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Abstract Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modifica-

tion at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modifi-

cation regulates a number of biological processes including chromatin reorganization, DNA

damage response (DDR), transcriptional regulation, apoptosis, and mitosis. PARP1, functioning

as a DNA damage sensor, can be activated by DNA lesions, forming PAR chains that serve as a

docking platform for DNA repair factors with high biochemical complexity. Here, we highlight

molecular insights into PARylation recognition, the expanding role of PARylation in DDR path-

ways, and the functional interaction between PARylation and ubiquitination, which will offer us a

better understanding of the biological roles of this unique post-translational modification.
Introduction

Throughout the biological life, genomic stability of the organ-

isms is always challenged by both endogenous and exogenous
toxic stresses [1,2]. It has been estimated that every cell could
experience up to 105 spontaneous DNA lesions per day [3].
To maintain genomic integrity, the organisms have evolved a

series of sophisticated and precise mechanisms to protect their
genome against the deleterious lesions, including cell cycle
checkpoint, diverse DNA repair signaling pathways, chro-
matin reorganization, and protein modifications [4]. Among

these responses, poly ADP-ribosylation (PARylation) is a
pivotal post-translational protein modification (PTM) that
appears rapidly at DNA damage sites [5,6].

In human, ADP-ribosylation is catalyzed by poly(ADP-

ribose) polymerases (PARPs), which consists of 17 members
[7–10]. PARPs primarily covalently attach the ADP-ribose
(ADPR) unit via an ester bond to the carboxyl group of acidic

residues such as glutamate or aspartate residues on the target
proteins [11,12], but cysteine (Cys) and lysine (Lys) residues
could also act as acceptors [13,14]. However, most of them

are only able to transfer single mono(ADP-ribose) (MAR)
group onto their target proteins [5,15]. To date, PARP1, 2,
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2016.05.001&domain=pdf
mailto:xyu@coh.org
http://dx.doi.org/10.1016/j.gpb.2016.05.001
http://dx.doi.org/10.1016/j.gpb.2016.05.001
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.gpb.2016.05.001
http://creativecommons.org/licenses/by/4.0/


132 Genomics Proteomics Bioinformatics 14 (2016) 131–139
and 3 have been identified to catalyze PARylation during
DNA damage response (DDR) [5,15]. In addition, tankyrases
including tankyrase-1 (PARP5a) and tankyrase-2 (PARP5b)

have also been shown to contribute to genomic stability
[15,16]. Among these PARPs, PARP1 is the founding member
of PARP family for the synthesis of PAR chains. The mecha-

nism of PARP1 activation by single-strand and double-strand
DNA breaks (SSBs and DSBs) is well established [17]. Using
NAD+ as substrate, PARPs repeatedly catalyze the transfer

of successive units of ADPR moieties via a unique 20,100-O-
glycosidic ribose-ribose bond to target proteins, finally produc-
ing PAR chain [5]. Several reports have demonstrated that
PAR chains can comprise up to 200 ADPR units in length

[5,11,17]. In addition, PARP1 can introduce branching into
PAR chains through the 200,1000-glycosidic bond [18,19].

In cells, PAR polymers are primarily degraded by PAR

glycohydrolase (PARG), which possesses both exoglycosidic
activity and endoglycosidic activity [20–22]. PARG effi-
ciently cleaves the unique 20,100-glycosidic ribose-ribose

bonds of the PAR chains and releases the free ADPR moi-
eties [22,23]. In addition, ADP-ribosylhydrolase 3 (ARH3)
also exhibits the PAR-degrading activity, although ARH3

has only exoglycosidase activity [24,25]. Neither PARG
nor ARH3 can hydrolyze the proximal protein-bound
ADPR unit from a PAR chain, possibly due to steric hin-
drance, thus leaving a MARylated protein. MARylated pro-

teins can be recognized by different protein domain and thus
serve as scaffolds for recruitment of proteins during diverse
biological processes [22,24]. Interestingly, a set of Macro

domain-containing (MacroD) proteins have been found to
exhibit hydrolase activities. These include the terminal
ADPR protein glycohydrolase (TARG1/C6orf130) [26], as

well as MacroD1 and MacroD2 [27–30]. Earlier studies
showed that these three enzymes can hydrolyze O-acetyl-
ADPR, a metabolite derived from NAD during sirtuin2-

