks, and the traditional and 
most popular of such methods are ordinary least squares regression and stepwise regression. However, both are 
known to be sensitive to random errors and are weak in terms of feature selection, prompting the development 
of Ridge regression and Lasso regression methods24. Lasso regression is a forward variable selection method that 

Figure 1.  Overview of TACCO. TACCO was constructed using transcriptome data downloaded from several 
databases and provides GSEA results for gene sets from MSigDB, GO terms and KEGG pathways in 26 cancer 
types. In addition to GSEA, users can either identify DEGs/DEmiRNAs in TACCO or upload a gene set of 
interest. After a gene list is defined, users can construct a prediction model for pathological staging or clinical 
prognosis using the clinical or survival data in TACCO. For prognosis analysis, Kaplan-Meier survival plots 
with log-rank test p-values are provided for prediction results. Users can also perform a GO enrichment 
analysis, carry out KEGG pathway enrichment analysis21 and get the details of specific pathway by visiting 
external databases.
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can choose one predictor out of a group of correlated variables. Lasso regression can also improve prediction 
accuracy in models with a limited number of predictors and provide better model interpretability. In addition, 
Lasso regression has recently been used to generate reliable models for survival prediction using transcriptome 
or protein expression data25–27. Thus, TACCO exploits Lasso regression for selection of transcriptome signatures 
and construction of prediction models for prognosis. For users who want to include all the uploaded or selected 
features in the prediction model, TACCO also provides Ridge regression. Meanwhile, decision tree based meth-
ods such as Random forest and CART are also included in TACCO because these two algorithms are also useful 
in signature construction for survival prediction28,29.

An example–miR-17/92 miRNA cluster.  The oncogenic miR-17/92 miRNA cluster (has-miR-17, 
hsa-miR-18a, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a and hsa-miR-92a) is known to be frequently overex-
pressed and play a prognostic role in lung cancer30,31. We used TACCO to investigate the role of miR-17/92 cluster 
in lung cancer. We first explored the negative regulation of miR-17/92 cluster on their target genes. For exam-
ple, significantly negative correlation (p-value = 1.57*10−13, Spearman’s rank correlation) was found between the 
expression levels of has-miR-19b and PTEN and their spearman’s correlation coefficient is −0.321 in 510 lung 
adenocarcinoma samples. We found significant weak or moderate negative correlations between many miRNAs 

Figure 2.  Genes targeted by a larger number of differentially expressed miRNAs (DEmiRNAs) are more 
frequently involved in cancer pathways. Both significantly upregulated and downregulated miRNAs were 
considered in (a), and only significantly upregulated miRNAs were considered in (b). For each cancer type, gene 
sets composed of genes targeted by different numbers of DEmiRNAs were used in KEGG pathway enrichment 
analyses. The percentage of genes involved in a given specific cancer type pathway were plotted. For example, 
in (A) a total of 92 genes are targeted by more than three DEmiRNAs in pancreatic cancer (PAAD; blue line), 
of which 8 were in KEGG hsa05212 (pancreatic cancer pathway); hence, the gene ratio is 8.7%. There is no 
additional data for PAAD because there are too few genes targeted by more than 4 or 5 DEmiRNAs for KEGG 
pathway enrichment analysis. Abbreviations: BLCA, bladder urothelial carcinoma; BRCA, breast invasive 
carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver 
hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, 
prostate adenocarcinoma; THCA, thyroid carcinoma; and UCEC, uterine corpus endometrial carcinoma.
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and their target genes which is expectable from heterogeneous tumor samples and also the complex transcrip-
tome regulatory networks behind. We then uploaded a list of the all the miRNA products of miR-17/92 cluster 
and explored the expression changes of these miRNAs in lung adenocarcinoma. We found has-miR-20a-3p was 
5.09 times up-regulated, this was consistent with previous studies32,33 (Fig. 6a). We also downloaded the targeted 
gene list of miR-17/92 cluster and then uploaded the gene list to TACCO to explore the expression changes of 
these targeted genes (Fig. 6b). We further carried out KEGG pathway enrichment with all the target genes for 
these miRNAs and found multiple cancer-related pathways enriched, including p53 signaling pathway, cellular 
senescence, proteoglycans in cancer and PI3K-Akt signaling pathway etc. We further explored the PI3K-Akt 
signaling pathway in KEGG database and found several important genes including AMPK, Ras, PI3K, Raf-1 
and ERK are all targeted by the miR-17/92 miRNA cluster (Fig. 6c). We also tried to construct a model from 
these miRNAs to distinguish between patients with distant metastasis and without metastasis. Combining these 
miRNAs and their target genes, TACCO can provide a signature to differentiate patients with (M1) and without 
(M1) distant metastasis in lung adenocarcinoma. The signature composite of 121 genes include the top important 
TCP1, ARMT1, PIP4K2A which were already reported to correlated with metastasis in other cancer types34–36. 
Even though the signature misclassified few M1 as M0, most of the patients were correctly grouped (Fig. 6d).

