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Quantum tunneling and quantum 
walks as algorithmic resources 
to solve hard K‑SAT instances
Ernesto Campos1,2, Salvador E. Venegas‑Andraca1* & Marco Lanzagorta3

We present a new quantum heuristic algorithm aimed at finding satisfying assignments for hard K-SAT 
instances using a continuous time quantum walk that explicitly exploits the properties of quantum 
tunneling. Our algorithm uses a Hamiltonian HA(F) which is specifically constructed to solve a K-SAT 
instance F. The heuristic algorithm aims at iteratively reducing the Hamming distance between an 
evolving state |ψj� and a state that represents a satisfying assignment for F. Each iteration consists 
on the evolution of |ψj� (where j is the iteration number) under e−iHAt , a measurement that collapses 
the superposition, a check to see if the post-measurement state satisfies F and in the case it does not, 
an update to HA for the next iteration. Operator HA describes a continuous time quantum walk over a 
hypercube graph with potential barriers that makes an evolving state to scatter and mostly follow the 
shortest tunneling paths with the smaller potentials that lead to a state |s� that represents a satisfying 
assignment for F. The potential barriers in the Hamiltonian HA are constructed through a process 
that does not require any previous knowledge on the satisfying assignments for the instance F. Due 
to the topology of HA each iteration is expected to reduce the Hamming distance between each post 
measurement state and a state |s� . If the state |s� is not measured after n iterations (the number n of 
logical variables in the instance F being solved), the algorithm is restarted. Periodic measurements and 
quantum tunneling also give the possibility of getting out of local minima. Our numerical simulations 
show a success rate of 0.66 on measuring |s� on the first run of the algorithm (i.e., without restarting 
after n iterations) on thousands of 3-SAT instances of 4, 6, and 10 variables with unique satisfying 
assignments.

K-SAT is a most important problem in computer science which is known to be NP− Complete for all K > 21,2. We 
focus on the set of satisfiable instances of the K-SAT, i.e. those instances for which there is at least one assignment 
that returns a logical 1. Satisfying a K-SAT instance may be easy or require very significant efforts, it all depends on 
its number of variables and clauses. Instances with one or few satisfactory assignments are harder to solve because 
satisfactory assignments live in a set with cardinality 2n , where n is the number of binary variables upon which the 
instance is built. Those K-SAT instances for which there is only one satisfying assignment constitute the focus of 
this paper.

A central activity in quantum computing consists of using quantum mechanical properties as resources in 
order to build algorithms that may outperform their classical counterparts. Along these lines, we find several 
quantum algorithms that have been designed to solve K-SAT instances3–5. In this paper, we present a quan-
tum algorithm in which continuous quantum walks and quantum tunneling are explicitly used as computational 
resources.

Originally designed to model quantum phenomena6–9, quantum walks are an advanced tool for building 
quantum algorithms (e.g.10–18) that has been shown to constitute a universal model of quantum computation19,20. 
Quantum walks come in two variants: discrete and continuous21. The continuous-time quantum walk was pro-
posed by Childs et al11 and the continuous time quantum walk on a hypercube was first studied by Kendon and 
Tregenna22 and later extensively analyzed by Drezgich et al23.

Quantum tunneling is a quantum mechanical phenomenon in which a particle passes through a potential 
barrier. The probability of finding a particle inside the potential barrier decreases exponentially, which in turn 
increases the probability of finding the particle outside the potential24, as if the particle were expelled from the 
barrier. This behavior suggests that quantum tunneling can be used as an algorithmic tool in which researchers 
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can assign a meaning to the potential barriers in the context of the problem being solved. So far and to the best 
of our knowledge, quantum tunneling has only been used as a computational resource as a passive byproduct of 
quantum phenomena, i.e. as a physical phenomenon that comes out as a result of quantum evolution and that is 
utilized as a free variable upon which no explicit manipulation or control is performed. This is indeed the case 
of the most celebrated computational use of quantum tunneling as a component of quantum annealing25,26, and 
for alternative methods for hybrid search based on quantum annealing27–29. The closest to the use of tunneling 
in our algorithm is the work by Kechedzhi et al.30, where they use tunneling as a part of a quantum subroutine. 
Furthermore, the effects of potential barriers in discrete and continuous quantum walks in the quantum walk 
versions of the Grover’s algorithm were studied in31 but only as a type of noise that can be avoided, not as an 
algorithmic resource.

In this paper, we present a proposal for using quantum walks and quantum tunneling together, under explicit 
manipulation, in a quantum heuristic algorithm aimed at solving hard instances of the K-SAT problem. Our 
algorithm can deal with instances with multiple satisfying assignments but we have chosen to focus on instances 
with a unique satisfying assignment as instances with a few or unique satisfying assignments tend to be harder 
and the most important. For our testing we randomly generated, using a uniform distribution, thousands of 
3-SAT instances of 4, 6, and 10 variables with one satisfying assignment. Such instances can be found in our 
repository32. We do not make any claim regarding computational speed-up. Our only claim is, based on the 
algorithm, theoretical results and simulations & experiments run on digital computers, that the use of quantum 
tunneling and quantum walks to solve K-SAT instances with unique solution is a promising approach.

The order in this paper is the following. The second section explains the “K-SAT problem”, “Continuous time 
quantum walk on a hypercube graph” shows the behavior of a quantum walk in a hyper cube graph, “Formal 
description of our algorithm” presents a formal description of the algorithm, its parameters, and a more complex 
example, “Implementation details” presents details on the algorithm implementation, the sixth section presents 
the “Analytical approximation of the algorithm behavior”, “Numerical calculation of parameters and additional 
simulations” presents numerical simulations and the calculation of the parameters of HA , and “Conclusions” 
presents conclusions, observations and further work.

K‑SAT problem
The K-SAT problem is one of the most important problems in computer science. It is derived from the SAT 
problem, the first problem proved to be NP− complete1. K-SAT is a constraint satisfaction problem where 
a Boolean formula has to be satisfied, i.e. its result has to be true. A K-SAT instance is written in conjunctive 
normal form (CNF), that is, a conjunction of clauses, where a clause is a disjunction of literals, and a literal can 
be a logical variable or its negation.

Formally speaking, the K-SAT problem can be stated as follows: given a K-SAT instance P, is there an satis-
fying truth assignment for P? In other words, the K-SAT problem consists of finding assignments that satisfy a 
given CNF Boolean formula, where K is the number of literals in each clause. For example:

 where ∨ is the logical symbol for OR, ∧ is the logical symbol for AND, {x1, . . . x6} is the set of logical binary 
variables, and xj is the negation of xj . This is a 3-SAT instance since each clause contains exactly 3 variables, and 
the binary string xs = [1, 1, 0, 0, 1, 0] is one of the assignments that satisfy P(x) . This can be verified by substitut-
ing xs into P(x)

Satisfying a K-SAT instance P can be easy, difficult or impossible, depending on the number of bit strings 
that make P true. For example, let us suppose we have a K-SAT instance P defined over n binary variables. If 
we run a brute-force approach on P, we may simply substitute each and every bit string from x0 = 000 . . . 0 to 
x2n−1 = 111 . . . 1 on P, only stopping either when finding P(xs) = 1 or when we have substituted all bit strings 
from x0 to x2n−1 without finding any satisfying assignment. If P has many satisfying assignments, we will eventu-
ally find one of those assignments, possibly sooner than later. However, if P has only a few satisfying assignments 
(along these lines, the worst case scenario would be having only one satisfying assignment), finding them will 
eventually happen but it may well take a substantial (i.e. exponential) amount of time. If no bit string from x0 
to x2n−1 satisfies P, then P is unsatisfiable but it took us an exponential amount of resources to find that out.

As stated above, the K-SAT is an element of the set of NP− Complete problems, which in turn is a subset of 
NP (the abbreviation of “Non-deterministic Polynomial Time”), the set of problems in which a solution can be 
tested in polynomial time. Being an NP− Complete problem means that an arbitrary instance of any problem 
under the NP category can be rewritten as an instance of an NP− Complete problem in a polynomial number 
of steps2,33,34. The first problem proved to be NP− Complete was the SAT problem, and later the K-SAT, which 
is a variation of SAT, was proven to be also NP− Complete for K > 21,2,34–36. If an algorithm that runs on a 
Deterministic Turing Machine in polynomial time is discovered for an NP− Complete problem, it implies every 
NP problem can be solved in polynomial time, hence proving P = NP.

