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Abstract

Multi-institutional brain imaging studies have emerged to resolve conflicting results

among individual studies. However, adjusting multiple variables at the technical and

cohort levels is challenging. Therefore, it is important to explore approaches that pro-

vide meaningful results from relatively small samples at institutional levels. We stud-

ied 87 first episode psychosis (FEP) patients and 62 healthy subjects by combining

supervised integrated factor analysis (SIFA) with a novel pipeline for automated

structure-based analysis, an efficient and comprehensive method for dimensional

data reduction that our group recently established. We integrated multiple MRI fea-

tures (volume, DTI indices, resting state fMRI—rsfMRI) in the whole brain of each

participant in an unbiased manner. The automated structure-based analysis showed

widespread DTI abnormalities in FEP and rs-fMRI differences between FEP and

healthy subjects mostly centered in thalamus. The combination of multiple modalities

with SIFA was more efficient than the use of single modalities to stratify a subgroup

of FEP (individuals with schizophrenia or schizoaffective disorder) that had more

robust deficits from the overall FEP group. The information from multiple MRI modal-

ities and analytical methods highlighted the thalamus as significantly abnormal in

FEP. This study serves as a proof-of-concept for the potential of this methodology to

reveal disease underpins and to stratify populations into more homogeneous sub-

groups.
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1 | INTRODUCTION

Although neuroimaging abnormalities in patients with first episode

psychosis (FEP) have been demonstrated, their quantitative distribu-

tion is still are under debate. Different patterns of atrophy in the fron-

tal cortex, cingulate cortex, parahippocampal gyri, the basal ganglia,

and the thalamus has been reported from multiple groups in the past

(Buchy, Makowski, Malla, Joober, & Lepage, 2018; Calvo, Delvecchio,

Altamura, Soares, & Brambilla, 2019; Castro-de-Araujo & Kanaan,

2017; Kuang et al., 2017; Makowski et al., 2019; Nakamura

et al., 2007; Schubert, Clark, & Baune, 2015; Tordesillas-Gutierrez

et al., 2018). The inverse trend (gray matter increase) has also been

reported (Dukart et al., 2017). Data in resting state functional MRI

(rs-fMRI) that compare FEP patients with healthy controls (HC) are

also controversial, varying from no differences between groups to

regional or diffuse differences (Alonso-Solis et al., 2012; Argyelan

et al., 2015; Bang et al., 2018; Choe et al., 2018; Ganella et al., 2018;

Gohel et al., 2018; Huang et al., 2020; Tang et al., 2019). Previous

observations of white matter changes have not been consistent. Dif-

ferences in diffusion tensor imaging (DTI) were erratically reported in

various brain areas such as the anterior limb of the internal capsule,

the corpus callosum, the superior longitudinal fasciculus, and the unci-

nate. There was no specific cluster of white matter abnormalities that

were unquestionably related to FEP (Deng et al., 2019; Di Biase

et al., 2017; Kuswanto, Teh, Lee, & Sim, 2012; Lei et al., 2015; Ren

et al., 2017; Serpa et al., 2017; Zhou et al., 2017). Recently, a large-

scale study from the ENIGMA group identified widespread white

matter microstructural abnormalities in chronic schizophrenia (Kelly

et al., 2017). The reproducibility of this finding in individuals with FEP

is still unknown.

The inconsistency of imaging study findings in FEP can be attrib-

uted to several factors. These include the inconsistency among stud-

ies regarding the actual definition of FEP (Breitborde, Srihari, &

Woods, 2009), the limited power to detect subtle abnormalities in

small samples (Buchy et al., 2018; Emsley et al., 2017; Guma

et al., 2017; Kong et al., 2011; Kuang et al., 2017; Lee et al., 2012;

Lian et al., 2018; McNabb et al., 2018; Peters et al., 2008; Serpa

et al., 2017), as well as the bias in the selection of MRI modalities

and regions of interest (ROIs) (Baglivo et al., 2018; Cho et al., 2019;

Forns-Nadal et al., 2017; Huttlova et al., 2014; Lang et al., 2006;

McHugo et al., 2018; Parellada et al., 2017; Sauras et al., 2017;

Ublinskii et al., 2015; Vargas et al., 2018). Analyzing features through

multiple MRI modalities over the whole brain became possible

with the evolution of the scanners. Different neuroimaging modalities

may capture different aspects of neuropathology and provide comple-

mentary information. The multimodal analysis reveals relationships

between variables in imaging and nonimaging domains (e.g., genetics,

cognition) and enables phenotypic characterization (Lerman-Sinkoff,

Kandala, Calhoun, Barch, & Mamah, 2019; Moser et al., 2018;

Tognin et al., 2020). The combination of multiple observables has

already proven to be valuable in conditions affecting multiple systems,

from financial markets (Kim, Min, & Han, 2006; Lessmann, Baesens,

Seow, & Thomas, 2015) to cancer (Kourou, Exarchos, Exarchos,

Karamouzis, & Fotiadis, 2015), neurodegenerative diseases (Dai et al.,

2012; Dyrba, Grothe, Kirste, & Teipel, 2015; Long et al., 2012; Zhang,

Wang, Zhou, Yuan, & Shen, 2011), and psychosis (Schultz et al., 2012).

Schizophrenia is known to affect multiple domains (Fitzsimmons,

Kubicki, & Shenton, 2013; Hirjak et al., 2019; Karlsgodt, Sun, &

Cannon, 2010) and set up the ground for the initial attempts of multi-

modal analysis. (Aine et al., 2017; Calhoun & Sui, 2016; Meng et al.,

2017; Shile et al., 2016; Sui, Huster, Yu, Segall, & Calhoun, 2014;

Wang et al., 2015). Several recent studies have differentiated schizo-

phrenia patients from HCs by combining data from functional and

structural MRI (for a review, please see Rashid & Calhoun, 2020).

They consistently found multimodal MRI classifiers more efficient

than those based on single modalities (Cabral et al., 2016; Qureshi,

Oh, Cho, Jo, & Lee, 2017; Yang, Liu, Sui, Pearlson, & Calhoun, 2010).

While these studies focused on patients with established diagnosis of

schizophrenia, mostly far from the clinical onset, this assessment was

not fully applied to study patients in initial stages of illness, when this

characterization is likely to have greater utility. Patients with FEP

were mostly assessed in with limited number of ROIs and few MRI

modalities (Deng et al., 2019; Keymer-Gausset et al., 2018; Lei

et al., 2015; Peruzzo, et al., 2015; Zhao et al., 2018).