catalyzed protein deacetylation, regulating diverse biological
processes [31]. Recently, TARG, MacroD1, and MacroD2
were identified for their action in removal of glutamate-
specific ADPR [26,28,29]. The hydrolysis of last ADPR from

modified protein is the final and rate-limiting step of PAR
chain degradation [32]. Like many other PTMs, synthesis
and degradation of PAR chains is tightly and dynamically

controlled in vivo with the half-life of only several minutes
[4,27]. If PAR chains cannot be hydrolyzed in a timely man-
ner, excessive protein-free PAR chains can induce the

apoptosis-like cell death, termed parthanatos [4,27]. Partha-
natos is another form of programed cell death which is dis-
tinct from necrosis and apoptosis. As a distinct death
pathway, parthanatos is associated with PARP-1. The syn-

thesis and accumulation of PAR chain will result in mito-
chondrial depolarization and nuclear apoptosis inducing
factor (AIF) translocation, thus inducing cell death [33].

PARylation and DNA repair pathway

PARylation in base excision repair/SSB repair process

The base excision repair/SSB repair process (BER/SSBR) is a

pivotal DNA repair signal pathway to repair oxidized bases,
apurinic/apyrimidinic sites (AP sites, also known as abasic
sites) or SSBs [1]. In cells, many chemical alterations such as
oxidation, methylation, deamination, and hydroxylation can
induce base damage and SSBs [1]. In the BER process, dam-
aged bases are cleaved by DNA glycosylases, producing abasic

sites, which are next processed by AP endonuclease (APE) into
SSBs [2,34]. These sites are further repaired through two differ-
ent pathways termed short-patch repair and long-patch repair,

which are distinct in terms of patch sizes and DNA repair fac-
tors involved [35].

PARP1 can physically and functionally interact with SSBR

factor X-ray repair cross-complementing protein 1 (XRCC1),
which plays a major role in SSBR signal pathway, facilitating
the recruitment and assembly of the SSBR machinery [35].
Our recent study indicates that the BRCA1CTerminus (BRCT)

domain of XRCC1 directly binds to PAR chain and mediates
early recruitment of XRCC1 to DNA lesions [36]. Several
reports have also demonstrated that PARP1 is able to interact

with key factors of the BER/SSBR process including the DNA
glycosylase 8-oxoguanine glycosylase 1 (OGG1), XRCC1,
DNA polymerase (DNAP) b, DNA ligase III, proliferating cell

nuclear antigen (PCNA), aprataxin, and condensin I [37–40].
Many of these factors can undergo PARylation by PARP1
(Figure 1). Additionally, PARP2 has also been identified to

interact with BER/SSBR proteins such as XRCC1, DNAP b,
andDNA ligase III [41]. These findings support that PAR chain
could provide a landing platform for the recruitment of DNA
repair complexes as proposed by Masson et al. in 1998 [42].

PARylation in DSB repair

DNADSBs are regarded as themost detrimental DNAdamage,

which seriously and directly threaten genomic stability via inter-
rupting the physical continuity of the chromosome [1]. The fail-
ure to repair DSBs will lead to catastrophic consequences such

as oncogenesis, cell death, and developmental disorders [1]. To
deal with DSBs, organisms have employed three major DNA
repair mechanisms including classical non-homologous end

joining (C-NHEJ), alternative non-homologous end joining
(alt-NHEJ), and homologous recombination (HR). The choice
ofDNA repair pathway depends onwhether the damagedDNA
end is resected, which is likely mediated by the Mre11/Rad50/

Nbs1 (MRN) complex and C-terminal-binding protein
(CtBP)-interacting protein (CtIP). Once DNA resection is
impeded, repair by C-NHEJ is invoked. However, if resection

has occurred, HR and alt-NHEJ may compete with each other
to repair the damagedDNA.RAD51 forms a filament at the site
of SSB that drives strand exchange and facilities HR, whereas

PARP1 may serve as a platform for recruiting alt-NHEJ repair
factors such as DNAP h [43].