Continuous time quantum walk on a hypercube graph
An n-dimensional hypercube graph can be constructed by assigning each vertex to one of the 2n possible n-var-
iable binary combinations, and connecting the nodes that have a distance of 1 in the Hamming distance (the 
number of positions/bits at which the corresponding elements between two arrays are different). The Hamiltonian 
HA used in our algorithm describes the dynamics of a quantum walk over a hypercube with potential barriers. 
The reason why we chose to use the hypercube graph is to reduce the distance between |ψj� and |s� with every 

P(x) = (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x6) ∧ (x1 ∨ x4 ∨ x6)

P(xs) = (1 ∨ 1 ∨ 0) ∧ (1 ∨ 1 ∨ 1) ∧ (1 ∨ 1 ∨ 0) = 1
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iteration of the algorithm by taking advantage of the hypercube topology, where closer states have a shorter 
Hamming distance. During the evolution of an n-qubit state |ψj� (j is the iteration number) under e−iHAt , most 
of the probability flux will tunnel through the paths from |ψj� to |s� , and after a time tf  the system is measured 
and the superposition collapses. If the post-measurement state |ψj+1� is different from |s� , there is a good chance 
|ψj+1� is a state in a tunneling path from |ψj� and |s� which thanks to the hypercube topology will be at shorter 
Hamming distance to |s� , hH (|ψj+1�, |s�) < hH (|ψj�, |s�).

The structure of the the adjacency matrix A(n) for an n-dimensional hypercube can be written as

where Aj =
⊗n

i=1 Oij and Oij =

{
σ̂x if i = j
I if i �= j

If a state that is the tensor product of n qubits in the computational basis evolves under the unitary operator 
e−iA(n)t (which is equivalent to evolving under HA without potential barriers), the probability at some time of 
measuring a state |z� , that is also an n-qubit tensor product, can be calculated as follows. Firstly, we need to realize 
that the Hermitian matrices Ai commute with each other, for example

which means we can express e−iA(n)t as a product of unitary operators e−iA(n)t = e−iA1t e−iA2t ...e−iAnt . Then, by 
expanding e−iAjt into a Taylor series and gathering the terms, we obtain

which means e−iAjt is equivalent to only evolving the ith qubit under e−iσ̂x t . As a result, we get 
e−iA(n)t = e−iA1t e−iA2t ...e−iAnt =

⊗n
j=1 e

−iσ̂x t.
The probability Pz(t) of measuring a state |z� from |x� evolving under e−iA(n)t depends only on the Hamming 

distance between |x� and |z� . If we evolve |x� = |0�⊗n , the probability of finding an arbitrary state |z� is given by

where n0 and n1 are the number of 0’s and 1s appearing in |z� respectively, meaning n1 is also the Hamming 
distance between |x� and |z�.

(1)A(n) =

n∑

j=1

Aj

[A1,A3] =(σ̂x ⊗ I ⊗ I ⊗ ...)(I ⊗ I ⊗ σ̂x ⊗ ...)− (I ⊗ I ⊗ σ̂x ⊗ ...)(σ̂x ⊗ I ⊗ I ⊗ ...)

= (σ̂x ⊗ I⊗ σ̂x ⊗ ...)− (σ̂x ⊗ I⊗ σ̂x ⊗ ...)

[A1, A3] = 0

e−iAjt = I⊗n
cos(t)− iAj sin(t)

= I⊗n
cos(t)− i(I ⊗ ...⊗ σ̂x ⊗ ...⊗ I) sin(t)

= I ⊗ ...⊗ (I cos(t)− iσ̂x sin(t))⊗ ...⊗ I

e−iAjt = I ⊗ ...⊗ e−iσ̂x t ⊗ ...⊗ I

(2)

Pz(t) = |�z|e−iA(n)t |x�|2

= �z|




n�

j=1

e−iσ̂x t



|x��x|




n�

j=1

eiσ̂x t



|z�

= �z|

n�

j=1

�
e−iσ̂x t |0��0|eiσ̂x t

�
|z�

= �z|

n�

j=1

(cos(t)|0� − i sin(t)|1�)(cos(t)�0| + i sin(t)�1|)|z�

= cos2n0(t) sin2n1(t)
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Formal description of our algorithm
Our algorithm is formally introduced in ALGORITHM 1. A key element of our algorithm is the construction of 
the Hamiltonian HA(F, |ψj�, j) , which determines the dynamics under which a state |ψj� will evolve during the 
jth iteration of the algorithm. Each iteration of the algorithm consists of the evolution of a state |ψj� during a time 
tf  (this is the measurement frequency, for the cases analyzed in this paper tf = 3

2π as discussed in “Numerical 
calculation of parameters and additional simulations”) followed by a measurement that collapses the superposi-
tion, and then a check of the post measurement state |ψj+1� to see if it represents a satisfying assignment for F 
(the checking can be done in O(mK)), in case it does not, HA gets updated for the next iteration.

The Hamiltonian HA for the jth iteration is

where A(n) is the adjacency matrix of an n-dimensional hypercube graph and n is the number of variables in 
the instance F, which can be constructed using Eq. (1), and

is the potential part of HA . The components of V are:

•	 |ψj� is the tensor product of n qubits in the computational basis. |ψj� represents an assignment ψj for the 
instance F. |ψ0� is an initial random state, while |ψj� for j > 0 is the post measurement state for the jth itera-
tion.

•	 α = α(F,ψj) is the number of clauses in F that are not satisfied by the assignment represented by |ψj�.
•	 M = M(F) is a diagonal matrix that has as the element corresponding to |a��a| the number of clauses in F not 

satisfied by the assignment represented by |a� . It is worth noting that the elements of M(F) arise naturally from 
a construction process (shown later in this section) without any prior knowledge on the satisfying solutions 
of F.

•	 γ (n,m,K) and δ(n,m,K) are both positive real parameters dependent in the number of variables n, the num-
ber of clauses m, and the number of literals per clause K in the instance F. The reason of their dependency on 
n, m, and K is shown later in this section. γ increases an amount δ every iteration which, as we explain later 
in this section, helps with the amplification of the state |s� that represents a satisfying assignment for F for an 
evolution during a time tf  (the measurement frequency). We do not have an analytical expression for γ and 

(3)HA(F, |ψj�, j) = A(n)+ (γ + δj)(M − α|ψj��ψj|)

(4)V = (γ + δj)(M − α|ψj��ψj|)
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δ , so we have numerically estimated their values for some cases. The values and their effects are discussed 
in more detail in “Effective Hamiltonian via degenerate perturbation theory” and “Numerical calculation of 
parameters and additional simulations”.

The rationale behind the elements of HA is the following. The potential V of Hamiltonian HA is a diagonal matrix 
with potential values specific to each state. The potential barriers between the states are designed to increase the 
tunneling between states |ψj� and |s� . The reason most of the tunneling occurs between |ψj� and |s� is because the 
elements in the potential V corresponding to the outer products |ψj��ψj| and |s��s| are the only ones with a value 
of 0, which is a consequence of the construction process of V.

To construct the potential V, the first step is to build the Non-Satisfied Clauses matrix M(F). As stated before, 
M(F) is a diagonal matrix whose non-zero entries are the number of clauses in F which an assignment a does 
not satisfy. Assignment a is represented by state |a� and its corresponding non-zero entry in M(F) is located on 
the position that corresponds to the outer product |a��a|.

To  s h o w  h o w  M ( F )  i s  b u i l t ,  w e  n o w  i n t r o d u c e  a n  e x a m p l e  b a s e d  o n 
F1(x) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) . The first clause in F1(x) is C1 = (x1 ∨ x2) , and the 
assignments that do not satisfy C1 are : x1 = 0 , x2 = 0 , x3 = 0 , and x1 = 0 , x2 = 0 , x3 = 1 . The states that 
represent the assignments that do not satisfy C1 are |000� and |001� , and the sum of their outer products is 
NS(C1) = |0��0| ⊗ |0��0| ⊗ |0��0| + |0��0| ⊗ |0��0| ⊗ |1��1| , i.e.

