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Abstract.  Most species living outside the tropical zone undergo physiological adaptations to seasonal environmental changes 
and changing day length (photoperiod); this phenomenon is called photoperiodism. It is well known that the circadian clock 
is involved in the regulation of photoperiodism such as seasonal reproduction, but the mechanism underlying circadian clock 
regulation of photoperiodism remains unclear. Recent molecular analysis have revealed that, in mammals and birds, the 
pars tuberalis (PT) of the pituitary gland acts as the relay point from light receptors, which receive information about the 
photoperiod, to the endocrine responses. Long-day (LD)-induced thyroid-stimulating hormone (TSH) in the PT acts as a 
master regulator of seasonal reproduction in the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) and 
activates thyroid hormone (TH) by inducing the expression of type 2 deiodinase in both LD and short-day (SD) breeding 
animals. Furthermore, the circadian clock has been found to be localized in the PT and ECs as well as in the circadian 
pacemaker(s). This review purposes to summarize the current knowledge concerning the involvement of the neuroendocrine 
system and circadian clock in seasonal reproduction.
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Seasonal transitions between annual cycle stages force organisms 
living outside the tropical zone to adapt their physiology and 

behavior to the environmental changes that occur. Such adaptations 
include reproduction, migration, hibernation, molting, antler growth, 
rutting, courting, nesting, and parental behavior. The mechanism 
responsible for timing such transitions by using environmental cues 
is critical to understanding how animals adapt to environmental 
variations. Seasonal breeders adapt their reproductive cycles to 
specific seasons in order to maximize offspring survival. Hamsters 
and many birds, which have a gestation period of several weeks and 
breed during the spring, are called long-day (LD) breeders. Goats, 
sheep and deer, which have a gestation period of approximately 
6 months, breed during the autumn and are called short-day (SD) 
breeders. For both types of breeders, the offspring are born during 
spring and summer, when food is abundant. These seasonal breeders 
use the predictable annual cycle of day length (photoperiod) as a 
calendar; this phenomenon is called photoperiodism [1, 2]. While 
photoperiod, temperature, and precipitation all show annual changes, 
photoperiodic changes are the most reliable seasonal environmental 
cue because of the stable annual cycle.

Seasonal reproduction is controlled by the hypothalamic-pituitary-
gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) 
synthesized mainly in the preoptic area (POA) of the hypothalamus 
is secreted from the median eminence (ME) into the hypophyseal 
portal vessels. Secreted GnRH activates the secretion of gonadotropins 

(luteinizing hormone [LH] and follicle-stimulating hormone [FSH]) 
from the anterior pituitary, regulating a seasonal development and 
regression of the gonads. In vertebrates, birds show drastic seasonal 
changes in gonad size, more than 100-fold, thereby contributing 
largely to our understanding of photoperiodic mechanisms. Among 
mammals, hamsters and sheep have often been used in studies of 
photoperiodism because of their drastic photoperiodic responses, 
although their seasonal gonadal changes are less dramatic than those 
of birds. The robust seasonal responses of birds may be related to 
their limited breeding season and the adaptations of birds to flight. In 
this review, we discuss the current understanding of the mechanisms 
regulating seasonal reproduction in birds and mammals and their 
relationship to the circadian clock.

Regulation of Photoperiodism in Birds

Among birds, the Japanese quail (Coturnix japonica) is a good 
model animal for understanding photoperiodism, because it shows 
a rapid response to changing day length [3]. Some studies have 
indicated that in quail, the mediobasal hypothalamus (MBH) is 
the center of seasonal reproduction for the following reasons: (1) 
lesions in the MBH suppressed photo-induced LH release [4, 5]; 
(2) local illumination in the brain induced testicular growth [6]; (3) 
electrical stimulation of the MBH led to LH secretion [7]; and (4) 
induction of c-Fos was observed under LD conditions [8]. Brief 
light pulses interrupting the long nights of SD conditions have also 
been demonstrated to induce a photoperiodic response [9]. The 
sensitive phase begins from 11 to 16 h after dawn, and therefore, 
we hypothesized that some molecular events must occur within the 
MBH in response to light stimuli. Using the MBH of a quail that 
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received a light pulse and no light pulse in the photo-inducible phase, 
differential subtractive hybridization identified induction of the 
type 2 deiodinase gene (DIO2) [10] encoding the thyroid hormone 
(TH)-activating enzyme that converts the prohormone thyroxine 
(T4) to bioactive T3 (Fig. 1) [11]. DIO2 expression is upregulated 
under LD conditions and downregulated under SD conditions in 
the tanycytes of the ependymal cells (ECs) lining the ventrolateral 
walls of the third ventricle within the MBH [10]. In contrast, it was 
later found that expression of DIO3 (TH-inactivating enzyme type 
3 deiodinase), which converts T4 and T3 to inactive T3 (reverse T3: 
rT3) and 3,3’-diiodothyronine (T2), respectively, is upregulated under 
SD conditions and downregulated under LD conditions [12]. This 
switching may be responsible for the 10-fold higher concentration of 
TH in the MBH under LD conditions than under SD conditions, in 
spite of the constant level of plasma TH during both photoperiods. 
Intracerebroventricular (i.c.v.) T3 administration under SD conditions 
induced testicular growth in a dose-dependent manner, while the 
administration of a DIO2 inhibitor under LD conditions blocked 
testicular growth [10], indicating the functional significance of 
locally activated TH.