Comparison with other existing databases.  Although other cancer transcriptome databases that come 
with interactive graphical user interfaces are available, TACCO is the only one that provides prediction model 
construction capability and information on cooperative miRNA modules (Table 1). As shown in this study, 
these cooperative regulatory interactions may be a non-negligible factor in studying transcriptome alterations. 
Four databases—MiRGator, GEPIA, cBioPortal and TACCO—provide identification of dysregulated genes or 

Figure 3.  KEGG pathway enrichment results for differentially expressed genes (DEGs) in breast invasive 
carcinoma. (a) Enriched KEGG pathways are listed in a distribution plot in which the x-axis shows the ratio of 
genes included in DEGs for each pathway and the colors represent the adjusted enriched p-values. (b) TACCO 
provides links to KEGG pathway plots21. Here the enriched pathway cell cycle is shown where all the genes 
included in DEG list are written in red and highlighted in the red boxes.
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miRNAs, but only GEPIA and TACCO provide an interface that allows users to specify customized criteria for 
DEmiRNA or DEG identification. TACCO additionally provides volcano plots and the number of upregulated/
downregulated DEGs, which refresh on the fly. Although FireBrowse, GEPIA and OncoLnc also offer survival 
analysis for single genes3,7, none of these databases provide model construction for survival prediction.

Conclusion
We propose a cancer transcriptome database, TACCO, that aims to link transcription alterations and transcrip-
tome regulatory networks with alterations in downstream pathways and clinical outcomes in different cancer 
types. TACCO provides a user-friendly interface for assessing correlations between the expression of miRNAs 
and their target genes, identifying DEGs and altered pathways in cancers, and investigating miRNA co-target 
regulatory networks. Additionally, TACCO constructs models for prognosis from DEG lists or user-defined gene 
lists. Collectively, the analytical capabilities and model construction features present in TACCO make it feasible 
for researchers or clinicians to systematically investigate transcriptome regulatory network alterations and clinical 
outcomes in cancers. Accordingly, we believe that TACCO will shed light on important questions in the field of 
cancer research.

Materials and Methods
Identification of DEGs.  Expression levels of miRNAs for 22 cancer types and mRNAs for 26 cancer types 
(Supplementary Table 1) were download from Broad GDAC Firehose version stddata__2016_01_28. All miRNA 
IDs were converted from MIMAT ID to miRBase nomenclature (hsa-miR-133a-3p, hsa-miR-557 etc.) based on 
miRBase 22 release37. Expression levels of mRNAs were obtained from RNAseqV2 data which were derived from 
RSEM38. For each cancer type, all genes with median expression levels greater than 0.01 transcript per million 
(TPM) across all samples were considered to be expressed. For each expressed gene, fold-change in expression 
levels between tumor and normal tissues, corresponding p-value, and Benjamini-Hochberg adjusted p-value 
were calculated using the EBSeq, Wilcoxon rank-sum test and multiple test correction in R39,40. Finally, vol-
cano plots were generated using R package ggplot2. Based on validated interactions between miRNA and mRNA 
downloaded from miRTarBase 7.041, TACCO also lists target genes for DEmiRNAs and calculates the number of 
DEmiRNAs that target these genes.

Figure 4.  GO term enrichment result for differentially expressed genes (DEGs) in breast invasive carcinoma. 
The directed acyclic graph for overrepresented Biological process GO terms identified for DEGs are depicted. 
The circles represent GO terms, lines represent the relationship between GO terms and colors represent the 
adjusted enriched p-values.
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Correlation between expression levels of mirna and target genes.  For exploring regulatory rela-
tionships between miRNAs and their target genes, TACCO provides a tool that analyzes correlations between 
the expression levels of miRNAs and their target genes. When browsing TACCO, the user can select a specific 
gene or miRNA. TACCO calculates both parametric and non-parametric correlation coefficients (i.e., Pearson’s r 
and Spearman’s ρ) for expression levels of the interacting mRNA/target gene pair. In cases where a more normal 
expression distribution is needed, TACCO also offers correlation coefficients for log-transformed expression val-
ues. All correlation coefficients are listed in a table from which the user can select a gene or miRNA of interest to 
explore in detail. When the user selects a gene or miRNA from the table, a distribution plot for expression levels 
of the selected miRNA/target gene and a regression line with iteratively reweighted least squares is generated on 
the fly.