The NS(C1) matrix form is given by diag(1, 1, 0, 0, 0, 0, 0, 0) . Note that we can use I when doing the outer 
product summation to represent the variables that do not appear in a clause ( x3 in the case of C1 ), hence reducing 
the number of elements needed to construct each NS(Ci) . The number of non I elements in every NS(Ci) is only 
dependent on K, the number of binary variables on each and every clause of a K-SAT instance, which is fixed 
for a K-SAT instance. This allows us to construct each NS(Ci) with a non-exponential number of elements (see 
“Analytical approximation of the algorithm behavior” for a detailed explanation of how to efficiently construct 
NS(Ci) matrices). NS(C1) is a diagonal matrix with 1s in the elements corresponding to the outer products of 
the states that do not satisfy C1 . In this case the 1s are clearly in the positions corresponding to the outer prod-
ucts of |000� and |001� , while the zeroes correspond to the outer products of the states that represent a satisfying 
assignment for C1.

If the matrices NS(Ci) are calculated for every clause in an instance F, the diagonal elements that are 0 in 
every NS(Ci) correspond to the outer products of the states that satisfy every clause, thus satisfying instance F. 
The sum of every NS(Ci) results in the diagonal matrix

where an entry in M(F) corresponding to an outer product |a��a| is equal to the number of clauses not satisfied 
in F by the assignment represented by |a� , and m is the number of clauses in F. For our example M(F1) is

which in matrix notation is given by

From Eq. (7) we can see that the assignment corresponding to |000� does not satisfy 1 clause in F1 , |001� does 
not satisfy 1 clause, |010� does not satisfy 2 clauses, and so on. There is only one zero in the diagonal of M(F1) , 
which corresponds to the outer product of |111� , meaning the assignment x1 = 1 , x2 = 1 , x3 = 1 is the only 
satisfying assignment for F1.

Since the probability of tunneling is higher between states at potentials with similar values, we want to start 
with an initial state in a very small potential, expecting its probability flux to mostly tunnel through the shortest 
tunneling paths with the smaller potentials leading to |s� that represent a satisfying assignment for an instance 
F (the element corresponding to |s��s| in M(F) is 0, the global minimum) thus amplifying the probability of 
measuring |s� . Since we do not know a priori which states correspond to a small potential, we can just set to 0 the 
potential corresponding to the outer product |ψj��ψj| by classically calculating the number of clauses α(ψj , F) 
the assignment corresponding to |ψj� does not satisfy (this can be done in O(mK)), and then subtracting the 
outer product |ψj��ψj| multiplied by α(ψj , F) from the matrix M(F). As a result we get a 0 in the element cor-
responding to |ψj��ψj| in M(F).

From Eq. (3), the Hamiltonian HA is

Suppose |ψj� = |000� . We build A(n) using Eq. (1). Then, the resulting HA is given by

(5)NS(C1) = |0��0| ⊗ |0��0| ⊗ I

(6)M(F) =

m∑

i=1

NS(Ci),

M(F1) = |0��0| ⊗ |0��0| ⊗ I + |0��0| ⊗ |1��1| ⊗ I + |1��1| ⊗ |0��0| ⊗ I + I ⊗ |1��1| ⊗ |0��0|

(7)diag(1, 1, 2, 1, 1, 1, 1, 0)

HA(F, |ψj�, j) = A(n)+ (γ + δj)(M − α|ψj��ψj|)
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Note that explicitly calculating every element in M(F) consumes an exponential amount of resources in the 
number of qubits. We do it explicitly in this paper with the purpose of showing the logic and behavior of the 
algorithm. In a real world implementation, M(F) would be a physical process that acts as a blackbox.

Parameters discussion.  As stated before, γ and δ are both real positive parameters. First we will explain 
the effect γ + δj has in the probability of measuring |s� , then we proceed to explain why it increases with every 
iteration, and finally why they are dependent on n, m and K, the number of variables, clauses, and literals per 
clause in F respectively.

•	 The effect γ + δj has on HA is clearly a change in the size of the potential barriers. If (γ + δj) < 1 the size of 
the potential barriers get reduced which makes a state |ψj� evolving under e−iHAt to tunnel and amplify |s� 
faster than if (γ + δj) = 1 . This occurs because the smaller the potential barriers the easier it is for the prob-
ability flux to transmit through them, but it has the unwanted side effect of letting more of the probability 
flux to transmit to states outside the shortest paths from |ψj� to |s� which translates into a smaller amplifica-
tion of |s� . On the other hand, if (γ + δj) > 1 the time it will take |ψj� to tunnel to |s� increases but has the 
benefit of less probability flux getting out of the main tunneling paths from |ψj� to |s� which in turn increases 
the amplification and also reduces the small oscillations created by the reflections in the potentials and the 
probability flux transmitting out of the main tunneling paths. Simulations and analytical approximations 
showing the previously mentioned effects are shown in “Numerical calculation of parameters and additional 
simulations”.

•	 To understand why parameter γ gets an increment δ on every iteration, it is required to understand how 
the time it takes to get the maximum amplification of |s� varies depending on its Hamming distance to |ψj� , 
dH (|s�, |ψj�) . Intuitively, a state |ψj� evolving under e−iHAt will amplify faster |s� the smaller dH (|ψj�, |s�) is, 
since it has to tunnel through less potential barriers (see “Numerical calculation of parameters and additional 
simulations” for simulations and approximations exhibiting this behavior). As explained above, thanks to the 
hypercube topology we have a good probability of getting a post measurement state |ψj+1� from the tunneling 
paths from |ψj� to |s� with a smaller Hamming distance to |s� compared to |ψj� , dH (|ψj+1�, |s�) < dH (|ψj�, |s�) . 
So, the purpose of increments δ to γ on every iteration is to keep approximately the same value for the meas-
urement frequency tf  , so that the probability Ps(t) of measuring |s� is greatly amplified for multiple distances 
dH (|ψj�, |s�) approximately at the same time.

•	 Parameters γ , δ depend on n, m and K (the number of variables, clauses and literals per clause of F respec-
tively) because as n increases, the average number of iterations also increases. This is because the average 
Hamming distance is also increased, and having greater γ and δ can make tunneling too difficult from longer 
Hamming distances in few iterations. As for the dependency on m and K it is because we cannot know the 
value of every region in the potential V since they are 2n values, but the average potential value apv = m

2K
 is 

only dependent on m and K for (γ + δj) = 1 (the derivation of apv is presented in “Numerical calculation 
of parameters and additional simulations”, Eq. (11)). If an instance F1 has a greater apv than an instance F2 , 
and both instances have the same number of variables, we can expect the optimal values of γ and δ for F1 to 
be smaller than the optimal values for F2 since smaller values of γ and δ will facilitate the tunneling through 
the bigger potential barriers found in HA(F1) . We have estimated, via digital computer algorithms, optimal 
values of γ and δ , by doing a sweep over the values, for 3-SAT instances with 4, 6 and 10 variables with 16, 
24, and 40 clauses respectively. Table 1 shows smaller values for larger instances with more variables in 
accordance to results presented above. The details on the numerical approximations of γ and δ are shown in 
“Conclusions”.

We have also numerically estimated, for different values of γ and δ , the time during which we evolve the 
system tf  , the measurement frequency, giving the same value tf = 4.72 in every case (details in “Conclusions”). 

(8)HA(F1, |000�, j) =





0 1 1 0 1 0 0 0
1 γ + δj 0 1 0 1 0 0
1 0 2(γ + δj) 1 0 0 1 0
0 1 1 γ + δj 0 0 0 1
1 0 0 0 γ + δj 1 1 0
0 1 0 0 1 γ + δj 0 1
0 0 1 0 1 0 γ + δj 1
0 0 0 1 0 1 1 0





Table 1.   Optimal values for γ and δ for various cases.

K n m γ δ

3 4 16 2.6 0.5

3 6 24 1 0.6

3 10 40 1 0.45
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The analytical approximation of tf  via perturbation theory (shown in “Numerical calculation of parameters and 
additional simulations”) gave tf = 3

2π , in close accordance with the numerical results.