Although its strengths, the implementation of this multimodal

assessment is not straightforward: simply combining larger number

of variables leads to multiple comparison issues and stress limitations

of the sample size (Arbabshirani, Plis, Sui, & Calhoun, 2017). Multi-

institutional brain imaging studies have recently emerged to overcome

conflicting results among individual studies (Thompson et al., 2020).

However, adjusting multiple variables at the technical and cohort

levels remains a continuous challenge (Levin-Schwartz, Calhoun, &

Adali, 2017). Developing strategies to reduce the dimensions of data,

while preserving the information is a field in current development

(Bassett, Xia, & Satterthwaite, 2018; Lottman et al., 2018; Miller,

Vergara, & Calhoun, 2018; Qi et al., 2019; Sui, Adali, Yu, Chen, &

Calhoun, 2012; Tu et al., 2019; Xia et al., 2018). A strong basis on bio-

logical knowledge is needed to develop and implement the algorithms

in a comprehensive and practical way, so the research can eventually

be translated to clinical field.

In order to overcome these challenges, we analyzed multiple

MRI characteristics in the FEP and HC groups through whole-brain

automated segmentation in a fully data-driven integrative approach

that we have recently established (Miller, Faria, Oishi, & Mori, 2013;

Rezende et al., 2019). This approach aims to reduce the dimensions of

image data in a biologically meaningful way, increasing the statistical

power and offering comprehensive results about the brain structure

(Faria, Liang, Miller, & Mori, 2017; Miller et al., 2013; Mori, Oishi,

Faria, & Miller, 2013). We combined this approach with supervised

integrated factor analysis (SIFA) (Li & Jung, 2017) to examine multiple

MRI features (volume, DTI indices, rs-fMRI) in the whole brain of FEP

participants. We also accessed whether this multimodal approach

would be efficient on classification of participants in subgroups of

individuals with schizophrenia and schizoaffective disorder (S-FEP)

and individuals with bipolar disorder and major depressive disorder

with psychotic features (M-FEP). We investigated how this novel
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analytical pipeline may provide evidence of pathological abnormalities

in the early stage of illness and potentially aid to stratify groups of

clinical relevance.

2 | MATERIALS AND METHODS

2.1 | Recruitment and participants

This study was approved and conducted using guidelines established

by the Johns Hopkins School of Medicine Institutional Review Board

and in accordance with The Code of Ethics of the World Medical Asso-

ciation (1964 Declaration of Helsinki). Each participant received a full

explanation of the study procedures. Written informed consent was

obtained for all participants 18 years of age and older. Parental con-

sent and assent was obtained for all participants under 18 years of

age. HCs and FEP patients, with FEP being defined as those who had

experienced their first episode of psychosis within the 2 years prior to

their enrollment, were recruited through the Johns Hopkins Schizo-

phrenia Center. Details about the recruitment, inclusion and exclusion

criteria, demographics, and clinical features are described in published

articles by our group (Kamath et al., 2019; Kamath, Lasutschinkow,

Ishizuka, & Sawa, 2018; Wang et al., 2019). In the present study, the

participants included individuals with FEP (n = 87) [SZ (n = 47),

schizoaffective disorder (n = 14), bipolar disorder with psychotic fea-

tures (n = 20), major depressive disorder with psychotic features

(n = 6)] and 62 HC. We included individuals with schizophrenia and

schizoaffective disorder in the schizophrenia-associated psychosis

group (S-FEP) and individuals with bipolar disorder with psychotic fea-

tures and major depressive disorder with psychotic features in the

mood-associated psychosis group (M-FEP). This decision was based on

two meta-analyses (Pagel, Baldessarini, Franklin, & Baethge, 2013;

Rink, Pagel, Franklin, & Baethge, 2016) that found patients with

schizoaffective to have illness characteristics that align more closely

with patients with schizophrenia than with those with bipolar disorder

and major depression.

2.2 | Imaging

The multimodal MRI was performed on a 3 T scanner, and included

T1 high-resolution-weighted images (T1-WI), diffusion weighted

images (DWI), and resting state functional MRI (rs-fMRI). The image

parameters were: (a) T1-WI: sagittal orientation, original matrix

170 × 170, 256 slices, voxel size 1 × 1 × 1.2 mm, TR/TE 6700/3.1 ms;

(b) DWI: axial orientation, original matrix 128 × 128, 70 slices, voxel

size 0.83 × 0.83 × 2.2 mm, TR/TE 8500/61 ms, 32 gradients, b factor

1,000 s/mm2; and (c) rs-fMRI: axial orientation, original matrix 80 × 80,

36 slices, voxel size 3 × 3 × 4 mm, TR/TE 2000/30 ms, 210 time points.

We analyzed multiple MRI contrasts in an atlas-based, structurally

focused, integrative, and non-biased whole-brain approach (Figure 1).

The images were automatically segmented and postprocessed through

MRICloud (www.MRICloud.org) (Mori et al., 2016), a public web-based

service for multi-contrast imaging segmentation and quantification.

In MRICloud, the process for segmenting the T1-WI, used for volumetric

analysis, involves: (a) orientation and homogeneity correction, (b) two-

level brain segmentation, (c) image mapping based on a sequence of

linear algorithms and Large Deformation Diffeomorphic Mapping

(LDDMM), and (d) a final step of multi-atlas labeling fusion (MALF),

adjusted by PICSL (Tang et al., 2013). For the DWI postprocessing, the

tensor reconstruction and quality control follows the algorithm used by

DtiStudio (www.MRIStudio.org). The automated DTI segmentation is

similar to that used for T1-WIs and differs in the use of complementary

contrasts (mean diffusivity [MD], fractional anisotropy [FA], and eigen-

vector such as fiber orientation) and a diffeomorphic likelihood fusion

algorithm (Tang et al., 2014) for multi-atlas mapping.