PARylation in C-NHEJ

Eukaryocytes mainly employ C-NHEJ to repair damaged
DNA. The process is DNA end resection-independent, and is
also unrelated to sequence homology. Therefore, C-NHEJ

occurs throughout the cell cycle, but predominantly in
G0/G1 and G2 phase [44,45]. In the process of C-NHEJ, the
Ku70/Ku80 heterodimer is recruited to DNA damage sites fol-

lowed by loading of DNA-dependent protein kinase catalytic
subunit (DNA-PKcs). Meanwhile, Ku70/Ku80 heterodimer
facilitates the activation of the DNA ligase IV/XRCC4

complex. Accessory factors such as nuclease Artemis,
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Figure 1 PARylation mediates DNA damage repair

The scheme depicts DNA repair networks regulated by PARylation. As might be expected, PARPs interact physically and functionally

with several DNA damage factors to promote their recruitment to the sites of DNA damage. alt-NHEJ, alternative non-homologous end

joining; APE, apurinic/apyrimidinic (AP) endonuclease; BER, base excision repair; BRCA1, breast cancer type 1 susceptibility protein;

BRCA2, breast cancer type 2 susceptibility protein; C-NHEJ, classical non-homologous end joining; CtIP, C-terminal-binding protein

(CtBP)-interacting protein; DNAP, DNA polymerase; DNA-PKcs, DNA-dependent protein kinase, catalytic subunit; FEN-1, flap

structure-specific endonuclease 1; HR, homologous recombination; MRE11, meiotic recombination 11 homolog 1; MRN, Mre11-Rad50-

Nbs1 complex; OGG-1, 8-oxoguanine glycosylase 1; PARP, poly(ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen;

RPA, replication protein A; SSBR, single-strand break repair; XRCC4, X-ray repair cross-complementing protein 4.
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aprataxin-polynucleotide kinase-like factor (APLF), or

polynucleotide kinase/phosphatase (PNKP) process the dam-
aged DNA end to be compatible for ligation. At the final step,
the activated DNA ligase IV and its cofactor XRCC4, or

Cernunnos/XRCC4-like factor (XLF), rejoin the DNA ends
[46].

Several studies support an important role of PARP1 in C-

NHEJ. Interaction between PARP1 and DNA-PKcs facilitates
genomic integrity during V(D)J recombination and prevents
tumor development [47]. It is of note that PARP can stimulate

DNA-PKcs activity via PARylation in vitro [48]. This interac-
tion is further supported by in vivo evidence as reported
recently. A structural PARP1/DNA-PKcs/Ku molecular com-
plex has been identified in which PARP1 elicits a major archi-

tectural rearrangement of the DNA-PKcs-mediated synapsis
[49]. Moreover, previous studies from our lab have shown that
the BRCT domain of DNA ligase IV directly recognizes the

ADP-ribose of PAR chains, which mediates the early recruit-
ment of the ligase to DNA lesions. Such efficient recruitment
may facilitate C-NHEJ [50].

PARylation in alt-NHEJ

As a new DSB repair signal pathway, alt-NHEJ has attracted

much attention recently [46]. When classical C-NHEJ is defi-
cient, alt-NHEJ can be initiated by resected DNA end. Com-
pared with C-NHEJ, alt-NHEJ is characterized by the

following features: initiated by damaged DNA end resection;
independent of the Ku70/Ku80 heterodimer, XRCC4, and
DNA ligase IV; using complementary microhomologies—
short stretches (1–10 nucleotides) that can anneal, to guide

DNA repair and much less faithful than C-NHEJ [51].
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PARP-1, XRCC1, DNA ligase III, PNKP, WRN, CtIP,
NBS1, and ERCC1 have all been implicated in alt-NHEJ
[46]. PARPs play pivotal roles in this process. PARP1 can rec-

ognize the broken DNA ends and create a scaffold for the
recruitment of other DNA damage factors involved in alt-
NHEJ. Finally, end-rejoining is carried out by the DNA ligase

III/XRCC1 complex in coordination with PARP1 [52] (Fig-
ure 1). In addition, both XRCC1 and PNKP can be recruited
to the DNA damage sites through PAR binding, which could

occur at the early steps of alt-NHEJ [50].