Implementation details
The algorithm may be efficiently implemented by approximating the evolution operator as a set of quantum 
gates by using techniques like the Trotter-Suzuki decomposition37 or its variations. We have developed this 
technique to show that there is at least one efficient method to implement our algorithm. It remains, as future 
work, to identify optimal implementation methods that may preserve the continuous nature of the algorithm38.

HA can be decomposed as a sum of Hermitian matrices acting on small subspaces

where NS(Ci) are the Hermitian matrices that compose M(F). M(F) and A(n) (Eq. (1)) seem to be expensive to 
construct, but in reality M(F) can be constructed using O(m) unitary matrices, while A(n) can be constructed 
in O(n). Each NS(Ci) can be built from 2K unitary matrices acting on a small subspace, this is because K is the 
number of variables contained in each and every clause of a K-SAT instance and, consequently, 2K is a rather small 
number, certainly much less than 2n , where n is the number of binary variables over which a K-SAT instance is 
defined. So, for any instance of the K-SAT problem K is a fixed integer number equal to the number of variables 
in each and every clause, then 2K = O(1) for any given K-SAT instance.

For example, the first clause of F1(x) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) reads C1 = (x1 ∨ x2) 
and the states that represent the assignments that do not satisfy C1 are |000� and |001� . The sum of their outer 
products is the matrix NS(C1)

where σ̂z is the Pauli operator σ̂z = |0��0| − |1��1| . So, M(F) can be expressed as the sum of 2Km Hermitian 
operators. In general, the number of Is in NS(Ci) is n− K , in our example (Eq. (9)) K = 2 and n = 3 so it has 
one I. For instances with more variables, the number of I increases which means that each NS(Ci) only acts in a 
small subspace. Expressing NS(Ci) as the sum of 2K Hermitian operators, as in Eq. (10), requires using K2K−1 
Pauli operators σ̂z . The number of σ̂z operators in NS(Ci) is independent from the number of variables in the 
instance, if the instance had more variables it would just add more Is to each NS(Ci) . Consequently, we do not 
need an exponential number of Pauli matrices to construct M(F).

The unitary eiα|ψj��ψj |t can be efficiently implemented using ancilla qubits. A controlled gate applies a NOT 
gate to an ancilla qubit initially in |0� if the original n qubits are in |ψj� (this can be done with a polynomial num-
ber of gates and ancillas39). Then, if the ancilla qubit is in |1� a controlled gate applies eiαt to any of the original n 
qubits. The required projector for lowering the energy of |ψj� can also be built with a gadget proposed by Dodds 
et al40.

Analytical approximation of the algorithm behavior
To analytically approximate the probability Ps(t) of finding a satisfying assignment to a K-SAT instance F, which is 
equivalent to having |s� as post-measurement quantum state, and to understand how γ + δj affects this probability, 
we use the effective Hamiltonian Heff  obtained by degenerate perturbation theory. The effective Hamiltonian 
only acts on a reduced space and only describes part of the energy spectrum of the complete Hamiltonian. It has 
the advantage of being simpler than the complete Hamiltonian and it is more general than normal perturba-
tion theory since it takes into account the effects of the off-diagonal elements that link the states of interest. For 
example, it is used in the Born-Oppenheimer approximation to separate the electronic wavefunction from the 
nuclear wavefunction of a molecule41. In our case we want to separate the subspace spanned by |ψj� and |s� in 
HA to later approximate Ps(t).

Perturbation theory is a set of approximations used to describe a complex quantum system in terms of a sim-
pler one. The approximation is based on the idea of using a Hamiltonian (the unperturbed Hamiltonian H0 ) with 
known solutions and adding a perturbation Hamiltonian H1 that slightly modifies the system. The solutions of 
the perturbed Hamiltonian Hp can be expressed as corrections to the solutions of the unperturbed Hamiltonian 
H0 . Degenerate perturbation theory is a variation of perturbation theory used for unperturbed Hamiltonians 
with degeneracy in their energy spectrum.

The perturbed Hamiltonian is Hp = H0 + �H1 where � is a dimensionless parameter small enough so that the 
spectrum of H0 constitutes a good starting point to approximate the spectrum of Hp . In the following examples 
� is set to 1 (as it is frequently done in the literature) in the understanding that the elements of H1 are smaller 
than those of H0.

As for our algorithm, to approximate the Hamiltonian already presented in Eq. (3)

HA(F, |ψj�, j) = (γ + δj)

(
m∑

i=1

NS(Ci)− α|ψ0��ψ0|

)
+ A

(9)
NS(C1) =|0��0| ⊗ |0��0| ⊗ I

=
1

2
(I + σ̂z)⊗

1

2
(I + σ̂z)⊗ I

(10)=
1

4
(I ⊗ I ⊗ I + I ⊗ σ̂z ⊗ I + σ̂z ⊗ I ⊗ I + σ̂z ⊗ σ̂z ⊗ I)

HA = A(n)+ (γ + δj)(M − α|ψj��ψj|)
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we use the potential part

as the unperturbed Hamiltonian H0 = V  , and �H1 = A(n) is used as the perturbation Hamiltonian. Hence,

We have chosen H0 and �H1 to be V and A(n) respectively because the entries of �H1 = A are much smaller 
than those of H0 = V  . Entries of H1 = A are composed by 1s and 0s while entries of H0 = V  have average value 
potential value calculated as follows:

For big instances, the contribution of −α|ψj��ψj| can be ignored since it only affects one of the 2n possible 
states. So,

Also, from Eq. (6), we know that

So, the average potential value is the trace of M(F) divided by 2n.

To compute tr(M(F)) we need to know how many elements in M(F) each of the m NS(Ci) matrices contrib-
ute ( Ci are the clauses in F). As it can be seen in “Implementation details” Eq. (5), the trace of each NS(Ci) is 
tr(NS(Ci)) = 2n−K , where K is the number of literals per clause, so

which means that the larger the number of variables and clauses, and the higher value of γ + δj , the better the 
approximation.

It is convenient to use H0 = V  since it is a diagonal matrix and calculating its energies and eigenstates is 
straightforward. Also, there is degeneracy in the energy spectrum of V since the energies of |ψj� and |s� (both 
eigenstates of H0 = V  ) are Es = Eψj = 0.

Effective Hamiltonian via degenerate perturbation theory..  The effective Hamiltonian Heff  acts 
on a reduced space and only describes part of the energy spectrum of the complete Hamiltonian, which in our 
case is HA . The effective Hamiltonian we want to approximate is the one spanned by the states |ψj� and |s� since 
HA has two eigenvectors that can be approximated as a linear combination of |ψj� and |s� by the use of the effec-
tive Hamiltonian Heff  . The approximated eigenvectors and energies then will be used to approximate Ps(t) , the 
probability of getting |s� as post-measurement state, i.e., finding a satisfying assignment for a K-SAT instance F. 
As before, our analysis is focused on instances with a unique satisfying solution to make it clearer and because 
those instances are the hardest to solve.

States |ψj� and |s� may be far from each other in terms of the Hamming distance. If the Hamming distance 
between |ψj� and |s� is d, i.e. dH (|ψj�, |s� = d , then a dth order approximation to Heff  is needed for the effects of 
quantum tunneling between |ψj� and |s� to be present in Heff  . In this analysis we use a 3rd order approximation 
but the process for higher orders can be easily generalized.

From Gottfried42, the spectrum of H0 = V  has degeneracy from the energies Es = Eψj = 0 corresponding 
to the states |ψj� and |s� . We will call D the degenerate subspace in H0 = V  spanned by the states {|ψj�, |s�} ∈ D.

The perturbed states |a� that correspond to the degenerate states |α� (where |α� represent any of the states in 
D) that split due to the perturbation can be written as the following linear combination

where |µ� are the states outside D.
To obtain the effective Hamiltonian we will approximate dµ and do some manipulations so we end up with 

an eigenvalue problem in the subspace D. As we will see, the order of coefficients cα are O(1) while coefficients 
dµ are O(�) . Based on this, we will approximate the states |a� as a linear combination of the degenerate states |α�.