For the rs-fMRI postprocessing (Faria et al., 2012), the T1-WI and

its respective segmentations are co-registered to the motion and slice

timing-corrected resting-state time points. Intensity and motion “out-

liers” are extracted with ART (SPM toolbox). Time courses are

extracted from all the cortical and subcortical gray matter regions

defined in the atlases and regressed for physiological nuisance. For

“denoising” the time courses, we used the six motion parameters as

regressors, as well as CompCor (Behzadi, Restom, Liau, & Liu, 2007)

to regress nonneuronal physiological activity. These procedures, auto-

matically performed in MRICloud, are similar to those adopted by

major rs-fMRI postprocessing pipelines (e.g., SPM) and are detailed

described in our previous publication (Faria et al., 2012). Furthermore,

we calculated frame-wise displacement (FD) using six motion parame-

ters (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). No partici-

pant had FD > 0.5, and only one participant had FD > 0.3. Both

groups had small average values of head motion (mean FD < 0.1). Still,

the FEP group showed larger FD than HCs (p = .02), justifying our pro-

cedure of using the motion-corrected time courses for the analysis.

Seed-by-seed correlation matrices are obtained from the “nuisance-

corrected” time courses and z-transformed by the Fisher's method.

Note that MRICloud pipelines include well accepted protocols to mini-

mize artifacts, as those created by motion, in DWI and rsfMRI. These

and other technical procedures are detailed in the original publications

(Faria et al., 2012; Jiang, van Zijl, Kim, Pearlson, & Mori, 2006; Tang

et al., 2014).

After the multimodal brain segmentation and quantification, each

individual's brain was represented by a vector of image features:

(a) volumes of 198 structures automatically segmented from T1-WIs,

(b) fractional anisotropy (FA) and (c) mean diffusivity (MD) means

of 96 structures automatically segmented from DTIs, and (d) 2415

pairwise resting-state z-correlations from 70 seeds in the superficial

gray matter (i.e., cortex) and the deep gray matter (i.e., basal ganglia

plus thalamus). This process is represented in Figure 1.

2.3 | Statistical analyses

We investigated group differences between FEP groups and HC

(HC vs. FEP, HC vs. S-FEP, and HC vs. M-FEP) in the various imag-

ing modalities by using two-sample t tests. The False Discovery
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Ratio (FDR) (Benjamini & Hochberg, 1995) was used to correct for

multiple comparisons at a “q” (“p-corrected”) level of signifi-

cance <.05.

The SIFA was implemented to integrate data collected from

multiple imaging modalities while facilitating characterization with

auxiliary covariates. For each modality, it is assumed that the data

consist of two types of latent factors: (a) common factors shared

across all modalities and (b) individual factors specific to the data

source. For both types of latent factors, a linear regression model of

the covariates was used to capture the influential effects. Since

the goal of implementing SIFA is to integrate multiple imaging

modalities and identify joint structure, we only present the results of

the estimated common factors. The latent factors are assumed

to be independent, which is analogous to the assumption imposed

in the independent component analysis (ICA) (McKeown &

Sejnowski, 1998) widely used in neuroimaging analysis. The ranks of

the factors were chosen based on a likelihood cross validation (LCV)

approach. Similarly to what is done in a sparse principal components

analysis (Zou, Hastie, & Tibshirani, 2006), loading profiles were

sparsified through a penalized regression to achieve the purpose of

feature selection. The covariates for adjustment included group

(FEP, HC, S-FEP, M-FEP) as well as race, sex, and age. Because

in our study the data dimension is slightly unbalanced among modal-

ities, we implemented the “SIFA-B” approach (Li & Jung, 2017),

which is robust to unbalanced dimensions due to orthogonal and

equal norm identifiability conditions. To test the significance of

the coefficients in the regression models, confidence intervals were

obtained using 500 bootstrap samples. Details about SIFA, the pro-

cedure to draw inference, and the classification approach are in

Section A of the Supplementary material.

While group features may reveal pathological mechanisms, it is

important to know if the multimodal features revealed by SIFA are

expressed at an individual level. Therefore, we investigated the power

of these image features to classify individuals within their respective

diagnostic groups. It is also important to detect the effectiveness of

models using multiple modality features, as compared with those

using singular modality features for individual classification. For this

purpose, we used leave-one-out cross-validated receiver operating

characteristic (ROC) curves. The logistic classification models were

trained using the latent factors estimated from the factor analysis.

The area under the curve (AUC) and the 95% confidence interval were

calculated. We also calculated the sensitivity, specificity, and F1 score

of the classification performance using the latent factors estimated

from SIFA. We compared the performance with the support vector

machine (SVM) approach considering three different types of kernel

functions: linear, polynomial and radial kernels. For all approaches, five

sets of data were considered to train the prediction model: (a) data of

all modalities, (b) rs-fMRI data, (c) FA (from DTI), (d) MD (from DTI),

and (e) T1-volumetric data. The data analyzed in this study and the

analytical code are available under request to the authors.

F IGURE 1 Schematic representation of the automated image parcellation using MRICloud (www.MRICloud.org). Each brain image is
mapped to a set of multiple atlases and the pre-defined labels are applied to each original brain. T1-weighted images (for volumetric analysis)
and DTI pipelines run in parallel. For the low-resolution modalities (e.g., rs-fMRI), the labels are brought to the original space by co-registering
the T1-WIs. Through this process, the multiple MRI modalities are converted to a matrix of structures by image features, which represent each
individual
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3 | RESULTS

3.1 | Demographic analysis

Clinical and demographic variables are presented in Table 1. Since

covariates were group-matched based on study design, the FEP

group, its subgroups, and the HC group did not differ with respect to

age, sex, race, and parental education. The FEP subgroups did not dif-

fer in illness duration and antipsychotic medication dosage.

3.2 | Group comparison (FEP vs. HC) of imaging
characteristics in each modality

No volumetric differences were found between FEP and HC groups

after the multiple comparisons correction. With respect to DTI differ-

ences, FEP individuals showed lower FA in the global white matter

(defined as the average of all white matter segments) as compared

with HC. More specifically, FEP and HC groups differed in DTI indices

(FA and MD) in most subsegments of the projection fibers (cortico-

spinal and spino-cortical). These fibers represent most of the motor

and sensorial tracts. These two groups also differed in MD and FA at

the main commissural fibers, as represented by the corpus callosum

(Figure 2, Table 2). Association areas also showed abnormal DTI indi-

ces. Compared with the HC group, the FEP group showed lower FA

and higher MD in the corona radiata and the inferior fronto-occipital

fasciculus; lower FA in the white matter beneath the right superior

frontal gyrus; as well as higher MD in the uncinate fasciculus, cin-

gullum, and in the white matter beneath the inferior temporal and

middle and inferior frontal gyri. In the deep nuclei, FEP showed lower

FA in the globus pallidus, higher FA in the caudate, and higher MD in

the thalamus and the putamen when compared with HC.