Pathway enrichment analysis.  TACCO provides Gene Set Enrichment Analysis (GSEA) for interpreting 
expression data for different cancer type22. TACCO also offers pathway enrichment analysis for either selected 
DEGs or an uploaded gene list. TACCO exploits the hypergeometric test, clusterProfiler, from the R package to 
identify enriched KEGG pathways or Gene Ontology (GO) terms42. TACCO generates a directed acyclic graph for 

Figure 5.  Model for prognosis constructed with TACCO. From a list of miRNAs TACCO constructs a 
prediction model for lung adenocarcinoma patients and uses this model to stratify samples into high and low 
risk groups. The patients from high and low risk were tested with log-rank test. TACCO provides tables and 
plots for the prediction results include (a) the Kaplan-Meier survival plot together with the number of patient 
surviving at each specific time point and (b) the importance for each predictor in the prediction model.
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enriched GO terms using R package, enrichplot. TACCO also displays a button to visit the KEGG website, where 
all the selected genes are highlighted within a red box.

Identification of signatures for prognosis or pathological staging.  All clinical and survival infor-
mation for patients was downloaded with the R package, curatedTCGAData43. For each cancer type, all patients 
are divided into two groups based on their median survival/disease-free survival, in days. Differentially expressed 
mRNAs and miRNAs capable of distinguishing the two groups (Wilcoxon rank-sum test, p-value < 0.05) are 
selected as candidate features for signature identification44. Algorithms from the caret package45, including Lasso 
regression, Ridge regression, Random forest, Classification and Regression Tree (CART) and General Linear 
Model (GLM) were provided for prediction model construction. Prediction models constructed from 5-fold or 
3-fold (for <150 patients) cross-validation is used to categorize patients into better (Low risk) or worse (High 
risk) surviving groups45. Finally, TACCO evaluates the prediction results using a Kaplan-Meier survival plot (KM 
plot) and log-rank test. Both KM plot and log-rank test results are generated to allow comparisons of survival data 
from predicted High-risk and Low-risk groups. TACCO also utilizes samples from early/late stage or different 
TNM stages to construct models for pathological staging with the same classification strategy.

Figure 6.  Explore the role of miR-17/92 miRNA cluster in lung adenocarcinoma with TACCO. (a) The volcano 
plot of miRNAs in lung adenocarcinoma. The miR-17/92 miRNA cluster includes 6 miRNAs, i.e. has-miR-17, 
hsa-miR-18a, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a and hsa-miR-92a. The product of these 6 miRNAs are 
labeled in red. The most significantly upregulated miRNA is hsa-miR-20a-5p which has log2 fold change value 
equals to 2.35. (b) The volcano plot of genes in lung adenocarcinoma. The genes targeted by miR-17/92 miRNA 
cluster were labeled in purple. (c) PI3K-AKT signaling pathway is found enriched with genes targeted by the 
miRNAs located in miR-17/92 miRNA clusters. The targeted genes are in red box21. (d) The M stage (distant 
metastasis) classification results of the model constructed from miR-17/92 miRNA cluster and their target 
genes. The x-axis is the prediction values for classification. Patients with prediction value larger than 0.5 and 
smaller than 0.5 are predicted to be in M1 group and M0 group, respectively. The red and green color represent 
patients clinically diagnosed as from M1 and M0 groups, respectively. We found the prediction values for all 
M0 stage patients are smaller than 0.5 and hence correctly classified. As indicated by red circle, a few M1 stage 
patients have prediction values around 0.1 and wrongly classified as M0 group.
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Website construction and availability.  TACCO was built using Python, JavaScript, R and R Shiny on 
a Linux operating system and can be updated with new cancer sequencing projects based on current database 
schema. All tables and figures generated in TACCO can be downloaded by users. TACCO is available at http://
tacco.life.nctu.edu.tw/ and can be explored with multiple web browsers, including Chrome, Internet Explorer, 
Firefox, and Safari.
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