Using H0|α� = Eα|α� = 0 and (HA − Ea)|a� = 0

Projecting (12) onto a state |β� in D, and a state |ν� outside D gives the equations

V = (γ + δj)(M − α|ψj��ψj|)

HA = H0 + �H1

V ≈ M(F).

M(F) =

m∑

i=1

NS(Ci).

apv =
(γ + δj)tr(M(F))

2n

(11)
tr(M(F)) =

m∑

i=1

tr(NS(Ci)) =

m∑

i=1

2n−K = m2n−K

apv =
(γ + δj)m2n−K

2n
=

(γ + δj)m

2K
.

|a� =
∑

α

cα|α� +
∑

µ

dµ|µ�

(12)(HA − Ea)|a� =
∑

α

cα(�H1 − Ea)|α� +
∑

µ

dµ(Eµ − Ea + �H1)|µ� = 0
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Since dµ = O(�) the last term in (14) is O(�2) and can be drooped for the approximation. Since the difference 
between Eα and Ea is negligible compared to Eν − Ea , Ea can be replaced by Eα = 0

Substituting (15) in (14) we obtain a better approximation of dν than (15). We can iteratively repeat this 
process to generate higher order approximations of dν (and in turn, as we will see in Eq. (18), higher order 
approximations of Heff).

Noting dν and dµ both represent the coefficients of the states outside D, we can substitute (16) in (13)

This is equivalent to the eigenvalue problem (13)

For the third order approximation of the effective Hamiltonian H(3)
eff  in the subspace D ( which is 2 dimensional 

in this case since we have a 2-fold degeneracy), that is, a Hamiltonian that only acts in this reduced space and 
only describes part of the spectrum of the true Hamiltonian HA.

For a dth order approximation, when the distance between the two states in D, |ψj� and |s� , is dH = d , the off 
diagonal elements of H(d)

eff  in the subspace D will only have non zero contributions when the states evaluated in 
the dth order term are those states that form a tunneling path of length d from |ψj� to |s� . Without the off-diagonal 
elements in H(d)

eff  the approximation would not include the effects of tunneling from |ψj� to |s�.

Approximation of the probability of finding a satisfying assignment to a K‑SAT instance.  We 
now present an approximation of the probability Ps(t) , the probability of finding a satisfying assignment to a 
K-SAT instance F, which is equivalent to obtain |s� as post-measurement state of a quantum evolution process 
starting with the quantum state |ψj� . For this purpose, we use the effective Hamiltonian Heff  from Eq. (18) for 
three different cases: dH (|ψj�, |s�) = 3 , dH (|ψj�, |s�) = 2 , and dH (|ψj�, |s�) = 1 . The approximation for Ps(t) for 
distances not presented here can be easily obtained by slightly modifying the procedure.

First we show the approximation H(3)
eff  for dH (|ψj�, |s�) = 3 . As stated in the beginning of this section, 

H0 = V = (γ + δj)(M − α|ψj��ψj|) , and �H1 = A(n).

where |µ� and |ν� are eigenvectors with eigenvalues Eµ,Eν in H0 = V  different from |ψj� and |s� . The resulting 
effective Hamiltonian will be 2× 2 since it is from the subspace spanned by {|ψj�, |s�} from which we will approxi-
mate two eigenvectors of HA as a linear superposition of |ψj� and |s� , and later use them to approximate PS(t).

The linear term in (19) has no contribution to the diagonal of Heff  since A (as any adjacency matrix) has a 
diagonal full of 0s. As for the off diagonal elements of the linear term, there is no way for |ψj� and |s� to tunnel 
from one to the other without going through intermediate states in the case dH = 3 , so there are no off diagonal 
elements contributed by the lineal term.

Evaluating the second order term, we can see it only has diagonal elements, the contributions to the diagonal 
come from evaluating the term with states at dH (|µ�, |s�) = 1 or dH (|µ�, |ψj�) = 1 . Each contribution to this 
term is divided by its corresponding Eµ which is a product of γ + δj and the number of clauses the correspond-
ing state |µ� does not satisfy.

(13)− cβEa + �

∑

α

cα�β|H1|α� + �

∑

µ

dµ�β|H1|µ� = 0

(14)dν(Eν − Ea)+ �

∑

α

cα�ν|H1|α� + �

∑

µ

dµ�ν|H1|µ� = 0

(15)dν = −�

∑

α

cα�ν|H1|α�

Eν

(16)

dνEν + �

∑

α

cα�ν|H1|α� − �
2
∑

α

cα
∑

µ

�ν|H1|µ��µ|H1|α�

Eµ
= 0

dν = −�

∑

α

cα
�ν|H1|α�

Eν
+ �

2
∑

α

cα
∑

µ

�ν|H1|µ��µ|H1|α�

EµEν

(17)

−cβEa +
∑

α

cα

(
��β|H1|α� − �

2
∑

µ

�β|H1|µ��µ|H1|α�

Eµ
+ �

3
∑

µ

∑

ν

�β|H1|µ��µ|H1|ν��ν|H1|α�

EµEν

)
= 0

−cβEa + �

∑

α

cα�β|H1|α� + �

∑

µ

dµ�β|H1|µ� = 0

(18)�β|H
(3)
eff |α� = ��β|H1|α� − �

2
∑

µ

�β|H1|µ��µ|H1|α�

Eµ
+ �

3
∑

µ

∑

ν

�β|H1|µ��µ|H1|ν��ν|H1|α�

EµEν

(19)H
(3)
eff = A−

∑

µ

A|µ��µ|A

Eµ
+

∑

µ

∑

ν

A|µ��µ|A|ν��ν|A

EµEν
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The third order term is the only contributor to the off-diagonal elements of Heff  in the case dH = 3 . These 
contributions come from evaluating the third order term with the states that form the shortest tunneling paths 
from |ψj� to |s� , these states are the ones at a distance dH = 2 from |ψj� or |s� and dH = 1 from the other. The easier 
it is for the states |ψj� and |s� to tunnel through these paths (when the potential barriers are smaller) the greater 
the value of the off-diagonal elements will be. We can check the previous statement from Eq. (19) since every 
contribution from each tunneling path is 1 divided by EµEν.

The resulting effective Hamiltonian Heff  in the sub space spanned by {|ψj�, |s�} is

where vij are the values of the effective Hamiltonian for γ + δj = 1 . Since Heff  is Hermitian and the entries are 
real numbers then v12 = v21.

Finding the energies of Eq. (20) is straightforward

where � = 1
γ+δj for simplicity. To obtain the eigenstates

From Eqs. (22) and (23), eigenvectors are computed

where k± and k′± the are normalization constants

and can be related as follows:

The approximated eigenstates of HA , |φ±� written as a linear combination of |ψj� and |s� are

From Eq. (24) and orthogonality, the eigenvectors can be rewritten as

(20)

H
(3)
eff =

[
0 0
0 0

]
+

[ v11
γ+δj 0

0 v22
γ+δj

]
+

[
0 v12

(γ+δj)2
v21

(γ+δj)2
0

]

H
(3)
eff =

[
v11
γ+δj

v12
(γ+δj)2

v21
(γ+δj)2

v22
γ+δj

]

∣∣∣∣
�v11 − E± �2v12

�2v21 �v22 − E±

∣∣∣∣ = �2v11v22 + E±(−�v11 −�v22)+ E2± −�4v212 = 0

(21)E± =
�

2

(
v11 + v22 ±

√
(v11 − v22)2 + 4�2v212

)

[
�v11 − E± �2v12

�2v21 �v22 − E±

] [
a
b

]
= 0

(22)(�v11 − E±)a+�2v12b = 0

(23)�2v12a+ (�v22 − E±)b = 0

b(E± −�v22) = a�v12

b�2v12 = a(E± −�v11)

|φ±� = k±

[
E± −�v22

�2v12

]
= k′±

[
�2v12

E± −�v11

]

k± = (�4v212 + (E± −�v22)
2)−

1
2 ,

k′± = (�4v212 + (E± −�v11)
2)−

1
2

(24)

k′± =(�4v212 + (E± −�v11)
2)−

1
2

=

(
�4v212 +

(
�

2

(
v11 + v22 ±

√
(v11 − v22)2 + 4�2v212

)
−�v11

)2
)− 1

2

=

(
�4v212 +

(
�

2

(
v22 − v11 ±

√
(v11 − v22)2 + 4�2v212

))2
)− 1

2

=

(
�4v212 + (−1)2

(
�

2

(
v22 + v11 ∓

√
(v11 − v22)2 + 4�2v212

))2
)− 1

2

=k∓, − k∓

|φ±� = k±(E± −�v22)|ψj� + k±�
2v12|s� = k′±�

2v12|ψj� + k±�
2v12|s�
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The state |ψj� can be written as a linear combination of |φ±�

where g is a normalization constant.
We can use |φ±� to approximate the evolution of the real eigenstates of the Hamiltonian HA . The evolution 

of a true eigenstate of HA is

by substituting the eigenstates and energies by their approximation we obtain

Using it, we can get an approximation of probability P(3)s (t) of measuring |s� at a time t evolving from |ψj� , 
when dH (|ψj�, |s�) = 3.