With respect to rs-fMRI differences, the FEP group showed

higher rs-fMRI z-correlations than the HC group between several

pairs of regions. Regions most often detected as seeds of abnormal

correlations were the thalamus, the cerebellum, the somato-sensorial

cortex (parietal, post- and pre-central), and the cingulate cortex

(Figure 2, Table 2).

3.3 | Subgroup comparison (S-FEP and M-FEP
vs. HC) of imaging characteristics in each modality

Given that the FEP group and the HC group display anatomical

differences, we next addressed the possible FEP subgroup that might

contribute most to these differences. As described in the Methods

section, we subdivided the FEP subjects into S-FEP and M-FEP

groups and compared these individual groups with the HC group.

The differences detected between S-FEP and HC were more

widespread and had a higher effect size than those detected between

FEP and HC. This is of great importance, considering the fact that

S-FEP is a subset, and therefore a smaller group than the more gen-

eral FEP group. Volumetric differences did not overcome the T
A
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threshold for multiple comparison correction, possibly due to the

inclusion of individuals in early disease stage, whose brain structure

was under minimum effect of the treatment and disease chronicity

(van Erp et al., 2016; Vita, De Peri, Deste, Barlati, & Sacchetti, 2015).

Yet, the S-FEP group tended to have a larger Sylvian fissure (p = .028)

and cingulum sulci (p = .027) than HC. This indirectly indicated possi-

ble atrophy or anatomical abnormalities of the adjacent structures

(planum temporalis, insula, and cingullum), a progressive feature of

psychotic brains (Kasai et al., 2003; Lee et al., 2016; Rosa et al., 2015).

In addition to what was observed in the FEP versus HC comparison,

the DTI abnormalities spread to the putamen and the white matter

beneath middle temporal (Figure 2, Table 2). The rs-fMRI abnormali-

ties had, in general, a higher effect size than in the FEP versus HC

comparison (Table 2).

No differences in volume were detected between M-FEP and

HC. Differences in DTI and rs-fMRI between M-FEP and HC were

more constrained to a few regions and had a lower effect-size than

those observed between S-FEP and HC (Figure 2, Table 2).

3.4 | Multimodal characterization (SIFA) of FEP
group

Given that the group comparison in the present study still involved

many features from multiple MRI modalities (hundreds of volumes

and DTI indices, and thousands of rs-fMRI), we next applied SIFA for

data integration. As described in the Materials and Methods section,

SIFA allows us to identify the latent factors (i.e., the combination of

features) related to the different groups, as well as leverage informa-

tion across modalities.

SIFA identified two common latent factors as different between

FEP and HC; one factor in the S-FEP versus HC comparison, and one

factor in the M-FEP versus HC comparison. The weights (sparsified

loadings) of these factors are shown in Figure 3 and Table 3. The

corresponding model coefficients and the 95% bootstrap confidence

intervals are in Supplemental Figure S1. Common features of the

latent factors were identified in each of the different comparisons

(e.g., FA of body of the corpus callosum, the inferior fronto-orbital

F IGURE 2 Differences in imaging features between groups. Regions with abnormal DTI indices [FA (top row), MD (middle row)] and edges of
abnormal rs-fMRI synchrony (bottom row) in FEP (left column), S-FEP (middle column), and M-FEP (right column) compared with HC. Blue are
lower mean values in FEP groups compared with controls; red are higher mean values in FEP compared with controls. Visualization with the
BrainNet Viewer (http://www.nitrc.org/projects/bnv/, by Xia, Wang, & He, 2013)
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TABLE 2 Group differences

Group means HC vs. FEP HC vs. S-FEP HC vs. M-FEP

HC FEP S-FEP M-FEP T p-value T p-value T p-value

Fractional anisotropy—FA

Projection Cerebral peduncle 0.670 0.653 0.654 0.649 −6.065 .000 −4.853 .000 −5.773 .000

Pontine projections 0.552 0.539 0.536 0.545 −4.310 .000 −4.595 .000 −1.747 .084

Post limb int capsule 0.636 0.626 0.626 0.628 −3.555 .000 −3.409 .001 −2.097 .039

Ant limb int capsule 0.570 0.559 0.560 0.556 −3.894 .000 −3.234 .001 −3.066 .003

Corpus callosum 0.610 0.593 0.597 0.585 −5.715 .000 −3.900 .000 −7.694 .000

Assoc. Inf frontoccipital fasc 0.445 0.435 0.438 0.430 −2.958 .003 −2.050 .042 −2.842 .006

Ant corona radiata 0.433 0.427 0.428 0.425 −2.334 .020 −1.731 .045 −2.228 .029

Sup frontal WM 0.384 0.381 0.380 0.381 −2.114 .035 −2.153 .032 −1.130 .261

Nucleae Caudate 0.220 0.233 0.236 0.223 3.633 .000 3.881 .000 0.825 .412

Globus pallidus 0.378 0.363 0.362 0.364 −2.221 .027 −2.184 .030 −1.341 .183

Putamen 0.230 0.238 0.239 0.233 1.881 .061 2.040 .043 0.551 .583

Total white matter 0.456 0.452 0.453 0.450 −2.863 .005 −1.999 .047 −2.924 .005

Mean diffusivity—MD (× 10−4, in mm2/s)

Project. Cerebral peduncle 8.707 8.932 8.922 8.956 3.910 .000 3.424 .001 3.083 .003

Ant limb int capsule 7.553 7.713 7.748 7.631 3.330 .001 3.717 .000 1.077 .285

Post limb int capsule 7.200 7.313 7.307 7.325 2.700 .007 2.386 .018 2.041 .044

Corpus callosum 9.280 9.552 9.562 9.528 5.444 .000 5.400 .000 2.962 .004

Association Sup corona radiata 7.340 7.462 7.473 7.436 3.710 .000 3.603 .000 2.213 .029