It has been demonstrated that TH is important not only for the 
metabolism but also for the development and plasticity of the central 
nervous system [11]. In immunoelectron microscopy of the median 
eminence (ME) in quail kept under both SD and LD conditions, we 
found morphological changes between GnRH neurons and glial end 
feet [13] (Fig. 1). Under SD conditions, nerve terminals of the GnRH 
neurons were encased by the end feet of glial processes and did not 
contact the basal lamina, while under LD conditions, they seemed 
to be in close proximity to the basal lamina [13]. The administration 
of T3 into the brain under SD conditions mimicked LD-induced 
morphological changes [14]. Neuroendocrine terminals must be in 
direct contact with the pericapillary space (i.e., the basal lamina) in 
order to secrete the neurohormone into the hypophyseal portal vessel 
[15]. It is also noteworthy that seasonal plasticity within the GnRH 
system is reported in the ewe [16]. These reports appear to support 
the hypothesis that the T3-induced morphological changes between 
GnRH neurons and glial cells regulate seasonal GnRH secretion. 
In addition to the photoperiodic regulation of GnRH secretion by 
the morphological changes in the ME, seasonal changes in GnRH 
synthesis, mainly in the POA, are important for seasonal reproduc-
tion among birds such as starlings. However, because it has been 
reported that GnRH synthesis in quail is not seasonal [17], secretion 
of GnRH may be a more important event for seasonal reproduction 
than photo-induced GnRH synthesis in quail.

To clarify the mechanism involved in regulating the photoperiodic 
switching of DIO2/DIO3 in the quail MBH, we used a chicken high-
density oligonucleotide microarray (Affymetrix Chicken Genome 
Array) to perform genome-scale gene expression analysis during the 
transition from SD conditions to LD conditions in Japanese quail 
[18]. Analysis of more than 38,000 probes identified induction of 
thyroid-stimulating hormone β subunit (TSHB) and the transcriptional 
co-activator eyes absent 3 (EYA3) in the pars tuberalis (PT) of the 
pituitary gland at 14 h after dawn on the first LD (Fig. 2). DIO2 was 
upregulated and DIO3 was suppressed 4 h later in the ECs. Since 
EYA3, a transcriptional co-activator, was expressed in adjacent 
but different regions of the ECs, EYA3 does not appear to be 

involved in DIO2/DIO3 expression. Therefore, we predicted that 
PT-derived TSH (PT-TSH) may regulate the seasonal DIO2/DIO3 
switching. We also found the expression of TSH receptor (TSHR) 
and binding of 125I-labeled TSH in the ECs. Administration of i.c.v. 
bovine TSH induced DIO2 expression and testicular growth under 
SD conditions, while passive immunization by administration of 
anti-TSHβ antibodies suppressed LD-induced DIO2 expression 
in the ECs. These data suggest that PT-TSH is a master regulator 
of seasonal reproduction in birds. Promoter analysis supported the 
involvement of the TSHR-Gsα-cAMP signaling pathway in this 
TSH-DIO2 process.