That is,

The frequency of the probability P(3)s (t) is approximately

Since � = 1
γ+δj , for γ + δj >> 1 ⇒ E+ − E− ≈ O(�) since the term with �2 vanishes.

Now we briefly show the cases with dH = 2 and dH = 1 and how their respective equation for Ps(t) compares 
with P(3)s (t).

It is easy to follow a similar process to calculate P(2)s (t) , the case with dH (|ψj�, |s�) = 2 . In this case at least a 
second order approximation is needed for the effects of tunneling (the off diagonal elements) to appear in H(2)

eff  .

The corresponding Heff  is slightly different to the previous case which has an impact in the frequency of 
P
(2)
s (t) . The first order contribution to Heff  , as in the previous case, is also null for the same reasons. In this 

case the second order term gives all the elements for Heff  . The contributions from the second order come from 
evaluating the states at dH (|µ�, |ψj�) = 1 or dH (|µ�, |s�) = 1 . Some of these states will be part of the shortest 
tunneling paths from |ψ0� to |s� , meaning dH (|µ�, |ψj�) = dH (|µ�, |s�) = 1 , and are the ones that contribute to 
the off-diagonal elements. As in the previous case ( dH = 3) , the easier it is for |ψj� to tunnel through a barrier 
to get to |s� the greater the contribution from that path. Each contribution is divided by the corresponding Eµ , 
that is a product of γ + δj and the number of clauses the corresponding state |µ� does not satisfy. This gives the 
following effective Hamiltonian

Following a process similar to the one presented for dH = 3 , we obtain

|φ+� = k−�
2v12|ψj� + k+�

2v12|s�

|φ−� = −k+�
2v12|ψj� + k−�

2v12|s�

|ψj� =
k−

gk+
|φ+� −

1

g
|φ−�

g = �2k+v12

(
1+

(
k−

k+

)2
)

e−iHAt |a±� = e−iEa± t |a±�

e−iHAt |φ±� ≈ e−iE±t |φ±�

P(3)s (t) = |�s|e−iHt |ψj�|
2

P(3)s (t) ≈

∣∣∣∣
k−

gk+
e−iE+t�s||φ+� −

1

g
e−iE−t�s||φ−�

∣∣∣∣
2

≈

∣∣∣∣
�2k−v12

g
e−iE+t −

�2k−v12

g
e−iE−t

∣∣∣∣
2

≈

∣∣∣∣
�2k−v12

g

(
e−iE+t − e−iE−t

)∣∣∣∣
2

≈

(
�2k−v12

g

)2

(2− 2 cos((E+ − E−)t))

(25)P(3)s (t) ≈

(
k+k−

k2− + k2+

)2

(2− 2 cos((E+ − E−)t))

E+ − E− = �

√
(v11 − v22)2 + 4�2v212

H
(2)
eff = A−

∑

µ

A|µ��µ|A

Eµ

(26)H
(2)
eff =

[ v11
γ+δj

v12
γ+δj

v21
γ+δj

v22
γ+δj

]
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where

P
(2)
s (t) has a frequency E+ − E− = �

√
(v11 − v22)2 + 4v212 which is O(�) , Comparing it to the P(3)s (t) frequency, 

when γ + δj >> 1 , remembering � = 1
γ+δj , P

(2)
s (t) has the term 4v212 inside the square root compared to P(3)s (t) 

where �24v212 vanishes. Also, the off-diagonal elements v12 from Heff  when dH = 2 tend to be greater compared 
to the case dH = 3 since there are less potential barriers in the tunneling path from |ψj� to |s� . Consequently, in 
most cases the frequency of P(2)s (t) will be higher than he frequency of P(3)s (t).

For dH = 1 , the first order approximation can be used. The Heff  is simply

The probability P(1)s (t) can be obtained as follows

Equation (27) does not have dependency on � and has a period of π . Hence, for t = π
2 + πm , where m ∈ Z , 

P
(1)
s (t) is at its highest value. As γ + δj increases, the potential barriers around the states |ψj� and |s� get larger, 

reducing the tunneling to the states outside of D (for dH = 1 the states in D are neighbors) which makes the 
real behavior of P(1)s (t) closer to the approximation of Eq. (27). Due to this lack of dependency on � from the 
approximation of P(1)s (t) , the actual period of P(1)s (t) (without approximations) is practically always the same. 
With this in mind, the values of γ and δ have to keep the evolution time tf = π

2 + πm , where m ∈ Z , as a time 
that greatly amplifies Ps(t) for multiple values of dH (|ψj�, |s�) . In fact, our numerical simulations using the opti-
mal parameters, found by doing a sweep, show this property of preserving tf  as an evolution time that greatly 
amplifies Ps(t) . Our simulations give us an optimal measurement frequency of tf = 4.72 , that is approximately 
3
2π , in agreement with analytical results. Keep in mind that for larger numbers of variables and clauses this value 
may change to tf = π

2 + πm , with a different value of m.

Comparisons between the analytical approximation and simulations.  In this section, we com-
pare the analytical approximations of Ps(t) from the previous section

to our numerical simulations of Ps(t) for the distances dH (|ψj�, |s�) = 1, 2, 3 . The instance used for these com-
parisons is the following 6 variable instance with 24 clauses and the unique satisfying assignment s = [110111].

To exemplify the case dH = 3 we used the state |ψj� = |010001� . The effective Hamiltonian using degenerate 
perturbation theory up to the third order, as in Eq. (20), is

Figure 1 compares analytical approximation and numerical simulations of Ps(t) evolving from |ψj� = |010001� 
for various values of γ + δj . As the value of γ + δj increases the approximation gets better since the tunneling 

P(2)s (t) ≈

(
k+k−

k2− + k2+

)2

(2− 2 cos((E+ − E−)t))

E± =
�

2

(
v11 + v22 ±

√
(v11 − v22)2 + 4v212

)

k± = (�2v212 + (E± −�v22)
2)−

1
2

H
(1)
eff =

[
0 1
1 0

]

(27)

P(1)s (t) ≈ |�s|e−iσx t |ψj�|
2

≈ �s|e−iσx t |ψj��ψj|e
iσx t |s�

≈ �s|(cos(t)|ψj� − i sin(t)|s�)(cos(t)�ψj| + i sin(t)�s|)|s�

P(1)s (t) ≈ sin2(t)

P(3)s (t) ≈

(
k+k−

k2− + k2+

)2(
2− 2 cos(t�

√
(v11 − v22)2 + 4�2v212)

)

P(2)s (t) ≈

(
k+k−

k2− + k2+

)2(
2− 2 cos(t�

√
(v11 − v22)2 + 4v212)

)

P(1)s (t) ≈ sin2(t)

(28)

F3(x) =(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x6) ∧ (x2 ∨ x5 ∨ x6) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x5 ∨ x6)∧

(x3 ∨ x5 ∨ x6) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x5 ∨ x6)∧

(x2 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) ∧ (x1 ∨ x5 ∨ x6) ∧ (x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x4 ∨ x6)∧

(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x6) ∧ (x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x6)∧

(x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x6) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5)

H
(3)
eff =

[
−2.455
γ+δj

2.555
(γ+δj)2

2.555
(γ+δj)2

−3.666
γ+δj

]
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to states outside the main tunneling paths from |ψj� to |s� decreases, and the reflections at the potential barriers 
also decrease. This contributes to reduce the small oscillations seen in the numerical simulations of Ps(t) . We 
can also see that even for small values of γ + δj , the approximation of the period is accurate.