PARylation in HR

HR can be activated by single-stranded DNA (ssDNA) resec-
tion. The process produces a lagging strand gap or 30overhang,
which is the key step for HR [53]. Owing to its requirement for a
sister chromatid, HR predominates in S and G2 phases, when

the amount of DNA replication is highest and the sister tem-
plate is available [45,54]. HR is typically characterized by
error-free [1,55]. Using homologous sequence to repair dam-

aged DNA, HR requires strand invasion mediated by the
recombinase RAD51. Earlier findings show that PARP1 is dis-
pensable for HR. PARylation appears to have little direct effect

on HR since HR is normal in PARP-depleted cells [53]. How-
ever, PARP1 has been associated with HR-mediated repair
and reactivation of stalled replication forks, therefore promot-
ing faithful DNA replication [56]. Moreover, PARP1 facilitates

recruitment of MRE11 and RAD51, which restart stalled repli-
cation BRCA1/2-dependent early DDR [57]. The BRCTs of
BARD1, the oligonucleotide/oligosaccharide binding-fold

(OB-fold) of BRCA2, and the protein incorporated later into
tight junctions (PilT) N terminus (PIN) domain of exonuclease
1 (EXO1) are the PAR-binding modules that target these HR

repair machineries to DSBs for damaged DNA repair [58].

PAR-binding modules

To regulate numerous biological functions, PAR chains must
be recognized by diverse proteins such as DDR factors. To
date, several distinct classes of PAR-binding modules have
been identified. These include the PAR-binding zinc finger

(PBZ), the Macro domain, the WWE domain, the BRCT
domain, the forkhead-associated (FHA) domain, the OB-fold
domain, the PIN domain, and the RNA recognition motif

(RRM) domain [9,59].

PBZ domain

The recently-identified PBZ domains possess the consensus
sequence [K/R]xxCx[F/Y]GxxCxbbxxxxHxxx[F/Y]xH [60].
PBZs are less common in mammalian proteins involved in

DNA repair and cell cycle checkpoint, although PBZs are much
more widespread in some other eukaryotes [48,60–62]. Up till
now, PBZ domains are only found in three human proteins,
including histone chaperone APLF, checkpoint with FHA and

RING finger (CHFR), and sensitive to nitrogen mustard 1A
(SNM1A) [48,60–62]. Crystal structures of APLF and CHFR
show that PBZs are essential for their functions. Initial analysis

of CHFR primary sequence has identified a zing finger called
C2H2, which binds to PAR efficiently. Therefore, this motif is
defined as a new PAR binding module termed PBZ [60]. APLF
contains two tandemPBZdomains termedF1 andF2.Although
F1 andF2 can recognize the PAR chain independently, presence
of both domains remarkably increase the affinity of PAR chain

binding, which is over 1000 timesmore efficient than the isolated
PBZ domain [63]. Structural analysis demonstrates that PBZ
module contains a central zinc ion coordinated by two cysteine

and two histidine residues, which can recognize adenines in two
neighboring ADP-ribose units of the PAR chain. This type of
recognition renders the PBZ motifs to be the truly specific

PAR binding modules [63] (Figure 2).

The WWE domain

The WWE domain is the most recently discovered PAR-
binding domain, named after the three strictly conserved amino
acid residues, tryptophan-tryptophan-glutamate (WWE) [64].
The WWE domains, which can recognize iso-ADPR of PAR

chain with high affinity, tightly links ubiquitination and
PARylation signal pathways. The iso-ADPR which contains
a characteristic bond, 20,100-O-glycosidic ribose-ribose is the sig-

nature of PAR chains [64]. The negatively-charged phosphate
groups of the iso-ADPR can bind the positively-charged
WWE domain [64]. The WWE domain is primarily found in

two distinct protein families, including the E3 ubiquitin ligases
(RNF146, deltex1, and TRIP12) and the PARPs (PARP8 and
PARP11–14) [63]. So far, the function of WWE domain has
been well described for RNF146/Iduna. RNF146 recognizes

PAR chain and ubiquitinates DNA repair proteins such as
XRCC1, PARP1, DNA ligase III, and Ku70. The PARylated
proteins are targeted to proteosome for degradation [64,65].

Taken together, the WWE domain-containing proteins are
tightly linked with and influence each other (Figure 2).

