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Retrotransposons have had a considerable impact on the overall architecture of the human genome. Currently, there
are three lineages of retrotransposons (Alu, L1, and SVA) that are believed to be actively replicating in humans. While
estimates of their copy number, sequence diversity, and levels of insertion polymorphism can readily be obtained from
existing genomic sequence data and population sampling, a detailed understanding of the temporal pattern of
retrotransposon amplification remains elusive. Here we pose the question of whether, using genomic sequence and
population frequency data from extant taxa, one can adequately reconstruct historical amplification patterns. To this
end, we developed a computer simulation that incorporates several known aspects of primate Alu retrotransposon
biology and accommodates sampling effects resulting from the methods by which mobile elements are typically
discovered and characterized. By modeling a number of amplification scenarios and comparing simulation-generated
expectations to empirical data gathered from existing Alu subfamilies, we were able to statistically reject a number of
amplification scenarios for individual subfamilies, including that of a rapid expansion or explosion of Alu amplification
at the time of human–chimpanzee divergence.
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Introduction

A collection of evolutionarily recent and older ‘‘fossil’’
mobile element sequences compose more than 45% of the
human genome [1–5]. Along with the recently characterized
SVA family, Alu and L1 have the distinction of being the only
mobile element lineages to be actively proliferating in
modern humans [3,6,7]. All three of these lineages belong to
the retrotransposon class of mobile elements, replicating
themselves via an RNA intermediate [6,8]. They differ,
however, in that L1 retrotransposons are ;6-kb-long auton-
omous elements that encode the proteins required for their
retrotransposition [2] while Alu and SVA retrotransposons
are shorter, non-autonomous elements that are trans-mobi-
lized by the L1 protein machinery [9]. L1 elements have been
active in mammalian genomes for the past 150 million years
(myrs) and have reached a copy number of ;0.5 million in the
human genome, and Alu retrotransposons have reached a
copy number of ;1.1 million within the past 65 myrs [1]. By
comparison, the SVA lineage is a relative newcomer to the
primate lineage, having achieved a copy number of approx-
imately 5,000 copies in the human genome over the last 15
myrs [7]. Together, the amplification activity of these
retrotransposon families has had a substantial impact on
their host genomes. In addition to contributing to genome
size expansion, they have shaped the architecture of the
human genome by mediating genetic exchanges such as
duplications, deletions, inversions, transductions, and trans-
locations [6,8,10–17]. L1 and Alu have also been implicated in
DNA repair [18] and alteration of gene expression [2,19–21].
As they are still actively retrotransposing and thus acting as
insertional mutagens, Alu, SVA, and L1 elements are

responsible for more than 0.5% of all human genetic
disorders [2,22,23].
While much attention has been given to the underlying

biology driving retrotransposon expansion in primates, little
attempt has been made to assess what can broadly be
described as ‘‘amplification dynamics.’’ Under this heading
we include the evolutionary window during which lineages
were actively retrotransposing, the intensity of retrotranspo-
sition, and the degree of rate fluctuation during this period.
Notable exceptions to this general dearth of information
concerning mobile element amplification dynamics include
data for mobile element activity in Drosophila species [24–26].
While a considerable body of theoretical work exists
concerning mobile element expansion (e.g., [27–33]), these
models generally focus on element copy number behavior
under equilibrium conditions and do not address the impact
of diverse amplification histories on sequence composition.
The observation of divergent mobile element retrotranspo-
sition levels among closely related host species [24,34],
however, suggests that the assumption of equilibrium may
often be unrealistic, as noted in [35]. A more complete
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understanding of how mobile element sequence structure
and frequencies are influenced by diverse nonequilibrium
expansion scenarios would be invaluable for developing
realistic models of how transposable elements spread through
given taxa.

The problem we are faced with is how to reconstruct the
evolutionary amplification history of a mobile element
lineage given only a static snapshot of sequence and
polymorphism data from present-day genomes. Previously,
efforts used the phylogenetic distribution of mobile element
lineages to bound their period of activity in time by the
divergence dates of their host taxa (e.g., [36–38]). While such
analyses can provide useful information, particularly where
allele frequency information is unavailable, they nevertheless
cannot yield the kind of temporal resolution that would be
most helpful in understanding the amplification process. For
example, we know that some 6,000–7,000 Alu elements have
fixed in the human genome since Pan troglodytes and Homo
sapiens last shared a common ancestor 5–8 myrs ago [39–41],
but the temporal pattern of expansion giving rise to these
elements remains unknown. Age estimates of individual
retrotransposon insertions based on sequence divergence
from a consensus typically possess a great degree of
uncertainty because of the relatively short sequence lengths
of many retrotransposons, particularly among short inter-
spersed elements, as well as because of uncertainty over the
accuracy of the consensus ‘‘source’’ sequence used for
comparison [42–45]. In younger, recently active retrotrans-
poson lineages, an additional piece of evidence is at our
disposal to aid in reconstructing their amplification history.
For these families, we are able to obtain population
frequency data for insertions at given loci, which allow
estimation of the percentage of polymorphic loci for
presence/absence in the corresponding subfamilies (termed
in the following text ‘‘insertion polymorphism level’’ [IPL]).