Regulation of Photoperiodism in Mammals

Photoperiodic regulation of DIO2 and/or DIO3 has also been 
demonstrated in mammals, including the Siberian hamster [19, 20], 
Syrian hamster [21, 22], rat [23, 24], goat [25] and sheep [26], as well 
as birds (e.g., tree sparrow [27] and chicken [28]). Local activation 
of TH by DIO2/DIO3 switching within the MBH is also important 
for seasonal reproduction in both LD breeding birds and mammals, 
as daily subcutaneous (s.c.) T3 injection induced testicular growth 
[29] and chronic infusion of T3 into the brain prevented testicular 
regression [30] in Siberian hamsters. In sheep, T4 administration 
suppressed the breeding activity via a decrease in serum LH [31, 
32] and LD stimulation activated the TSH-DIO2 pathway [26]. It 
has been known for several decades that thyroidectomy blocks the 
photoperiodic response in a number of species, such as the sparrow 
[33], starling [34], and sheep [35]. The involvement of TH in 

Fig. 1. DIO2 converts the prohormone thyroxine (T4) to bioactive 
triiodothyronine (T3) under LD conditions, while DIO3 
metabolizes THs under SD conditions in birds and mammals. In 
quail, LD-induced T3 appears to induce morphological changes 
in the GnRH nerve terminals and glial processes, thereby causing 
GnRH secretion into the hypophyseal portal blood. GnRH, 
gonadotropin-releasing hormone; LD, long-day; SD, short-day.
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photoperiodism has also been suggested [36].
Melatonin is a hormone synthesized and secreted from the pineal 

gland during the night. It is responsible for detecting the length of 
the night, and it also plays a critical role in seasonal reproduction in 
mammals. For example, pinealectomy blocks seasonal reproduction, 
whereas melatonin administration mimics the effect of short days on 
reproductive function [37–39]. The mechanism of melatonin action 
on seasonal reproduction has been gradually uncovered. Reppert et 
al. have cloned 2 melatonin receptors (MT1 and MT2) in mammals 
[40, 41]. Since the MT1 receptor is reported to be expressed in the 
thyrotroph cells of the PT [42, 43], but not in the ECs [44, 45], 
melatonin appears to affect DIO2/DIO3 switching via TSH in the PT. 
Although laboratory mice are insensitive to photoperiod, transgenic 
and gene-targeted mice are excellent models for understanding 
the molecular mechanisms underlying photoperiodic response. 
Arylalkylamine N-acetyltransferase (AA-NAT) and hydroxyindole-
O-methyltransferase (HIOMT) [46] are rate-limiting enzymes in 
melatonin synthesis in the pineal gland. However, because most 
laboratory mice do not express these enzymes and cannot produce 
melatonin [47, 48], the photoperiodic response in melatonin-proficient 
strains and melatonin-deficient strains was analyzed. TSHB, DIO2, 
and DIO3 expression changed photoperiodically in the melatonin-
proficient CBA strain, whereas no response was observed in the 
melatonin-deficient C57BL strains [24]. Daily intraperitoneal (i.p.) 
administration of melatonin into C57BL mice induced an SD-like 

effect in these photoperiodic genes [24]. From these results, we 
concluded that mice are an excellent model for the study of molecular 
mechanisms of photoperiodic response at the gene level. Our group 
also found that TSHR-knockout mice did not respond to melatonin 
administration, suggesting that TSHR mediates melatonin regulation 
of the TSH-DIO2 signaling pathway. Examination of the effect 
of photoperiod and melatonin on mice lacking the MT1 or MT2 
receptors identified the MT1 melatonin receptor as the mediator of 
melatonin effects on photoperiodic signal transduction [49]. Because 
LD-induction of TSHB in the PT has been also reported in SD breeder 
sheep [26], PT-TSH appears to mediate photoperiodic information 
in both LD and SD breeders, indicating the different mechanism of 
T3 action between LD breeders and SD breeders.

Involvement of the Circadian Clock in Photoperiodism

In Japanese quail, it has been reported that testicular growth can 
be observed during the transition from SD conditions to photoperiods 
longer than 11.5 h [50]. In hamsters, day length greater than 12.5 
h induces testicular growth [51, 52]. These photoperiods are called 
the “critical photoperiod” to induce the photoperiodic response. It 
is also known that light pulses during a limited time at night during 
SD conditions induce a photoperiodic response; this limited time is 
called the “photo-inducible phase” [8]. In resonance experiments in 
which house finch and quail were exposed to a day-length duration 