For dH = 2 , we use the initial state |ψj� = |110001� . By using perturbation theory up to the second order, as 
in Eq. (26), we obtain the following effective Hamiltonian

Figure 2 shows comparisons between the analytical approximation and the numerical simulations of Ps(t) 
evolving from |110001� for various values of γ + δj.

Lastly, for dH = 1 and using the initial state |110011� the effective matrix is simply

Figure 3 shows comparisons between the analytical approximation and the numerical simulations of Ps(t) 
evolving from |110011� for various values of γ + δj

Graphs from Figs. (1,2,3) show the advantage of including potential barriers compared to the exponentially 
small overlap Ps(t) = sin6(t) cos6(t) = sin6(2t)/26 , obtained from Eq. (2), corresponding to solely using the 
hypercube adjacency matrix as the quantum walk Hamiltonian.

H
(2)
eff =

[
−0.446
γ+δj

−0.266
γ+δj

−0.266
γ+δj

−0.733
γ+δj

]

H
(1)
eff =

[
0 1
1 0

]

Figure 1.   Comparison between simulations (blue line) and the analytical approximation (orange line) of Ps(t) 
for initial state |010001� , dH = 3.
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For distances dH > 3 , the patterns exhibited in Figs. 1, 2 and 3 hold. In general, the period of Ps(t) grows 
longer as dH increases as a consequence of having to tunnel through longer paths, which is also reflected in the 
analytical approximation for the period by becoming more dependent on γ + δj as a consequence of Heff  having 
the mathematical structure

where d is the distance dH (|ψj�, |s�) = d and also the minimum approximation order necessary for the tunneling 
effects to be present in the approximation. As dH = d grows the off-diagonal elements in Heff  that serve as cou-
plings between |ψj� and |s� get smaller which implies longer periods for transitioning between states.

Numerical calculation of parameters and additional simulations
So far, we have been able to numerically estimate optimal values for parameters γ and δ ; moreover, our ana-
lytical approximation of tf = π

2 + πm , m ∈ Z has multiple possible values. Since it remains as future work to 
derive analytical formulae for these parameters, we have approximated three sets of these parameters for 3-SAT 
instances of 4, 6, and 10 variables, with 16, 24, and 40 clauses respectively.

Our database, fully available in32, consists of thousands of 3-SAT instances from which 5799 have 4 variables 
and 16 clauses, 1949 have 6 variables and 24 clauses, and 606 have 10 variables and 40 clauses. Every instance 

(29)H
(d)
eff =

[ v11
γ+δj

v12
(γ+δj)d−1

v21
(γ+δj)d−1

V22
γ+δj

]
,

Figure 2.   Comparison between simulations (blue line) and the analytical approximation (orange) of Ps(t) for 
initial state |110001� , dH = 2.
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in the database has a unique satisfying solution. All instances were randomly created by a uniform distribution, 
and then solved by exhaustive substitution as our instances are small enough for that. Instances with unique 
satisfying assignment were saved for the database.

The sets of parameters were computed by doing thousands of simulations on 3-SAT instances for the three 
different number of variables in our data set. The parameters were computed by slightly varying the value of 
each parameter and running 500 simulations for each combination of parameters. Half the dataset was used to 
find the parameters while the other half was used to test their performance. Each simulation was run using a 
randomly selected instance from the dataset, starting with a randomly selected initial state, and stopped after n 
measurements, where n is the number of variables of the instance, meaning only the first run of the algorithm 
(without resetting after n iterations) was considered for these calculations.

In every case the measurement frequency tf  was around 4.72 which is approximately 32π in accordance to our 
analytical approximation. Future versions of the algorithm may make use of variable measurement times, possibly 
by the use of techniques used in the literature of first detection time for quantum walks43,44.

The optimal sets of parameters we estimated for each number of variables and clauses are shown in Table 2. 
Alongside them we have included statistical information from 1000 simulations for each of the three different 
number of variables: The success rate of having |s� as post-measurement quantum state (that is, the success rate 
of finding the unique solution of each instance used in this study) for the first run of the algorithm (n iterations 
at most), average number of necessary iterations to get |s� as post-measurement quantum state, and the standard 
deviation in the number of iterations to get |s� as post-measurement quantum state.

Taking in account all the simulations we ran for Table 2, the success rate was 0.66 for the first run of the 
algorithm. The success rate for the 10 variable instances may seem low, but remember it is only for the first run, 

Figure 3.   Comparison between simulations (blue line) and the analytical approximation (orange) of Ps(t) for a 
Hamming distance of 1.
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for the second run its success rate increases to 0.63 and the fifth run is already 0.93. Also, we are using linear 
increments for γ + δj , the use of a different function may translate into a better performance. Figure 4 presents 
simulations of Ps(t) for two randomly selected 10 variables 3-SAT instances from the database32 showing the 
expected behavior for runs where the satisfactory state |s� is measured.

Conclusions
We have presented a quantum walk-based algorithm that explicitly utilizes potential barriers and quantum tun-
neling to find satisfying assignments for hard K-SAT instances.

One of the novelties of our paper is to harness by design quantum tunneling as a computational resource and 
to use it as a controllable feature that can be engineered to provide additional processing power to a quantum 
algorithm. Furthermore, we have derived a detailed mathematical procedure to build a family of Hamiltonians to 
solve K-SAT instances via continuous quantum walks with potential barriers and quantum tunneling. Based on 
the structure of these Hamiltonians, we have used degenerate perturbation theory to derive an analytical approxi-
mation of the probability of finding satisfying assignments to K-SAT instances under our algorithmic approach.

As for the set of parameters required to run our algorithm, we have made an extensive numerical study that 
has allowed us to present good estimates of those parameters. It remains as future work to derive analytical 
formulae for this set of parameters, a future work which is encouraged by our numerical results.

Received: 19 January 2021; Accepted: 30 July 2021

References
	 1.	 Cook, S. A. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of 

computing - STOC ’71, 151–158 (ACM Press, 1971). https://​doi.​org/​10.​1145/​800157.​805047.
	 2.	 Garey, M. R. & Johnson, D. S. A Guide to the Theory of NP-Completeness (W.H. Freeman and Co., New York, 1979).
	 3.	 Ohya, M. & Volovich, I. New quantum algorithm for studying np-complete problems. Rep. Math. Phys. 52, 25–33 (2003).
	 4.	 Perdomo, A., Venegas-Andraca, S. E. & Aspuru-Guzik, A. A study of heuristic guesses for adiabatic quantum computation. Quan-

tum Inf. Process. 10, 33–52 (2011).
	 5.	 Dunjko, V., Ge, Y. & Cirac, J. I. Computational speedups using small quantum devices. Phys. Rev. Lett. 121, 250501 (2019).
	 6.	 Godoy, S. & Fujita, S. A quantum random-walk model for tunneling diffusion in a 1d lattice. J. Chem. Phys. 97, 5148–5154 (1992).
	 7.	 Feynman, R. Quantum mechanical computers. Found. Phys. 16, 507–531 (1986).
	 8.	 Gudder, S. Quantum Probability (Academic Press, Inc, 1988).
	 9.	 Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993).
	10.	 Shenvi, N., Kempe, J. & Whaley, R. A quantum random walk search algorithm. Phys. Rev. A 67, 052307 (2003).

Table 2.   Optimal parameters and statistical information from 1000 simulations.

n Optimal γ Optimal δ Success rate Avg. no. of iterations Std in no. of iterations

4 2.6 0.5 0.87 2.43 0.76

6 1 0.6 0.71 4.04 1.29

10 1 0.45 0.42 5.88 1.88

Figure 4.   Probabilities of measuring |s� depicting the behavior of the complete algorithm for 2 randomly 
selected 10 variables 3-SAT instances with a unique solution from our database. Vertical green lines show when 
a measurement took place.

https://doi.org/10.1145/800157.805047


17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16845  | https://doi.org/10.1038/s41598-021-95801-1

www.nature.com/scientificreports/

	11.	 Childs, A. M. et al. Exponential algorithmic speedup by a quantum walk. In Proceedings of the thirty-fifth ACM symposium on 
Theory of computing - STOC ’03 59 (ACM Press, 2003). https://​doi.​org/​10.​1145/​780542.​780552 .