Ant corona radiata 8.441 8.562 8.588 8.501 3.022 .003 3.330 .001 1.047 .298

Inf frontoccipital fasc 8.402 8.573 8.601 8.509 3.200 .002 3.323 .001 1.521 .131

Cingullum 7.747 7.847 7.857 7.823 2.451 .015 2.506 .013 1.316 .191

Uncinate 8.580 8.716 8.717 8.712 2.913 .004 2.669 .008 2.192 .030

Middle fronto-orbital 9.614 9.779 9.838 9.639 2.166 .031 2.582 .010 0.242 .809

Middle frontal WM 8.323 8.408 8.425 8.367 2.580 .010 2.911 .004 0.920 .360

Inferior frontal WM 8.198 8.281 8.304 8.225 2.157 .032 2.527 .012 0.514 .608

Middle temporal WM 8.512 8.577 8.599 8.525 1.781 .076 2.236 .026 0.256 .798

Inferior temporal WM 8.752 8.940 8.934 8.953 3.964 .000 3.432 .001 3.157 .002

Nuc. Thalamus 8.360 8.505 8.501 8.514 3.065 .002 2.743 .007 2.246 .027

Putamen 7.184 7.349 7.383 7.271 3.638 .000 3.974 .000 1.432 .155

Resting state fMRI

PoCGL_CerebellumL 0.339 0.529 0.565 0.446 4.279 .000 4.364 .000 2.178 .033

PoCGL_CerebellumR 0.362 0.560 0.603 0.460 4.401 .000 4.575 .000 2.048 .045

SPGL_ThalamusR 0.102 0.299 0.322 0.245 4.350 .000 4.456 .000 2.119 .040

SPGR_ThalamusR 0.132 0.309 0.344 0.227 4.092 .000 4.401 .000 1.617 .113

PrCGL_CerebellumR 0.402 0.588 0.619 0.513 4.188 .000 4.289 .000 2.023 .048

PrCGL_CerebellumL 0.360 0.541 0.567 0.481 4.131 .000 4.109 .000 2.176 .035

PrCGL_ThalamusR 0.262 0.449 0.479 0.379 4.014 .000 4.138 .000 1.808 .078

MTGR_ThalamusR 0.133 0.321 0.361 0.227 3.729 .000 4.121 .000 1.389 .171

PoCGR_CerebellumR 0.355 0.545 0.565 0.499 4.253 .000 4.051 .000 2.495 .016

SOGL_CuR 0.916 1.064 1.102 0.975 3.480 .001 4.005 .000 0.976 .334

IOGR_ThalamusR 0.102 0.282 0.302 0.235 4.042 .000 4.014 .000 2.251 .029

SPGL_GPR 0.114 0.237 0.273 0.154 3.319 .001 3.958 .000 0.784 .437

SFGR_SPGL 0.335 0.504 0.523 0.460 3.361 .001 3.463 .001 1.824 .074

MFOGR_STGR_pole 0.387 0.236 0.236 0.238 −3.914 .000 −3.608 .000 −2.911 .005
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TABLE 2 (Continued)