The Macro domain

The Macro domain, which consists of 130–190 amino acid resi-
dues, is evolutionarily conserved and widely spread through-

out all kingdoms of organisms. This is distinct from the PBZ
and WWE domains. It is estimated that more than 300 pro-
teins, including 11 human proteins, with a diverse set of bio-
logical functions possess the Macro domain [66]. Macro

domains can bind to the terminal ADPR of PAR, MAR, as
well as O-acetyl-ADPR [66–68]. Some proteins such as ampli-
fied in liver cancer 1 (ALC1, also known as CHD1L), can

interact with PAR chains through Macro domains and cat-
alyze PARP1-stimulated nucleosome sliding, thus participat-
ing in DDR and chromatin remodeling [69,70]. Some other

Macro domain-containing proteins, in addition to their bind-
ing ability, also exhibit catalytic activity on the hydrolysis of
PAR chains, making the Macro domains unique among the

other PAR-binding modules. These include PARG [22],
TARG1 [26,71], and MacroD1/2 [28,31] (Figure 2). PARG
enzyme uses Macro domain for the binding and hydrolysis
of PAR chains, as we outlined above.

Additional domains

It is well known that FHAandBRCTdomains can bind to phos-

phorylated proteins and modify protein–protein interactions
[72]. Recently, it was reported that the phosphate-binding
pocket in the central BRCT domain of BARD1 is required for



Figure 2 PAR-binding modules

Using NAD+ as substrate, PARPs can produce PAR chain. For degradation, PARG and ARH3 mainly cleave the bonds of the PAR

chain, except the proximal protein-bound ADP-ribose. The hydrolysis of last ADP-ribose from modified protein is conducted by TARG,

MacroD1, and MacroD2. PBZ, WWE, Macro domain, FHA domain, OB-fold BRCT domain, RRM, and RGG motifs/domains can

recognize the different parts of the PAR chain. ARH3, ADP-ribosylhydrolase 3; BRCT, BRCA1 C terminus; FHA, forkhead-associated;

MacroD, Macro domain-containing protein; OB-fold, oligonucleotide/oligosaccharide-binding domain; PAR, poly(ADP ribose); PARG,

PAR glycohydrolase; PARP, PAR polymerase; PBZ, PAR-binding zinc-finger; PIN, protein incorporated later into tight junctions (PilT)

N terminus; RGG, arginine-glycine-glycine; RRM, RNA recognition motif; TARG, terminal ADP-ribose glycohydrolase; WWE,

tryptophan-tryptophan-glutamate.
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selective binding to PAR chain [50,73]. Meanwhile, BRCT
domain promotes the interaction between BARD1 and PARP1.

Moreover, the FHA domains of aprataxin (APTX) and PNKP
confer affinity to iso-ADPR of PAR chain [50,73].
The OB-fold is an ssDNA or ssRNA binding domain that
has been found in proteins from all three kingdoms. OB-fold

comprises 70–150 AA residues forming five-stranded beta-barrel
with a terminating alpha-helix [57]. Interestingly, it is reported
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recently that the OB-fold can bind to the PAR-specific
iso-ADPR and such binding is required to bring the ssDNA-
binding protein 1 (SSB1) to sites of DNA damage [58].

The PIN domain-containing proteins serve as nucleases
that cleave ssDNA/ssRNA in a sequence-specific manner
[74]. The PIN domain consists of �130 amino acid residues

characterized by a group of three strictly conserved acidic
amino acid residues [75]. Our recent study found that the
PIN domain of EXO1 recognizes PAR in DDR [58].

The RRM is one of the most abundant protein domains in
eukaryotes, which can serve as a plastic RNA-binding plat-
form to regulate post-transcriptional gene expression [76]. Sev-
eral RRM-containing proteins have been reported to assemble

at sites of PAR formation to promote DDR [77,78].
It is reported that some RNA and DNA binding motifs can

recognize PAR chains. Motifs enriched in arginines and glyci-

nes, which are termed glycine-arginine-rich (GAR) domains
and/or RGG boxes, were identified several decades ago.
RGG boxes are found in more than 1000 human proteins that

are involved in numerous biological processes including tran-
scription and DDR [79]. RGG boxes in the RNA-binding pro-
teins such as FUS/TLS, EWS/EWSR1, TAF15, SAFB1, SAF-

A, and hnRNPUL1/2, have been identified, and these proteins
can be recruited to DNA damage sites via binding to PAR
chain through RGG boxes [80–86].