Alone, sequence diversity and IPL prove insufficient to
reconstruct the historical amplification pattern of a mobile

element family with any degree of accuracy. When effectively
combined, however, we hypothesized that they may serve to
narrow the alternative scenarios. We tested this hypothesis by
focusing on the Alu family of retrotransposons, for which
subfamily structure is well characterized and population
frequency data are available for a number of distinct
subfamilies [3,39–41,46]. Furthermore, Alu retrotransposons
presented an attractive target for this initial study because, as
detailed below, they possess several features that make the
process of modeling their retrotransposition more tractable.
It was first necessary to determine what set of Alu sequence
and IPL observations might be expected under various
evolutionary amplification patterns. To generate quantitative
expectations for these parameters under diverse patterns of
expansion, we developed a computer simulation that incor-
porates established aspects of Alu retrotransposon biology (see
Materials and Methods). Our simulation also accommodates
the effect of significant sampling biases inherent in the way
Alu elements have been characterized in the human genome.
By comparing existing Alu sequence diversity and poly-
morphism levels, we were able to statistically reject multiple
amplification scenarios for individual Alu subfamilies, result-
ing in a more refined understanding of the retrotransposition
dynamics of human-specific Alu subfamilies.

Results/Discussion

The Alu Simulation Framework
Two fundamental processes underlie the various descrip-

tive statistics that can be tabulated from genomic Alu
sequences, namely the post-insertion evolution of Alu
nucleotide sequences and the associated evolution of in-
sertion polymorphism allele frequencies. To make the
modeling process more straightforward, we divided these
processes into distinct core simulator programs, one to model
the behavior of nucleotide sequence and one to model the
behavior of inserted retrotransposon allele frequencies.
Several of the known properties of Alu subfamily structure
and sequence mutation patterns were incorporated within
the programs (see Materials and Methods). Both programs
implement a strict ‘‘master gene’’ model of Alu retrotrans-
position under which a single source element produces inert,
non-retrotransposing copies [47]. While it has been demon-
strated that most Alu subfamilies deviate from the strict
master gene model, this scenario can nevertheless explain the
majority of overall subfamily sequence structure [48]. More
importantly, implementing deviations from the master gene
model (i.e., secondary and tertiary retrotransposition sources
and so on) can lead to exponential copy number increase
when limiting factors such as negative selection do not
constrain numbers, a scenario which is clearly not historically
accurate. In this analysis, we have restricted our simulation to
neutrally evolving loci within a panmictic population of
constant size. In our model we also assume that retrotrans-
position rates (RRs) do not fluctuate during the window of
time during which retrotransposition occurs.
The above assumptions are almost certainly oversimplifi-

cations, but are necessary to keep the number of amplifica-
tion scenarios at a manageable level in this initial
investigation. We believe the existence of secondary source
genes would have a limited impact on our analysis because
any secondary source that is active enough to produce
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Synopsis

Nearly 50% of the human genome is composed of mobile elements.
While much of this sequence consists of inactive ‘‘fossil’’ elements
that are no longer actively moving or generating new copies, three
families are currently proliferating in human genomes. Among
these, the Alu lineage has reached a copy number of over 1 million
and alone accounts for approximately 10% of the genome. While
considerable evidence has been gathered concerning the under-
lying biological mechanisms of Alu mobilization and proliferation, a
detailed understanding of Alu amplification history is currently
lacking. Researchers are aware, for example, that several thousand
Alu elements have inserted within the human genome since the
divergence of humans and chimpanzees, but how those insertions
were distributed over this ;6-million-year time period is currently
unknown. In this work, the authors introduce a simulation frame-
work that seeks to incorporate both sequence diversity and
empirically gathered population data from human Alu elements, in
order to provide a better understanding of the last several million
years of human Alu evolution. The results suggest that a rapid
explosion of Alu amplification at the time of the human–chimpanzee
divergence is unlikely. Therefore, it is improbable that an increase in
Alu retrotransposition activity was involved in the speciation of
humans and chimpanzees.
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appreciable copy numbers would be classified as a separate
subfamily under current naming conventions, and it would be
analyzed separately in our approach. The effect of population
substructure is more difficult to anticipate because the nature
of population substructure during the time period in
question is largely unknown. Significant population structure
would impact the behavior of polymorphisms by extending
their average persistence time, affecting the rate of insertion
polymorphism decay both during and after transposition.
The nature and magnitude of these effects will be the subject
of future investigations.

For both sequence mutation and frequency drift simu-
lations, retrotransposition started at time t0 and proceeded at
a constant rate for a time window Tretro. Thus, given a
subfamily copy number n, Tretro defines the RR of the
simulation (i.e., RR ¼ n/Tretro). For the sequence mutation
simulations, elements were allowed to mutate neutrally from
their initial time of retrotransposition until the end of the
simulation. Tmut represents the total elapsed simulation time,
which is also the amount of time the oldest element in the
subfamily has been evolving. We have chosen a maximum
Tmut of 6 myrs, as this roughly corresponds to the human–
chimpanzee divergence time and, thus, is suitable for
investigating the amplification dynamics of recent human
Alu subfamilies. During the course of each run, sequence
variation and allele frequency statistics (described in detail
below) were calculated at 100,000-y observation intervals.
One thousand replicates were performed under each of seven
basic amplification models (M0 to M6), ranging from M0,
which has an instantaneous burst of insertion activity
generating all subfamily members, to M6, in which new
retrotransposition events occur at a uniform rate from the
beginning of the subfamily throughout the entire simulation
of 6 myrs. Intermediate models (M1 to M5), in which
amplification occurred for 1 to 5 myrs and then ceased, were
also evaluated. Simulations were performed using a human
effective population size (Ne) of 10,000 individuals and a
generation time of 25 y. To assess the impact of alternative
values for Ne and generation time, we also performed
simulations using Ne values of 5,000, 15,000, and 20,000
individuals as well as generation times of 20 and 30 y.