Fig. 2. Temporal expression profile of photoperiodic genes during the photo-induction process. (a) Long day-induced plasma LH concentration. 
Expression of first-wave genes (TSHB and EYA3) was induced within 14 h of the first LD after dawn, and expression of second-wave 
genes (DIO2 and DIO3) occurred 4 h later. (b) The first-wave genes were expressed in the pars tuberalis (PT), whereas the second-wave 
genes were expressed in the ependymal cells (ECs). The time 0 h corresponds to dawn on the first long day. Modified from previous 
data [18]. LH, luteinizing hormone.
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of 6 h and varying duration of night length in multiples of 12 h (e.g., 
6 h light [L], 18 h dark [D] cycle; 6 L 18 D, 6 L 30 D, 6 L 42 D, 
6 L 54 D), light stimulus during the photo-inducible phase with a 
circadian-based rhythm induced testicular development [8, 53]; in 
even multiples of 12 h (e.g., 6 L 18 D, 6 L 42 D), every other light 
pulse induced a photoperiodic response, while in odd multiples of 
12 h (e.g., 6 L 30 D, 6 L 54 D), the photoperiodic response was not 
observed because of light exposure in the insensitive phase of the 
rhythm of photosensitivity. Similar observations were also reported 
in golden hamsters [54]. These results suggest that 6 h of light pulse 
during the photo-inducible phase of the day in light cycles that are 
multiples of 24 h induces the photoperiodic response, indicating the 
involvement of the circadian clock in photoperiodic time measurement. 
Involvement of the circadian clock in the regulation of photoperiodism 
in fish [55] and reptiles [56] has also been reported.

Light Input Pathway for Seasonal Reproduction in 
Birds and Mammals

The only known photoreceptor in mammals is the eye, and removal 
of the eyes blocks the photoperiodic response [39]. The master 
circadian pacemaker is localized in the suprachiasmatic nucleus (SCN) 
in mammals [57, 58]. Photoperiodic, or light, information received 
by the eyes is transmitted to the pineal gland via the SCN [39, 46] 
(Fig. 3). In the pineal gland, melatonin is synthesized and secreted 
during the night and acts as the night-length signal as described 
above. Melatonin is secreted into the cerebrospinal fluid (CSF) in 
the third ventricle through the pineal recess, an evagination of the 
third ventricle [59]. However, it remains unclear whether melatonin 
secreted into blood or into the third ventricle CSF is more effective 
during seasonal reproduction. Because the SCN is required to generate 
nocturnal melatonin secretion profiles, SCN lesions also disrupt the 
photoperiodic response in hamsters. Hamsters with SCN lesions do 
not show gonadal regression regardless of short photoperiods [60, 61].

Functional photoreceptors in birds appear to be localized in 
the eye, the pineal organ and the deep brain. The master circadian 
pacemakers are localized not only in the SCN but also in the eyes and 
the pineal organ [62–65]. In contrast to mammals, disruption of these 
regions (removal of the eyes in ducks [66], lesions around the SCN 
[5] or pinealectomy [67] in quail) does not affect the photoperiodic 
response. In addition, the effect of melatonin on seasonal reproduction 
in birds differs from that in mammals. Melatonin has little effect on 
the photoperiodic response in avian gonads regardless of nocturnal 
secretion of melatonin in birds as well as in mammals [68, 69]. These 
findings suggest that the mechanism of seasonal reproduction differs 
between birds and mammals.

In birds, photoreceptors in the deep brain are involved in the 
reception of photoperiodic information. The injection of India 
ink under the scalp blocks testicular recrudescence [70], and light 
stimulation by implantation of an illuminant in the MBH or septal 
region of the telencephalon induces gonadal growth [6, 66]. Recent 
studies have shown the expression of several rhodopsin superfamily 
genes (melanopsin, VA opsin, and Opsin 5) in the avian brain [71–74]. 
Among these, Opsin 5, which is called neuropsin, is expressed in the 
CSF-contacting neurons within the paraventricular organ (PVO) in 
the hypothalamus and appears to respond to short-wavelength light 
(from UV to blue light), while melanopsin and/or VA opsin responds 
to longer-wavelength light (480 nm) than Opsin 5. Because Opsin 
5-positive neurons project to the external layer of the ME adjacent 
to the PT in quail, it was predicted that light information received 
by the Opsin 5-expressing CSF-contacting neurons is transmitted 
to the PT, where it leads to partial or complete induction of TSH 
in the PT [73] (Fig. 3). However, the effects of Opsin 5 and other 
photoreceptors such as melanopsin and VA-opsin on the photoperiodic 
response in birds remain unclear.