Group means HC vs. FEP HC vs. S-FEP HC vs. M-FEP

HC FEP S-FEP M-FEP T p-value T p-value T p-value

PoCGL_SMGL 0.488 0.675 0.685 0.652 3.775 .000 3.469 .001 2.826 .006

PoCGL_SMGR 0.538 0.680 0.711 0.606 3.107 .002 3.479 .001 1.204 .233

PoCGL_IOGR 0.349 0.530 0.548 0.487 3.526 .001 3.495 .001 2.046 .046

PoCGL_ThalamusR 0.229 0.414 0.439 0.357 3.769 .000 3.824 .000 1.831 .074

PoCGR_PrCGL 1.020 1.193 1.219 1.132 3.292 .001 3.549 .001 1.705 .093

PoCGR_SPGL 0.352 0.590 0.593 0.583 4.057 .000 3.629 .000 3.368 .001

PoCGR_ThalamusL 0.217 0.370 0.399 0.304 3.156 .002 3.500 .001 1.206 .234

PoCGR_ThalamusR 0.252 0.425 0.456 0.354 3.501 .001 3.733 .000 1.472 .148

PrCGL_SPGL 0.435 0.638 0.643 0.627 3.949 .000 3.507 .001 3.127 .003

PrCGL_SPGR 0.447 0.650 0.669 0.605 3.774 .000 3.642 .000 2.680 .009

PrCGL_IOGR 0.337 0.532 0.537 0.520 3.972 .000 3.684 .000 2.628 .012

PrCGL_ThalamusL 0.246 0.417 0.441 0.361 3.601 .000 3.722 .000 1.765 .084

PrCGR_SPGL 0.442 0.651 0.653 0.645 4.003 .000 3.550 .001 3.365 .001

PrCGR_IOGR 0.386 0.559 0.566 0.543 3.787 .000 3.535 .001 2.524 .015

PrCGR_CerebellumL 0.425 0.580 0.606 0.518 3.457 .001 3.545 .001 1.694 .096

PrCGR_CerebellumR 0.376 0.553 0.579 0.492 3.819 .000 3.815 .000 2.154 .035

PrCGR_ThalamusR 0.271 0.450 0.480 0.380 3.568 .000 3.845 .000 1.489 .144

SPGL_ThalamusL 0.124 0.277 0.294 0.236 3.324 .001 3.477 .001 1.654 .105

SPGR_dorsal_ACCL 0.371 0.543 0.589 0.436 3.255 .001 3.732 .000 1.035 .305

SPGR_dorsal_ACCR 0.417 0.570 0.612 0.473 3.156 .002 3.566 .001 0.996 .323

SPGR_CerebellumR 0.370 0.532 0.570 0.444 3.494 .001 3.828 .000 1.446 .153

SPGR_ThalamusL 0.117 0.271 0.301 0.199 3.446 .001 3.769 .000 1.366 .178

SMGL_CerebellumL 0.253 0.409 0.441 0.333 3.505 .001 3.724 .000 1.401 .168

SMGR_ThalamusR 0.163 0.323 0.356 0.246 3.329 .001 3.525 .001 1.492 .141

AGL_PCCR 0.443 0.612 0.609 0.621 3.949 .000 3.486 .001 2.792 .008

STGL_CerebellumL 0.315 0.448 0.491 0.346 2.929 .004 3.514 .001 0.535 .595

STGL_ThalamusR 0.277 0.461 0.493 0.388 3.351 .001 3.530 .001 1.492 .142

STGR_CerebellumL 0.307 0.454 0.489 0.374 3.439 .001 3.816 .000 1.169 .248

STGR_ThalamusR 0.276 0.452 0.488 0.368 3.241 .001 3.587 .000 1.164 .251

MTGL_PCCL 0.522 0.640 0.676 0.556 2.987 .003 3.696 .000 0.567 .573

MTGL_ThalamusL 0.159 0.308 0.342 0.228 3.118 .002 3.569 .001 0.968 .339

MTGL_ThalamusR 0.135 0.286 0.329 0.186 3.045 .003 3.633 .000 0.683 .498

MTGR_PCCL 0.470 0.597 0.621 0.542 3.247 .001 3.496 .001 1.356 .181

MTGR_CerebellumL 0.380 0.504 0.541 0.418 2.967 .004 3.496 .001 0.658 .514

MTGR_PutR 0.127 0.272 0.307 0.188 3.211 .002 3.667 .000 1.068 .290

MTGR_ThalamusL 0.127 0.294 0.327 0.216 3.433 .001 3.739 .000 1.361 .180

FuGL_ThalamusR 0.133 0.275 0.301 0.214 3.250 .001 3.478 .001 1.352 .183

SOGL_ThalamusR 0.121 0.259 0.283 0.203 3.352 .001 3.535 .001 1.464 .150

SOGR_ThalamusR 0.116 0.251 0.268 0.211 3.284 .001 3.501 .001 1.560 .126

MOGL_ThalamusR 0.174 0.318 0.358 0.224 3.287 .001 3.859 .000 0.796 .430

MOGR_ThalamusR 0.156 0.299 0.325 0.236 3.350 .001 3.682 .000 1.260 .215

IOGL_ThalamusR 0.112 0.261 0.284 0.208 3.327 .001 3.472 .001 1.474 .148

IOGR_LGL 0.412 0.614 0.633 0.570 3.614 .000 3.539 .001 2.190 .033

IOGR_CerebellumL 0.450 0.589 0.608 0.545 3.424 .001 3.488 .001 1.781 .081

LGL_CerebellumL 0.471 0.600 0.627 0.537 3.347 .001 3.641 .000 1.344 .185

(Continues)
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fasciculus, and the posterior corona radiate). These common features

may suggest a common pathology in FEP. Other features of the latent

factors were unique to a single given population (e.g., FA in the unci-

nate fasciculus, the middle cerebellar peduncle, and the middle and

the lateral fronto-orbital areas, were only identified in the S-FEP fac-

tor). These specific features may express distinctions among FEP sub-

groups. Within each group comparison, the SIFA factors showed a

large overlap of features between FA and MD. This is consistent with

the DTI properties, in which the FA and MD signals go in different

directions.

Among all selected features, the thalamus was the structure most

consistently identified across all modalities (Figures 2 and 3). Rs-fMRI

correlations involving the thalamus and multiple cortical regions, par-

ticularly in the temporal areas, were selected in all SIFA factors within

all comparisons. Thalamic FA and MD were selected in factors identi-

fied in the comparison between FEP versus HC and S-FEP versus HC.

By using the SIFA factors, we accessed the power of features from

singular and multiple modalities in order to classify individuals into the

FEP group and its subgroups. Considering each singular modality, FA

was the most effective modality in classifying the FEP groups vs. the

HC group (Table 4). The integration of features from multiple modalities

outperformed any singular modality used to classify S-FEP versus HC

(Figure 4). The model created with SIFA multimodality factors achieved

77% of correct classification of S-FEP individuals, after cross-validation.

Due to the sample size and lack of comparable external dataset for test-

ing, we used leave-one-out cross validation to minimize overfitting.

Using the factors identified by SIFA yielded more robust and better

performance compared with the SVM approaches. Table B S2 of the

supplementary materials shows the sensitivity, specificity, and F1 score

of the classification performance using the latent factors estimated from

SIFA. The percentage of variation explained by the common and individ-

ual factors, as well as by all latent factors, are presented in Table B S1 of

TABLE 2 (Continued)