Amplification History and Sequence Variation
As an estimator of Alu subfamily sequence variation, we

used the parameter p, which is defined as the mean number of
nucleotide differences observed among all pairs of Alu
sequences in the subfamily [49]. For example, a p value of
three means that there are, on average, three nucleotide
differences between any two Alu sequences in the subfamily.
Means, modes, and standard deviations for p were calculated
across all replicates (available at http://batzerlab.lsu.edu). In
addition to p, we evaluated the use of the mismatch
distribution raggedness index as a metric of sequence
diversity [50], but its informativeness proved limited for our
purposes, and it was excluded from subsequent analyses.

As expected, mean p values increased linearly with time in
our simulation (Figure 1A). The effect of retrotransposition
during Tretro is to slow the rate of increase in p. In scenarios
M1 through M6, where retrotransposition occurs for a period
of time then ceases, the rate of p increase becomes steeper
(though still linear) immediately following the cessation of
retrotransposition (Figure 1A). A clear relationship exists

between sequence diversity and the particular amplification
model of the family. For example, a scenario with a burst of
retrotransposition followed by dormancy leads to higher p
values than scenarios where RR has been uniform over long
periods of time. This result is intuitive, as any scenario
resulting in an increased element insertion number earlier in
a subfamily’s history will result in additional opportunity for
mutation and consequently higher p values. The problem,
however, is that when evaluating real mobile element data,
the time of onset of retrotransposition (i.e., the beginning of
Tretro) is typically unknown. From examining Figure 1A, it is
evident that any value of p can be obtained by any model,
provided that an appropriate amount of time (Tmut) has
elapsed prior to the point of observation. Thus, although p is
directly influenced by the particular amplification history, it
cannot be used to infer that history without additional
information.

Alu Insertion Polymorphism
In addition to p, we also modeled the behavior of IPL,

which indicates the percentage of polymorphic insertion loci
in a subfamily. Like p, IPL is expected to be influenced by
both the age of the subfamily and its historical pattern of

Figure 1. Temporal Variation of Subfamily Sequence Variation p and IPL

Results for three expansion models are shown, in which retrotranspo-
sition activity was instantaneous (M0) or lasted for 3 (M3) or 6 (M6) myrs.
Variation in p (A) is slowed during retrotransposition, but increases
immediately upon the cessation of retrotransposition. Rate of IPL decay
(B) is attenuated during retrotransposition activity but increases once
retrotransposition ends.
DOI: 10.1371/journal.pcbi.0010044.g001
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retrotransposition. Figure 1B illustrates the decay of IPL over
time under models M0, M3, and M6. As might be expected,
ongoing retrotransposition in a mobile element family slows
the rate of IPL decay by providing an influx of new
polymorphisms. When retrotransposition ceases, IPL falls
relatively rapidly over the course of approximately 1 myrs.
This rate of IPL breakdown is consistent with the expected on
average 1-myr coalescence time (4Ne generations, where Ne is
the effective population size) for our simulated human
effective population size of 10,000 individuals. As with p,
there is clearly an effect of amplification history on IPL
values, with IPL values remaining higher for those families
whose Tretro windows extended closer to the present day. But
also, as is the case with p, any scenario can yield a given IPL
value depending on what time point (Tmut value) is being
sampled. A researcher examining empirical Alu frequency
data does not know what position his or her data occupy on
the timeline of the model of retrotransposition being
considered (Figure 1B). Yet, as we demonstrate below, for a
given model there exists a set of IPL and p parameters that
are mutually exclusive across a range of time points. As a
consequence, by combining the p and IPL statistics, one can

effectively narrow the possible range of amplification
histories for a given Alu subfamily.

Inferring Amplification Scenarios from Genomic Alu Data
Plots of IPL versus p for equivalent time points over the

course of seven amplification scenarios (i.e., models M0–M6)
are shown in Figure 2, based on a generation time of 25 y and
an effective population size of 10,000 individuals. The 95%
confidence intervals, generated from 1,000 simulation repli-
cates, are represented as the bounded area in each graph (see
Materials and Methods). In addition, p values were estimated
for ten human Alu subfamilies for which IPL data are available
(Table 1). These data were collected from subsets of elements
from the respective polymorphic subfamilies for which
population data were available. For each of these subfamilies,
the relationship between IPL and p is indicated in Figure 2. In
our analysis, if a subfamily’s IPL versus p point falls within the
95% confidence interval of a given model’s results, the model
cannot be excluded as a possible amplification pattern (see
Materials and Methods for details). Conversely, when a
subfamily’s data point falls outside the bounded area, that
model can be excluded for the subfamily in question.