Fig. 3. Mechanism of photoperiodic signal transduction in mammals and birds. Melatonin mediates the transmission of photoperiodic 
information received by the eyes in mammals, while deep brain photoreceptor(s) (e.g., Opsin 5) directly receive light through the scalp 
in birds. LD-induced pars tuberalis (PT)-derived TSH acts on the tanycyte of the ependymal cells (ECs) to induce DIO2 expression 
and reduce DIO3 expression in both mammals and birds. TSH, thyroid-stimulating hormone.
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Circadian Clock and Photoperiodic Time 
Measurement

It is well established that the transcription–translation feedback 
loop of circadian clock genes generate circadian rhythm [75, 76], 
although the existence of a circadian clock mechanism that lacks a 
transcription–translation feedback loop was recently suggested in 
some studies [77–79]. Clock genes are also expressed not only in the 
pacemaker(s) but also in other regions of the brain and in peripheral 
tissues [80–82], leading to alterations in physiology and behavior 
[83]. In birds, because the circadian pacemakers are not essential for 
the photoperiodic response, the existence of another “photoperiodic 
clock” has been suggested. Rhythmic expression of clock genes 
and proteins was observed in the MBH as well as in the master 
pacemakers [84, 85]. Although the photoperiod affects the temporal 
expression profiles of clock genes in the SCN and the pineal gland, 
in the MBH, these genes are stable under various photoperiodic 
schedules, and perhaps contribute to the stable photo-inducible 
phase in animals [84].

In mammals and birds, temporal expression patterns of circadian 
clock genes in the SCN change under different photoperiods [86–91]. 
It has been suggested that the photoperiod is encoded at the neuronal 
network level in the SCN [92, 93], and clock genes in the SCN 
detect seasonal time [89, 90, 94–96]. The “internal coincidence 
model” for photoperiodic time measurement, which predicts the 
existence of 2 internal oscillators with alteration of their phase 
relationship, has also been proposed [97]. Lincoln et al. suggested 
that this internal coincidence timer in the PT provides a potential 
mechanism for generating the photoperiodic response, because 
rhythmic expression of circadian clock genes was observed in the 
ovine PT and the phase relationship between the morning Period 
(Per) peaks and the evening Cryptochrome (Cry) peak changed among 
photoperiods [98, 99]. The expressions of clock genes in the PT are 
influenced by changing photoperiods in both birds and mammals 
[88, 91, 98, 100–102]. However, the involvement of the circadian 
clock genes and the internal coincidence timer within the PT in the 
photoperiodic responses of TSHB, DIO2 and DIO3 remains unknown. 
The circadian clock gene Per2 is one of the most important clock 
genes [103–108] and is a component of the internal coincidence 
timer [98]. To examine whether Per2 is involved in photoperiodic 
response, we generated melatonin-proficient Per2-deletion mutant 
mice by using the speed congenic method. Although the amplitude 
of clock gene (Per1, Cry1) expression was greatly attenuated in 
the SCN and the PT of Per2 mutant mice, the expression profile of 
Aanat was unaffected in the pineal gland, and robust photoperiodic 
responses of the TSHB, DIO2 and DIO3 genes were observed. These 
results indicate that Per2 is not necessary for photoperiodic responses 
in mice and that the internal coincidence timer in the PT is not a 
universal mechanism. Recently, it was also reported that LD-induced 
EYA3 appears to regulate TSHB expression in the PT through the 
circadian transcription factor thyrotropin embryonic factor (TEF) in 
mammals [109, 110]. Phase synchronization and direct suppression 
of EYA3 expression by melatonin may be linked with the induction 
of EYA3 expression in the morning under LD conditions to induce 
TSHB expression. This “external coincidence” timer [111] indicates 
the possible involvement of the circadian clock in the photoperiodic 

response in mammals.

Conclusion

Recent studies have uncovered that the PT is the most important 
regulatory relay point from photoreception to photoperiodic physi-
ological changes in birds and mammals. In addition to birds and 
mammals, an anatomically distinct PT has been observed in reptiles 
and amphibians, but not in fish. Therefore, identification of the 
photoperiodic center in fish is expected in the future.

It is well established that the circadian clock is involved in the 
photoperiodic response in various vertebrates, including fish [55], 
reptiles [56], birds [8, 53] and mammals [54]. Recently, molecular 
mechanisms for the generation of circadian rhythms and photoperiodic 
signal transduction have gradually been understood. However, the 
mechanism of measurement of day length by the circadian clock 
(i.e., definition of the photo-inducible phase or critical photoperiod) 
remains unclear.
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