Group means HC vs. FEP HC vs. S-FEP HC vs. M-FEP

HC FEP S-FEP M-FEP T p-value T p-value T p-value

LGR_CerebellumL 0.426 0.564 0.587 0.511 3.621 .000 3.745 .000 1.764 .084

LGR_CerebellumR 0.415 0.557 0.575 0.516 3.556 .001 3.553 .001 1.919 .061

LGR_ThalamusR 0.178 0.341 0.345 0.333 3.781 .000 3.491 .001 2.604 .012

SPGR_CerebellumL 0.418 0.562 0.596 0.482 3.105 .002 3.445 .001 1.146 .256

MTGR_CerebellumR 0.375 0.500 0.535 0.419 2.951 .004 3.454 .001 0.737 .465

MTGR_PutL 0.116 0.252 0.281 0.185 3.154 .002 3.448 .001 1.381 .172

PoCGL_SPGL 0.460 0.671 0.679 0.653 3.735 .000 3.418 .001 2.661 .010

PoCGL_SPGR 0.516 0.702 0.724 0.650 3.408 .001 3.417 .001 2.182 .032

IOGR_LGR 0.418 0.617 0.634 0.575 3.511 .001 3.415 .001 2.189 .033

STGR_CerebellumR 0.308 0.446 0.479 0.367 3.067 .003 3.405 .001 1.030 .308

SMGL_CerebellumR 0.286 0.419 0.452 0.341 3.035 .003 3.397 .001 0.983 .330

LGL_CerebellumR 0.444 0.571 0.595 0.515 3.145 .002 3.395 .001 1.344 .185

SPGR_PrCuL 0.418 0.590 0.615 0.532 3.212 .002 3.389 .001 1.626 .110

PoCGL_ThalamusL 0.215 0.373 0.397 0.317 3.184 .002 3.373 .001 1.442 .156

STGL_CerebellumR 0.327 0.452 0.499 0.342 2.716 .007 3.375 .001 0.257 .798

PrCGR_ThalamusL 0.231 0.388 0.413 0.328 3.072 .003 3.327 .001 1.336 .188

SPGL_LGR 0.271 0.451 0.456 0.442 3.663 .000 3.330 .001 2.713 .009

FuGR_ThalamusR 0.132 0.267 0.292 0.209 3.092 .002 3.338 .001 1.295 .201

IOGR_ThalamusL 0.101 0.257 0.266 0.235 3.503 .001 3.336 .001 2.273 .027

PoCGR_SMGL 0.402 0.588 0.592 0.580 3.574 .001 3.314 .001 2.683 .009

PoCGR_CerebellumL 0.402 0.550 0.570 0.505 3.348 .001 3.299 .001 1.740 .089

SPGL_dorsal_ACCL 0.389 0.528 0.567 0.437 2.842 .005 3.284 .001 0.751 .457

SPGL_PCCR 0.154 0.325 0.330 0.314 3.479 .001 3.286 .001 2.182 .035

SPGL_CerebellumR 0.420 0.568 0.593 0.509 3.067 .003 3.274 .001 1.531 .131

Note: For the DTI analysis of FA and MD, the white matter is categorized in projection, association, and commissural (corpus callosum) fibers. We also

analyzed deep nucleae and the white matter as a whole (“total white matter”). p-value of 0 indicates p-value < .0001.

Abbreviations: L: left, R: right; post: posterior, ant: anterior, sup: superior, inf: inferior, int: internal, fasc: fasciculus, WM: white matter. PoCG, PrCG:

postcentral, precentral gyrus; SFG: superior frontal; MFOG: middle frontorbital gyrus; SPG: superior parietal gyrus; MTG, STG: middle, inferior temporal

gyrus; SOG, IOG, MOG: superior, inferior, middle occipital gyrus; SMG: supramarginal gyrus; AG: angular gyrus; Fu: fusiform gyrus; CU: cuneus gyrus; LG:

lingual gyrus; ACC, PCC: anterior, posterior cingulate cortex; GP: globus pallidus; Put: putamen.
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the supplementary materials. The confidence intervals of the model

coefficients presented in Supplementary Figure S1 were obtained fol-

lowing a bootstrap procedure.

4 | DISCUSSION

The goal of this study is to establish a pipeline that allows us to obtain

meaningful brain imaging results from a relatively small sample size.

We demonstrated a successful case of utilizing an unbiased, data-

driven, structure-based analysis to characterize FEP patients. We

reduced the dimensionality of the data while still preserving the indi-

vidual variability, and enhanced the statistical sensitivity and power

(Glasser et al., 2016). As an example, with a sample size 50 times

smaller than that recently used by the ENIGMA group (27), we were

able to detect similar microstructural abnormalities in DTI. The pipe-

line used here employs “anatomical” filters; that is, the structures in

question. The definition of these structures is based on previous bio-

logical knowledge, making the interpretation of the results and possi-

ble clinical translation more straightforward (Faria et al., 2017). Using

a similar set of labels for multiple modalities facilitates the combina-

tion of features derived from these modalities as well as the applica-

tion of statistical methods for data fusion, such as SIFA. On the

other hand, because the structure-based analysis requires spatial pre-

definitions, it introduces challenges as the choice of parcellation and

the level of granularity to be used. For example, if the phenomenon in

question spatially mismatches the parcellation scheme employed, it is

likely overlooked (Faria et al., 2015), a problem aggravated by the

data-driven design. Therefore, the structure-based analysis is a com-

plementary approach, rather than an alternative, to the voxel-based

analysis.

In the same way, SIFA is a supervised approach that facilitates

the association with auxiliary covariates compared with other meth-

odologies for dimension reduction, such as joint ICA (Moosmann,

F IGURE 3 Characterization of FEP group and subgroups (S-FEP and M-FEP), compared with controls, by the SIFA. Representation of the
regional loadings of the common factors that show significant difference between groups (two in the all FEP vs. HC, one in the S-FEP vs. HC, and
one in the M-FEP vs. HC), in a glass brain. The loading values are reported in Table 3. Visualization with the BrainNet Viewer (http://www.nitrc.
org/projects/bnv/, by Xia et al., 2013)
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Eichele, Nordby, Hugdahl, & Calhoun, 2008). A limitation of SIFA

is that the estimation procedure was derived from the normal likeli-

hood function, which assumes the data follow Gaussian distributions.

Joint ICA was designed for nonnormal data. Therefore, in our study,

when implementing SIFA, proper data transformation was done to

satisfy the normal assumption, for example, the functional connectiv-

ity was Fisher z-transformed. With strong associations between the

covariates and the latent structure of the multimodal imaging

data, incorporating the supervised effects from covariates improves

estimation accuracy and interpretability. By its particular comprehen-

sibility and power, the combination of SIFA with the structure-based

approach is particularly relevant for translational studies, hypothesis-

generation, and for multimodal characterization of modest samples.

The power of this multimodal characterization is evidenced by the

fact that multiple modality classifiers were shown to be more efficient

than single modalities in classifying S-FEP individuals. Previous MRI stud-

ies applying multivariate machine-learning algorithms in neuroimaging

have shown the potential to discriminate between individuals with

schizophrenia and HCs (Cabral et al., 2016; Cetin, Houck, Vergara,

Miller, & Calhoun, 2015; Du et al., 2012; Lei et al., 2020; Peruzzo, et al.,

2015; Qureshi et al., 2017; Sui et al., 2013). The large range of discrimina-

tion accuracy previously reported (72–100%) is explained by the variably

in samples sizes, differences in the populations and type of images ana-

lyzed, differences in validation approaches, and the “publication bias”

(only the best performances are published). However, conclusions draw

from patients with established schizophrenia, whose brain structure is

known to be affected by the disease chronicity and long term treatment,

may not less robust to FEP individuals. In fact, efficient models to dis-

criminate chronic schizophrenic patients from HCs demonstrate poor

generalizability in FEP (de Moura et al., 2018; Pinaya et al., 2016; Vieira

et al., 2020). Although multimodal classifiers for FEP are rarely reported,

we found that the better performance of our multimodal classifier for

S-FEP versus HCs, compared with the single modality classifiers, aligns to

what was previously observed in the classification of ultra-high-risk indi-

viduals for psychosis, FEP, and HC (Pettersson-Yeo et al., 2014).