Figure 2. Distribution of Subfamily Sequence Variation p (x-Axis) versus IPL (y-Axis)

Expectations based on 1,000 replicates of expansion models M0–M6. Shaded area in each plot indicates 95% of resulting values for each model.
Observed (p and IPL) values for ten recent human Alu subfamilies are shown as black diamonds. These results are based on a generation time of 25 y
and an effective population size of 10,000 individuals.
DOI: 10.1371/journal.pcbi.0010044.g002
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Impact of Effective Population Size and Generation Time
Parameters

Our initial simulation replicates were conducted under the
conditions of a 25-y generation time and effective population
size of 10,000 breeding individuals. While these represent
commonly accepted values for these parameters, we also
investigated the impact of a broader range of generation
times (20 and 30 y) and Ne (5,000, 15,000, and 20,000) on the
simulations. For Ne ¼ 5,000, our models fail to encompass
most of the observed data for extant Alu subfamilies (Figure
S1; Table S1). This is not unexpected, as this Ne value is
approximately half that of most literature estimates. Likewise,
Ne ¼ 20,000 yields IPL and p values that are largely not
concordant with observed Alu subfamily data (Figure S2;
Table S1). Ne values of 10,000 and 15,000 individuals manage
to encompass the majority of observed Alu data points
(Figures 2 and S3; Tables 1 and S1). In this respect, the
behavior of our simulations is congruent with current
literature estimates, which place the human Ne on the order
of 10,000 to 15,000 individuals [51–53].

Altering the generation time also had an appreciable effect
on simulation behavior by shifting the timescale of the
simulated data. While a generation time of 20 y did not
perform very well (Figure S4; Table S2), our models were
generally able to encompass more observed Alu subfamily
data under generation time parameters of 25 and 30 y
(Figures 2 and S5; Tables 1 and S2). Such values lie within the
range of currently estimated values for ancestral generation
times spanning the relevant period ([54] and references
therein). Also, as discussed below, a higher generation time
parameter of 30 y has the effect of bringing Alu subfamily age
estimates derived from our simulation closer in line with
previous literature values determined by other methods.

Estimating the Age of Alu Subfamilies
Once improbable amplification scenarios are excluded

(Tables 1, S1, and S2), it is possible to determine time periods
of amplification for subfamilies that are compatible with both
their p and IPL values. By using the present time as a point of
reference (i.e., Tmut ¼ present), it is further possible to infer
the age of the subfamilies. Figure 3 illustrates this process. In
this example, the Ya5a2 subfamily has a p value (0.65) that is
consistent with an age ranging from 0.6 to 1.0 myrs before

present under M4 (Ne ¼ 10,000, generation time ¼ 25 y).
Within that range, the Ya5a2 IPL value is only compatible
with 0.7 to 1.0 myrs before present. Estimated age ranges that
are consistent with both p and IPL for all Alu subfamilies
analyzed in this study under a generation time of 25 y and Ne

of 10,000 are given in Table 1. We note here that Alu
subfamily age estimates derived in this study are generally
higher than those reported in previous literature [42].
However, the age estimates obtained from sequence diversity
alone typically have large standard deviations [42] that
overlap with our estimates derived from both sequence
diversity and IPL. This might indicate that time estimates
derived from sequence diversity alone may underestimate the
true ages of the subfamilies. Nevertheless, alternative values
of Ne and generation time also have an impact on the
potential age of the subfamily as estimated by our method.
For example, when age calculations are made using a
generation time of 30 y, our age estimates more closely
approximate those of previous literature.
Our results suggest that, while a range of retrotransposition

scenarios remain possible for each subfamily, some alter-
natives can be statistically rejected. Notably, when using
standard values for effective population size (Ne¼10,000) and
generation time (25 y), our results exclude the possibility that
the majority of human Alu insertions occurred during a brief,
intense burst of retrotransposition activity after the diver-
gence between humans and chimpanzees. Such a scenario,
intermediate between M1 and M0 (instantaneous) results in

Table 1. Alu Subfamily Diversity (p) and IPL Parameters and Their Age under Different Models of Amplification

Alu Subfamily Sample Size p IPL (%) Subfamily Age Range (myrs) under Modelsa Global Subfamily

Age Range (myrs)
M0 M1 M2 M3 M4 M5 M6

Ya5a2 33 0.65 80 0.5–0.6 0.8–0.9 0.8–1.0 0.8–1.0 0.7–1.0 0.7–1.1 0.7–1.1 0.5–1.1

Ya8 36 1.90 50 X X X 2.0–2.2 2.0–2.3 2.0–2.2 1.9–2.2 1.9–2.3

Yb9 69 2.41 36 X X X 2.5–2.9 2.5–3.2 2.5–3.2 2.5–3.1 2.5–3.2

Yb7 136 3.19 26 X X X X 3.5–4.1 3.4–4.1 3.5–4.1 3.4–4.1

Ya5 518 4.40 25 X X X X X X X na

Yc1 232 3.72 21 X X X X 4.2–4.3 4.4–5.2 4.5–5.2 4.2–5.2

Yb8 313 4.64 20 X X X X X X 4.8–5.4 4.8–5.4

Yd6 96 3.98 12 X X X X 4.4–4.7 5.2–5.3 X 4.4–5.3

Yg6 150 4.89 11 X X X X X 5.5–5.7 X 5.5–5.7

Yi6 101 6.61 10 X X X X X X X na

aAssuming a generation time of 25 y and an effective population of 10,000 individuals. X indicates that this model can statistically be excluded for this Alu subfamily by simulation (p , 0.05).

na, not available.