PARylation and ubiquitination

Ubiquitin is a small regulatory protein consisting of 76 amino
acid residues, which has been found in almost all tissues of

eukaryotic organisms. It can be covalently transferred to a
Lys residue of an acceptor protein. This process is termed
ubiquitination [87]. The ubiquitination pathway in cells is

an elaborate system for targeting unwanted proteins for
degradation, carried out by three classes of enzymes, E1,
E2, and E3. Ubiquitin is first activated by ubiquitin-

activating enzyme (E1) before being transferred to the active
site of E1 in an ATP-dependent manner. Then the ubiquitin
molecule is passed on to the second enzyme, ubiquitin-
conjugating enzyme (E2), where ubiquitin is linked by

another thioester bond to the Cys active site of E2. Finally,
with the help of a third enzyme, ubiquitin protein ligase
(E3), ubiquitin is transferred from E2 to a Lys residue on a

substrate protein. Additional ubiquitin molecules can be
linked to the first one to form a poly-ubiquitin chain usually
targeting the protein to the proteasome [87].

Recent studies have demonstrated that PARylation can
serve as a signal for the ubiquitination and promote the degra-
dation of PARsylated proteins [88–90]. Some E3 ligases bind
PAR via either a WWE (RNF146, also known as Iduna)

domain or a PBZ (CHFR) domain [43,44,46]. The relationship
between PARylation and ubiquitination has been well
described in the RING-type E3 ubiquitin ligase, RNF146.

The RNF146 WWE domain recognizes the PAR chain via
interacting with iso-ADPR (Figure 2), functioning as an allos-
teric signal that changes the RING domain conformation from

a catalytically-inactive state to an active one. RNF146 can
polyubiquitylate many repair factors in a PAR-dependent
manner, such as PARP-2, XRCC1, DNA ligase III, and

Ku70 [62]. The discovery of a direct connection between
PARylation and ubiquitination provides us with a new
interpretation of the signaling function of PAR—degradation
of proteins in a timely and orchestrated manner.

Dysregulation of PARylation and human diseases

PARP1 is a key facilitator of DDR and is implicated in
tumorigenesis of several malignancies, particularly those asso-

ciated with dysfunctional DNA repair pathways [37]. Recent
studies further demonstrate that transcript, protein, and
enzyme activity of PARP1were increased in several tumor

types with the most striking differences noticed in ovarian
cancer, hepatocellular cancer, colorectal cancer, and leukemia
[76–78]. Given that PARP1 has an important role in DDR, a

novel therapeutic targeting PARP1 has been developed to treat
cancers through increasing tumor sensitivity to chemothera-
peutic agents and also through inducing ‘‘synthetic lethality”
in cells [78]. Now PARP inhibitors have demonstrated efficacy

in a number of tumor types, including platinum-sensitive
epithelial ovarian cancer [50], breast cancer with mutation in
BRCA1 or BRCA2 [91], and prostate cancer [92]. Olaparib

is a PARP inhibitor that blocks enzymes involved in repairing
damaged DNA [92]. Recently olaparib has been licensed as
monotherapy for the treatment of patients with hereditary

BRCA1 or BRCA2 mutations [91].

Perspectives and conclusions

Over the last decades, PARylation has been proved to be

involved in numerous cellular functions including DDR.
PAR serves as an initial sensor and mediates the early recruit-
ment of DNA damage repair machineries. As a kind of protein

modification, PARylation is tightly and dynamically regulated.
PAR chain synthesis is mediated by several PARPs, whereas
PARG mainly takes charge of PAR chain degradation. Great

strides have been made in the past few decades to decipher
the PARylation regulatory processes and the underlying molec-
ular mechanisms. However, many questions remain to be

answered. First, other NAD+-consuming enzymes, such as
sirtuin 1, are thought to compete for NAD+ with PARPs [9].
What is the reciprocal influence of these enzymes? Moreover,
how these DNA damage factors are assembled at the DNA

damage sites via PAR chains is still unclear exactly, as PAR
chain does not have any sequence specificity. In addition, new
molecular or chemical methods need to be developed to better

achieve cell-permeable PARG or/and ARH inhibitors. More
investigations are needed to address these questions in the
future. In this regard, a better understanding of the biochemical

and functional properties of PARylation in DNA repair may
provide new clues to answer these fundamental questions.
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