	12.	 Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007).
	13.	 Kendon, V. A random walk approach to quantum algorithms. Philos. Trans. R. Soc. A 364, 3407–3422 (2006).
	14.	 Morley, J. G., Chancellor, N., Bose, S. & Kendon, V. Quantum search with hybrid adiabatic-quantum-walk algorithms and realistic 

noise. Phys. Rev. A 99, 022339. https://​doi.​org/​10.​1103/​PhysR​evA.​99.​022339 (2019).
	15.	 Abd El-Latif, A. A., Abd-El-Atty, B. & Venegas-Andraca, S. E. A novel image steganography technique based on quantum substitu-

tion boxes. Opt. Laser Technol. 116, 92–102 (2019).
	16.	 Abd El-Latif, A. A., Abd-El-Atty, B., Venegas-Andraca, S. E. & Mazurczyk, W. Efficient quantum-based security protocols for 

information sharing and data protection in 5g networks. Future Gener. Comput. Syst. 100, 893–906 (2019).
	17.	 Konno, N. Chapter ‘Quantum Walks’ On Quantum Potential Theory (Lecture Notes in Mathematics) (Springer Verlag, U. Franz and 

M. Schuermann (Eds.), 2008).
	18.	 Portugal, R. Quantum Walks and Search Algorithms (Springer, 2013).
	19.	 Childs, A. Universal quantum computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).
	20.	 Lovett, N., Coope, S., Everitt, M., Trevers, M. & Kendon, V. Universal quantum computation using the discrete-time quantum 

walk. Phys. Rev. A 81, 042330 (2010).
	21.	 Venegas-Andraca, S. E. Quantum walks: A comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012).
	22.	 Kendon, V. & Tregenna, B. Decoherence can be useful in quantum walks. Phys. Rev. A 67, 42315. https://​doi.​org/​10.​1103/​PhysR​

evA.​67.​042315 (2003).
	23.	 Drezgich, M., Hines, A. P., Sarovar, M. & Sastry, S. Complete characterization of mixing time for the continuous quantum walk 

on the hypercube with Markovian decoherence model. Quantum Inf. Comput. 9, 856–878 (2009).
	24.	 Razavy, M. Quantum Theory of Tunneling (World Scientific, 2003).
	25.	 Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998).
	26.	 McGeoch, C. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures in Quantum 

Computing (Morgan and Claypool, 2014).
	27.	 Graß, T. Quantum annealing with longitudinal bias fields. Phys. Rev. Lett. 123, 120501. https://​doi.​org/​10.​1103/​PhysR​evLett.​123.​

120501 (2019).
	28.	 Qian-Heng, D., Shuo, Z., Wei, W. & Ping-Xing, C. An alternative approach to construct the initial Hamiltonian of the adiabatic 

quantum computation. Chin. Phys. Lett. 30, 010302. https://​doi.​org/​10.​1088/​0256-​307X/​30/1/​010302 (2013).
	29.	 Chancellor, N. Modernizing quantum annealing using local searches. New J. Phys. 19, 023024. https://​doi.​org/​10.​1088/​1367-​2630/​

aa59c4 (2017).
	30.	 Kechedzhi, K. et al. Hartmut Neven; licensed under Creative Commons License CC-BY 13th Conference on the Theory of Quantum 

Computation, Communication and Cryptography (TQC 2018). Editor: Stacey Jeffery; Article. DROPS-IDN/9256 9, 1–9, https://​
doi.​org/​10.​4230/​LIPIcs.​TQC.​2018.9 (2018).

	31.	 Wong, T. G. Quantum walk search through potential barriers. J. Phys. A 49, 484002. https://​doi.​org/​10.​1088/​1751-​8113/​49/​48/​
484002 (2016).

	32.	 Campos, L. E. 3-SAT instances dataset. https://​github.​com/​erqaw​84/3-​SAT-​Insta​nces (2019).
	33.	 Goldreich, O. P, NP and NP-completeness (Cambridge University Press, 2010).
	34.	 Papadimitriou, C. H. Computational complexity (Addison-Wesley, 1995).
	35.	 Levin, L. Universal search problems. Probl. Inf. Transm. 9, 115–116 (1973).
	36.	 Mertens, S. Computational complexity for physicists. IEEE Comput. Sci. Eng. 4, 31–47 (2002).
	37.	 Suzuki, M. Generalized trotter’s formula and systematic approximants of exponential operators and inner derivations with applica-

tions to many-body problems. Commun. Math. Phys. 51, 183–190. https://​doi.​org/​10.​1007/​BF016​09348 (1976).
	38.	 Wang, J. & Manouchehri, K. Physical Implementation of Quantum Walks (Springer, 2013).
	39.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University 

Press, 2011).
	40.	 Dodds, A. B., Kendon, V., Adams, C. S. & Chancellor, N. Practical designs for permutation-symmetric problem Hamiltonians on 

hypercubes. Phys. Rev. A 100, 032320. https://​doi.​org/​10.​1103/​PhysR​evA.​100.​032320 (2019).
	41.	 Brown, J. M. & Carrington, A. Derivation of the effective Hamiltonian Cambridge Molecular Science 302–370 (Cambridge University 

Press, 2003).
	42.	 Gottfried, K. & Yan, T.-M. Quantum Mechanics: Fundamentals Graduate Texts in Contemporary Physics (Springer, 2003).
	43.	 Liu, Q., Yin, R., Ziegler, K. & Barkai, E. Quantum walks: The mean first detected transition time. Phys. Rev. Res. 2, 033113 (2020).
	44.	 Friedman, H., Kessler, D. A. & Barkai, E. Quantum walks: The first detected passage time problem. Phys. Rev. E 95, 032141 (2017).

Acknowledgements
EC thanks his family for their support. SEVA warmly thanks his family for their unconditional support.

Author contributions
E.C. and S.E.V.A. proposed the idea of writing a quantum algorithm using quantum walks and quantum tun-
neling to solve hard K-SAT instances. E.C., S.E.V.A. and M.L. made contributions towards the mathematical 
analysis and results or our algorithm. E.C., S.E.V.A. and M.L. reviewed the manuscript.

Funding
EC acknowledges the financial support received by Tecnologico de Monterrey and CONACYT (CVU 834995). 
SEVA gratefully acknowledges the financial support of Tecnologico de Monterrey, Escuela de Ingenieria y Cien-
cias and CONACyT [SNI number 41594 as well as Fronteras de la Ciencia project number 1007]. ML acknowl-
edges the support received by the U.S. Naval Research Laboratory Base Program on Quantum Computation.

Competing Interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.E.V.-A.

Reprints and permissions information is available at www.nature.com/reprints.

https://doi.org/10.1145/780542.780552
https://doi.org/10.1103/PhysRevA.99.022339
https://doi.org/10.1103/PhysRevA.67.042315
https://doi.org/10.1103/PhysRevA.67.042315
https://doi.org/10.1103/PhysRevLett.123.120501
https://doi.org/10.1103/PhysRevLett.123.120501
https://doi.org/10.1088/0256-307X/30/1/010302
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.4230/LIPIcs.TQC.2018.9
https://doi.org/10.4230/LIPIcs.TQC.2018.9
https://doi.org/10.1088/1751-8113/49/48/484002
https://doi.org/10.1088/1751-8113/49/48/484002
https://github.com/erqaw84/3-SAT-Instances
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevA.100.032320
www.nature.com/reprints


18

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16845  | https://doi.org/10.1038/s41598-021-95801-1

www.nature.com/scientificreports/

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances
	K-SAT problem
	Continuous time quantum walk on a hypercube graph
	Formal description of our algorithm
	Parameters discussion. 

	Implementation details
	Analytical approximation of the algorithm behavior
	Effective Hamiltonian via degenerate perturbation theory.. 
	Approximation of the probability of finding a satisfying assignment to a K-SAT instance. 
	Comparisons between the analytical approximation and simulations. 

	Numerical calculation of parameters and additional simulations
	Conclusions
	References
	Acknowledgements