DOI: 10.1371/journal.pcbi.0010044.t001

Figure 3. Estimation of the Age of the Ya5a2 Alu Subfamily under

Simulation M4

In M4, Ne is 10,000 and generation time is 25 y. Data are based on
observed subfamily sequence variation p and IPL parameters. Time
estimates consistent with p and IPL values are indicated in boxes. The
bold double arrow indicates age estimates concordant with both
parameters.
DOI: 10.1371/journal.pcbi.0010044.g003
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an IPL versus p distribution well outside the observed data
points (see Figure 2). This result is well supported because
variation in effective population size and generation time
leads to the same conclusion (Figures S1–S5). Thus, these
analyses provide evidence against the notion of a burst of
retrotransposition at or near the human–chimpanzee diver-
gence. This result is consistent with a previous study [34],
which suggested that the marked increase in human Alu
fixation events with respect to chimpanzee was initiated
within the past 4 myrs. The involvement of mobile element
amplification activity in the formation of reproductive
barriers, and hence speciation, has received a fair amount
of attention [55–58], although definitive evidence is lacking.
The discovery of high levels of mobile element activity in
humans compared to chimpanzees [34,59] has invited spec-
ulation as to whether or not the Alu retrotransposition
increase might have been involved in the speciation of
humans and chimpanzees [59]. While our present results do
not support an increase in mobile element activity at the time
of the human–chimpanzee divergence, they do not exclude
the possibility of such an event during a later hominid
speciation event. Furthermore, the possibility remains that an
extended simulation model, one that accounts for additional
biological and spatial parameters, may generate results that
are consistent with a retrotransposon burst at the time of
speciation.

Conclusion
We have demonstrated that it is possible to mine

information concerning the amplification history of a
retrotransposon subfamily from present-day genomic and
population data. Overall, there appears to be heterogeneity
in both the timing and intensity of human Alu subfamily
activity. Our simulations do not presently accommodate the
influence of host population subdivision, RR fluctuations (i.e.,
rate heterogeneity) over time, and selection on patterns of
retrotransposon evolution. All of these phenomena will likely
have some bearing on the nucleotide divergence and IPL,
although the extent of that influence is difficult to anticipate.
We plan to extend our simulations to encompass these and
other potentially relevant phenomena in further studies.
Nevertheless, the present analyses do indicate that the
combination of retrotransposon sequence divergence and
subfamily polymorphism information has the potential to
reveal information about the historical dynamics of mobile
element amplification that has thus far remained inaccessible.
In particular, by applying our method we are able to
rigorously address the issue of the time window during which
amplification occurred. A more detailed account of the
history of retrotransposon activity will allow for a better
understanding of the forces that influence mobile element
activity across diverse taxa.

Materials and Methods

Simulating Alu sequence evolution. We developed a simulator of
Alu sequence evolution that takes into account most of the major
known properties of Alu elements in terms of subfamily structure and
sequence mutation patterns. Specifically, Alu elements begin accu-
mulating nucleotide substitutions stochastically, starting at the time
of retrotransposition and until the end of the simulation. Nucleotide
substitution was simulated using the Kimura two-parameter rever-
sible mutation model, a neutral mutation rate at non-CpG
dinucleotides of 0.0015 mutations/site/myrs [60] and a transition to

transversion ratio of four. To accommodate the known mutation bias
for Alu CpG dinucleotides as a result of the deamination of
methylated cytosines, CpG dinucleotides were allowed to mutate at
a 6-fold higher rate than non-CpG dinucleotides [42]. To make the
modeling process more computationally tractable, we assumed a
scenario of Alu subfamily evolution in which Alu retrotransposition
followed a strict master gene model, with a lone, non-mutating source
sequence generating offspring that were incapable of additional
retrotransposition. We also considered the Alu expansion to have
occurred in a single, representative genome, with each successful
retrotransposition event equivalent to a ‘‘substitution’’ event at the
population level. This allowed for combining Alu retrotransposition
events with standard methods for calculating substitution probabil-
ities, greatly reducing simulation complexity and computational time.

Decay of IPLs. To study the evolution of IPL during the
transposition process, we modeled the behavior of IPL under the
same model conditions as p (i.e., M0 through M6, as described above).
Given the low probability of fixation for each initial insertion event (1/
2Ne), several million retrotransposition events must ultimately be
followed in order to achieve final subfamily copy numbers compara-
ble to those observed in the human genome. In each model, 7 million
insertion events occurring over various windows of time were used to
yield approximately 350 fixed elements. To reduce computational
time, Kimura’s recursion approximation of the diffusion process was
used to simulate the neutral drift of retrotransposed elements [61].
The absorption boundaries [0,1] at which alleles were lost or fixed,
respectively, were adjusted slightly to compensate for disparities
between the continuous results from the recursion equation and the
discrete frequencies that real-world alleles can assume. (The
continuous values between zero and 1/2Ne are possible return values
from the recursion, but not realistic allele frequencies.) A generation
time of 25 y and effective population size of 10,000 interbreeding
individuals was used. To address uncertainty surrounding ancestral
human generation times and effective population sizes, the effects of a
range of generation times (20, 25, and 30 y) and effective population
sizes (5,000, 10,000, 15,000, and 20,000) were investigated. At the onset
of the simulation, the number of retrotranspositions per time
increment required to achieve the 7 million insertion target was
calculated. Allele frequencies were allowed to drift randomly both
during and after transposition windows, and IPL values were
calculated and reported at 100,000-y intervals.