In the present study, the accuracy of the classifier was increased by

the combination of rs-fMRI abnormalities, which were more specific to

the S-FEP group, with more “general” DTI abnormalities, which were

greater in the S-FEP group. This points to the value in using multimodal

data integration to stratify a heterogeneous population (e.g., FEP) into

subgroups of potential clinical relevance. Our group previously reported

greater cognitive impairment in individuals with schizophrenia as com-

pared with those with bipolar disorder (Schretlen et al., 2007). Other

studies attempted to perform subtype prediction (Arribas, Calhoun, &

Adali, 2010; Calhoun, Maciejewski, Pearlson, & Kiehl, 2008; Costafreda

et al., 2011; Ota et al., 2013; Pardo et al., 2006; Rashid et al., 2016; Sac-

chet, Livermore, Iglesias, Glover, & Gotlib, 2015; Schnack et al., 2014;

Yang et al., 2018;Schretlen et al., 2007 #1853). Although most of these

studies used single modality classifiers and focused on different sub-

groups, they all show predictive value in modeling of “spectrum-like”

mental illness. The subgroup distinction supported by SIFA in the pre-

sent study is in accordance to this notion, and adds proof of the poten-

tial value method for stratification in early disease stage.

TABLE 4 Area under the curve (95% confidence interval) for the leave-one-out cross-validated receiver-operating characteristic (ROC) curves
classifying of FEP and controls

FEP vs. HC S-FEP vs. HC M-FEP vs. HC

All 0.75 (0.67–0.82) 0.77 (0.69–0.86) 0.69 (0.54–0.84)

Rs-fMRI 0.69 (0.6–0.78) 0.64 (0.54–0.74) 0.59 (0.44–0.74)

FA 0.75 (0.67–0.83) 0.7 (0.6–0.79) 0.7 (0.57–0.84)

MD 0.64 (0.55–0.74) 0.66 (0.56–0.76) 0.6 (0.46–0.73)

T1-volume 0.66 (0.57–0.75) 0.62 (0.51–0.72) 0.57 (0.43–0.71)

Note: “All” includes features from all the modalities (T1-based volumes, DTI metrics (fractional anisotropy – FA and mean diffusivity – MD) and resting

state fMRI.

F IGURE 4 Leave-one-out cross-validated ROC curve for the
classification of S-FEP and controls. The logistic models were trained
using the factors (both common and individual) estimated from the
SIFA. The model including multimodality-imaging features (volumes,
FA, MD, and rs-fMRI synchrony) was the most effective on correctly
classifying individuals with S-FEP, achieving an accuracy of 77%
(Table 4)
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The comprehensive characterization of the FEP population and

its subgroups highlights brain areas that may represent an important

locus of the pathology. One of our main findings point to widespread

abnormalities in DTI (FA increase and/or MD decrease) in projection

and commissural pathways. This was a very robust finding, as diverse

anatomically related segments showed the same pattern, agreeing

with previous findings of single modality studies in FEP (Cheung

et al., 2008; Faria et al., 2019; Lyall et al., 2018; Mitelman et al., 2007;

Perez-Iglesias et al., 2010; Price et al., 2007; Schmidt et al., 2015;

Wang et al., 2011; Whitford et al., 2010; Zhou et al., 2017) and in

data-driven, large sample studies of schizophrenia patients (Kelly

et al., 2017; Oestreich et al., 2017). Although stronger in S-FEP, most

of the DTI features were shared in S-FEP and M-FEP and suggest

involvement with common pathology.

In contrast to the widespread DTI features, within the functional

modality we found more localized effects, and the thalamus was among

the areas providing the greatest contribution to classification. The partic-

ular pattern of connectivity between the thalamus and the somato-

sensorial cortex we observed in S-FEP aligns with observations in

patients with psychotic disorders, individuals at high risk, and those in

early and chronic stages of schizophrenia, as well as with reports

by our group and others of structural and metabolic abnormalities cen-

tered in the thalamus (Agcaoglu et al., 2017; Altamura et al., 2017;

Anticevic, 2017; Cho et al., 2016; Cho et al., 2019; Dandash, Pantelis, &

Fornito, 2017; Dietsche, Kircher, & Falkenberg, 2017; Gheiratmand

et al., 2017; Guo et al., 2015; Li et al., 2017; Merritt, Egerton, Kempton,

Taylor, & McGuire, 2016; Murray & Anticevic, 2017; Pinault, 2017;

Stephan, Friston, & Frith, 2009; Tu et al., 2019; van Erp et al., 2016;

Wang et al., 2019; Woodward & Heckers, 2016; Woodward,

Karbasforoushan, & Heckers, 2012; Yaesoubi et al., 2017). Note

that thalamus was identified as an important structure for classification

“cross-modalities,” adding evidences to its core involvement in psychosis.

The connections between thalamus and temporal areas, and

among temporal areas and basal frontal areas, were also identified as

important features for classification of FEP individuals, in agreement

with similar reports in patients with established schizophrenia (Lei

et al., 2020). This is physiologically reasonable given the role of these

areas for cognitive functions and sensory integration. Although we are

tempted to draw direct correlations between brain regions and func-

tion, results from multimodal integration must be interpreted as a spa-

tially distributed pattern rather than focusing in individual regions or

features. Together, our findings indicate that both functional and phys-

ical characteristics (note that volumes of different structures were

identified as important features by SIFA, despite of the lack of volu-

metric group differences) are implicated in FEP at the individual level.

Although our methodology is optimized for relatively modest

samples, increasing the cohort would allow us to test the models in

independent data, as well as cluster patients into more specific

groups. A second limitation is that most of the patients were receiving

psychiatric treatment at the time of the scans. The value of these find-

ings must ultimately be proved in drug-naïve cohorts. Information

about self-education level, handedness, disease stage, and non-

antipsychotic medications was not quantitatively available; these

factors were not included in our analysis. Finally, the DWI was

acquired with nonisotropic voxels, which may introduce issues related

to partial volume effects. Despite these limitations, it is reasonable to

infer that multimodal imaging features carry information about psy-

chosis overall, FEP subgroups and FEP individuals. The present study

may serve as a proof-of-concept for the potential of this methodology

to be used in the study of a broader range of neurological and psychi-

atric disorders. The combination of multiple observables within neuro-

imaging and across nonimage domains is crucial for conditions like

FEP and most other psychiatric disorders in which there is no single

dominant discriminating feature. In these cases, the subgroup and

individual characterization is more likely to reside in multiple features

of small effect size that capture different aspects of the condition.
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