Accounting for IPL sampling effects. To adequately model the
element copy number and IPL values observed in the human genome,
the manner in which genomic elements are ascertained and
characterized was also incorporated into the simulation. The
population sample size from which most Alu elements have so far
been initially discovered is effectively a single individual (i.e., the
human genome draft sequence), and, consequently, a considerable
number of polymorphic elements will remain unobserved. When
simulating the observed IPL value, the effect of ascertaining elements
from a single individual must be accommodated. In order to do so,
the number of polymorphic elements that were reported as
‘‘observed’’ at any given time during the simulation was determined
by effectively sampling a single individual from the simulated
population. In this step, the detection of a given Alu insertion
polymorphism within that individual was stochastically determined,
with the probability of observing a given insertion being proportional
to the frequency of the insertion in the population. The simulations
were implemented in a set of C language programs with assisting Perl
scripts and are available at http://batzerlab.lsu.edu.

Statistical evaluation of models. Models were excluded or not
excluded based on 95% confidence intervals generated through
simulation. For each model scenario (M0 to M6), 1,000 replicates were
simulated. IPL and p values were calculated at 100,000-y intervals for
the simulated datasets, and the lower and upper 1.265 percentiles
were used to determine the 95% confidence interval. Boundary
values for 95% confidence interval were adjusted for the effect of two
independent tests of the IPL and p parameters resulting from the
model. Here, the probability of falling outside the range of some
percentage, X, of the simulated data twice (two tests) is given by 1 – (1
�X)2. To determine the boundaries that would be appropriate at the
5% significance level, we solved the equation 1 – (1 � X)2 ¼ 0.05,
yielding X¼ 0.0253. Upper and lower boundaries were then 0.0253/2
¼ 0.01265. p versus IPL values for real Alu subfamilies were then
plotted together with the simulated data. If a given subfamily’s p
versus IPL data fell outside the 95% confidence interval of a given
model, the model was rejected for that subfamily.

Evaluating the impact of subfamily size. All the analyses above
were conducted using subfamily copy numbers of approximately 350
elements for the nucleotide evolution simulation and 7 million
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insertion events (corresponding to ;350 fixations) for IPL modeling.
To assess the impact of subfamily size on the behavior of p, we
simulated sequence evolution for Tmut ¼ 2 myrs in an Alu subfamily
having generated n ¼ 50, 100, 200, and 400 copies under a
retrotransposition model where all elements were produced at t0
(i.e., Tretro ¼ 0). We performed 100 simulation replicates for each
value of n. We found that the major effect of increasing n was to
decrease the standard deviation of p among trials, but otherwise copy
number had little impact on the behavior of p over time (Figure 4).
The reduction of between-trial variance due to increasing family size
stabilized at copy numbers greater than 100 elements. We therefore
ran the all simulations described above using n ¼ 350 elements, a
number that is in the same order of magnitude of size as most of the
observed Alu subfamilies used in our study. Similar tests were
conducted for IPL simulations using alternate insertion numbers (1
million, 5 million, and 10 million). While some subfamilies in the
study, namely Ya5 and Yb8, are considerably larger than 350 in
observed copy number, experimentation with copy numbers as high
as 5,000 demonstrate that higher subfamily sizes reduces between-
replicate variance (data not shown).

Supporting Information

Figure S1. Distribution of Subfamily Sequence Variation p (x-Axis)
versus IPL (y-Axis): Generation Time of 25 y and Ne of 5,000
Individuals

Expectations based on 1,000 replicates of expansion models M0–M6.
The two lines indicate the boundaries of the 95% confidence interval
for each model. Observed (p and IPL) values for ten recent human Alu
subfamilies are shown as black diamonds (see legend of Figure 2).

Found at DOI: 10.1371/journal.pcbi.0010044.sg001 (3325 KB TIF).

Figure S2. Distribution of Subfamily Sequence Variation p (x-Axis)
versus IPL (y-Axis): Generation Time of 25 y and Ne of 20,000
Individuals

Expectations based on 1,000 replicates of expansion models M0–M6.
The two lines indicate the boundaries of the 95% confidence interval

for each model. Observed (p and IPL) values for ten recent human Alu
subfamilies are shown as black diamonds (see legend of Figure 2).

Found at DOI: 10.1371/journal.pcbi.0010044.sg002 (3.3 MB TIF).

Figure S3. Distribution of Subfamily Sequence Variation p (x-Axis)
versus IPL (y-Axis): Generation Time of 25 y and Ne of 15,000
Individuals

Expectations based on 1,000 replicates of expansion models M0–M6.
The two lines indicate the boundaries of the 95% confidence interval
for each model. Observed (p and IPL) values for ten recent human Alu
subfamilies are shown as black diamonds (see legend of Figure 2).

Found at DOI: 10.1371/journal.pcbi.0010044.sg003 (3.3 MB TIF).

Figure S4. Distribution of Subfamily Sequence Variation p (x-Axis)
versus IPL (y-Axis): Generation Time of 20 y and Ne of 10,000
Individuals

Expectations based on 1,000 replicates of expansion models M0–M6.
The two lines indicate the boundaries of the 95% confidence interval
for each model. Observed (p and IPL) values for ten recent human Alu
subfamilies are shown as black diamonds (see legend of Figure 2).

Found at DOI: 10.1371/journal.pcbi.0010044.sg004 (3.4 MB TIF).

Figure S5. Distribution of Subfamily Sequence Variation p (x-Axis)
versus IPL (y-Axis): Generation Time of 30 y and Ne of 10,000
Individuals

Expectations based on 1,000 replicates of expansion models M0–M6.
The two lines indicate the boundaries of the 95% confidence interval
for each model. Observed (p and IPL) values for ten recent human Alu
subfamilies are shown as black diamonds (see legend of Figure 2).

Found at DOI: 10.1371/journal.pcbi.0010044.sg005 (3.4 MB TIF).

Table S1. Alu Subfamily Compatibility with Different Retrotranspo-
sition Models (M0–M6) for Different Effective Population Sizes (Ne)
and a Generation Time of 25 y

Found at DOI: 10.1371/journal.pcbi.0010044.st001 (72 KB DOC).

Table S2. Alu Subfamily Compatibility with Different Retrotranspo-
sition Models (M0–M6) for Different Generation Times and an
Effective Population Size of 10,000 Individuals

Found at DOI: 10.1371/journal.pcbi.0010044.st002 (56 KB DOC).

Acknowledgments

We thank Dr. Scott W. Herke for comments on an earlier version of
the manuscript. This research was supported by Louisiana Board of
Regents Millennium Trust Health Excellence Fund HEF (2000–05)-05
(MAB), (2000–05)-01 (MAB), and (2001–06)-02 (MAB); National
Institutes of Health RO1 GM59290 (LBJ and MAB); National Science
Foundation BCS-0218338 (MAB), BCS-0218370 (LBJ) and EPS-
0346411 (MAB); and the State of Louisiana Board of Regents Support
Fund (MAB).

Competing interests. The authors have declared that no competing
interests exist.

Author contributions. DJH and RC conceived and designed the
experiments. DJH performed the experiments. DJH, RC, JX, DJW,
ARR, LBJ, and MAB analyzed the data. LBJ and MAB contributed
reagents/materials/analysis tools. DJH and RC wrote the paper. &

References
1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial

sequencing and analysis of the human genome. Nature 409: 860–921.
2. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retro-

transposons. Annu Rev Genet 35: 501–538.
3. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity.

Nat Rev Genet 3: 370–379.
4. Smit AF (1999) Interspersed repeats and other mementos of transposable

elements in mammalian genomes. Curr Opin Genet Dev 9: 657–663.
5. Jurka J (2004) Evolutionary impact of human Alu repetitive elements. Curr

Opin Genet Dev 14: 603–608.
6. Kazazian HH Jr (2004) Mobile elements: Drivers of genome evolution.

Science 303: 1626–1632.
7. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are

nonautonomous retrotransposons that cause disease in humans. Am J Hum
Genet 73: 1444–1451.

8. Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res
12: 1455–1465.

9. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotrans-
position of marked Alu sequences. Nat Genet 35: 41–48.

10. Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1
retrotransposition. Science 283: 1530–1534.

11. Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N (2001) Alu-mediated
inactivation of the human CMP- N-acetylneuraminic acid hydroxylase
gene. Proc Natl Acad Sci U S A 98: 11399–11404.

12. Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the
origin and expansion of human segmental duplications. Am J Hum Genet
73: 823–834.

13. Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA (2003) Recently
integrated Alu elements and human genomic diversity. Mol Biol Evol 20:
1349–1361.

14. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, et al. (1996)
High frequency retrotransposition in cultured mammalian cells. Cell 87:
917–927.

15. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1
retrotransposon encodes a conserved endonuclease required for retro-
transposition. Cell 87: 905–916.

Figure 4. Impact of Subfamily Copy Number (n) on the Sequence

Variation p Parameter

Increasing subfamily size beyond 100 copies had little effect on
between-replicate variation.
DOI: 10.1371/journal.pcbi.0010044.g004

PLoS Computational Biology | www.ploscompbiol.org September 2005 | Volume 1 | Issue 4 | e440339

Alu Retrotransposition Dynamics



16. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, et al. (2002) Human l1
retrotransposition is associated with genetic instability in vivo. Cell 110:
327–338.

17. Callinan PA, Wang J, Herke SW, Garber RK, Liang P, et al. (2005) Alu
retrotransposition-mediated deletion. J Mol Biol 348: 791–800.

18. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, et al. (2002) DNA
repair mediated by endonuclease-independent LINE-1 retrotransposition.
Nat Genet 31: 159–165.

19. Lev-Maor G, Sorek R, Shomron N, Ast G (2003) The birth of an
alternatively spliced exon: 39 splice-site selection in Alu exons. Science
300: 1288–1291.

20. Perepelitsa-Belancio V, Deininger P (2003) RNA truncation by premature
polyadenylation attenuates human mobile element activity. Nat Genet 35:
363–366.

21. Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1
retrotransposon and implications for mammalian transcriptomes. Nature
429: 268–274.

22. Kazazian HH Jr (1998) Mobile elements and disease. Curr Opin Genet Dev
8: 343–350.

23. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet
Metab 67: 183–193.

24. Vieira C, Biemont C (2004) Transposable element dynamics in two sibling
species: Drosophila melanogaster and Drosophila simulans. Genetica 120: 115–
123.

25. Vieira C, Lepetit D, Dumont S, Biemont C (1999) Wake up of transposable
elements following Drosophila simulans worldwide colonization. Mol Biol
Evol 16: 1251–1255.

26. Kidwell MG (1979) Hybrid dysgenesis in Drosophila melanogaster—Relation-
ship between the P-M and I-R interaction systems. Genet Res 33: 205–217.

27. Brookfield JF (1991) Models of repression of transposition in P-M hybrid
dysgenesis by P cytotype and by zygotically encoded repressor proteins.
Genetics 128: 471–486.

28. Charlesworth B (1988) The maintenance of transposable elements in
natural populations. Basic Life Sci 47: 189–212.

29. Brookfield JF, Badge RM (1997) Population genetics models of transposable
elements. Genetica 100: 281–294.

30. Biemont C, Lemeunier F, Garcia Guerreiro MP, Brookfield JF, Gautier C, et
al. (1994) Population dynamics of the copia, mdg1, mdg3, gypsy, and P
transposable elements in a natural population of Drosophila melanogaster.
Genet Res 63: 197–212.

31. Brookfield JF (1986) The population biology of transposable elements.
Philos Trans R Soc Lond B Biol Sci 312: 217–226.

32. Edwards RJ, Brookfield JF (2003) Transiently beneficial insertions could
maintain mobile DNA sequences in variable environments. Mol Biol Evol
20: 30–37.

33. Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of
natural selection in the stabilization of transposable element copy number
in a population of Drosophila melanogaster. Genet Res 49: 31–41.

34. Hedges DJ, Callinan PA, Cordaux R, Xing J, Barnes E, et al. (2004)
Differential alu mobilization and polymorphism among the human and
chimpanzee lineages. Genome Res 14: 1068–1075.

35. Brookfield JF (2005) The ecology of the genome—Mobile DNA elements
and their hosts. Nat Rev Genet 6: 128–136.

36. Leeflang EP, Liu WM, Chesnokov IN, Schmid CW (1993) Phylogenetic
isolation of a human Alu founder gene: Drift to new subfamily identity
[corrected]. J Mol Evol 37: 559–565.

37. Quentin Y (1988) The Alu family developed through successive waves of
fixation closely connected with primate lineage history. J Mol Evol 27: 194–
202.

38. Shaikh TH, Deininger PL (1996) The role and amplification of the HS Alu
subfamily founder gene. J Mol Evol 42: 15–21.

39. Carter AB, Salem AH, Hedges DJ, Keegan CN, Kimball B, et al. (2004)
Genome-wide analysis of the human Alu Yb-lineage. Hum Genomics 1:
167–178.

40. Otieno AC, Carter AB, Hedges DJ, Walker JA, Ray DA, et al. (2004) Analysis
of the human Alu Ya-lineage. J Mol Biol 342: 109–118.

41. Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E, et al. (2001)
Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their
contribution to human genomic diversity. J Mol Biol 311: 17–40.

42. Xing JC, Hedges DJ, Han KD, Wang H, Cordaux R, et al. (2004) Alu element
mutation spectra: Molecular clocks and the effect of DNA methylation. J
Mol Biol 344: 675–682.

43. Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, et al. (1990)
Structure and variability of recently inserted Alu family members. Nucleic
Acids Res 18: 6793–6798.

44. Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu
genes. J Mol Evol 32: 105–121.

45. Labuda D, Striker G (1989) Sequence conservation in Alu evolution.
Nucleic Acids Res 17: 2477–2491.

46. Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, et al. (2001)
Alu insertion polymorphisms for the study of human genomic diversity.
Genetics 159: 279–290.

47. Deininger PL, Batzer MA, Hutchison CA 3rd, Edgell MH (1992) Master
genes in mammalian repetitive DNA amplification. Trends Genet 8: 307–
311.

48. Cordaux R, Hedges DJ, Batzer MA (2004) Retrotransposition of Alu
elements: How many sources? Trends Genet 20: 464–467.

49. Tajima F (1983) Evolutionary relationship of DNA sequences in finite
populations. Genetics 105: 437–460.

50. Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) The genetic
structure of ancient human populations. Curr Anthropol 34: 483–496.

51. Graur D, Li WH (2000) Fundamentals of molecular evolution. Sunderland:
Sinauer Associates. 482 p.

52. Sherry ST, Harpending HC, Batzer MA, Stoneking M (1997) Alu evolution
in human populations: Using the coalescent to estimate effective
population size. Genetics 147: 1977–1982.

53. Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, et al. (1998)
Genetic traces of ancient demography. Proc Natl Acad Sci U S A 95: 1961–
1967.

54. Fenner JN (2005) Cross-cultural estimation of the human generation
interval for use in genetics-based population divergence studies. Am J Phys
Anthropol. E-pub ahead of print.

55. Hurst GD, Werren JH (2001) The role of selfish genetic elements in
eukaryotic evolution. Nat Rev Genet 2: 597–606.

56. Kidwell MG, Lisch DR (1998) Hybrid genetics. Transposons unbound.
Nature 393: 22–23.

57. Ginzburg LR, Bingham PM, Yoo S (1984) On the theory of speciation
induced by transposable elements. Genetics 107: 331–341.

58. Evgen’ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V,
et al. (2000) Mobile elements and chromosomal evolution in the virilis
group of Drosophila. Proc Natl Acad Sci U S A 97: 11337–11342.

59. Watanabe H, Fujiyama A, Hattori M, Taylor TD, Toyoda A, et al. (2004)
DNA sequence and comparative analysis of chimpanzee chromosome 22.
Nature 429: 382–388.

60. Miyamoto MM, Slightom JL, Goodman M (1987) Phylogenetic relations of
humans and African apes from DNA sequences in the psi eta-globin region.
Science 238: 369–373.

61. Kimura M (1980) Average time until fixation of a mutant allele in a finite
population under continued mutation pressure—Studies by analytical,
numerical, and pseudo-sampling methods. Proc Natl Acad Sci U S A 77:
522–526.

PLoS Computational Biology | www.ploscompbiol.org September 2005 | Volume 1 | Issue 4 | e440340

Alu Retrotransposition Dynamics


