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Abstract
Mechanical forces in the cardiovascular system occur over a wide range of length scales. At the whole organ level, large scale
forces drive the beating heart as a synergistic unit. On the microscale, individual cells and their surrounding extracellular matrix
(ECM) exhibit dynamic reciprocity, with mechanical feedback moving bidirectionally. Finally, in the nanometer regime, mo-
lecular features of cells and the ECM show remarkable sensitivity to mechanical cues.While small, these nanoscale properties are
in many cases directly responsible for the mechanosensitive signaling processes that elicit cellular outcomes. Given the inherent
challenges in observing, quantifying, and reconstituting this nanoscale environment, it is not surprising that this landscape has
been understudied compared to larger length scales. Here, we aim to shine light upon the cardiac nanoenvironment, which plays a
crucial role in maintaining physiological homeostasis while also underlying pathological processes. Thus, we will highlight
strategies aimed at (1) elucidating the nanoscale components of the cardiac matrix, and (2) designing new materials and
biosystems capable of mimicking these features in vitro.
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Introduction

The cardiac nanoenvironment, as we define in this review,
comprises the nanoscale features of the extracellular matrix
(ECM) with which cells interact. We will specifically focus
on ECM organization and its nano-mechanical properties,
identifying the functional consequences that alterations in
the matrix have on cardiac cell function occurring in dynamic
processes, e.g., disease and aging. The ECMnot only provides
structural support and signaling cues to its resident cells, but is
also responsible for transmitting force between the cells of the
heart in order to properly coordinate actuation (Hynes 2002;
Parker and Ingber 2007). Many ECM properties are
nanometer-scale in size, including topographical features,
the distribution of cell-binding sites on protein fibers, and
the diameter of the protein fibers themselves (Fig. 1a, b)
(Asgari et al. 2017; Früh et al. 2015; Wallace et al. 2010).

Furthermore, cells exert piconewton-magnitude forces on
their surrounding matrix via integrin-based adhesions
(Maynard et al. 2020), underscoring the importance of identi-
fying the nanoscale features that play a role in maintaining
such a sensitive force balance. To do this, we will first focus
on the ECM and interactions cells make with it, with an em-
phasis on the tools that have been employed to uncover these
nanoscale relationships. We will then discuss in vitro ap-
proaches aimed at mimicking the cardiac nanoenvironment
before showing how these properties directly affect crucial
cellular functions required to maintain cardiac homeostasis.
While cardiac-specific studies are the main focus of this re-
view, we also draw on findings from general matrix properties
and nanoscale cell-matrix interactions that can be applied to
the cardiovascular system.

Nanoscale properties of the cardiac
extracellular matrix

Composition and organization

The cardiac ECM can be defined by two main regions: the
ba semen t membrane immed i a t e l y su r round ing
cardiomyocytes (CMs), to which they directly interact via
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(mostly) integrins, and the interstitial matrix present between
CMs, which provides structural support and houses the cardi-
ac fibroblasts (Rienks et al. 2014). The basement membrane
largely consists of fibronectin, type IV collagen, laminin,
procollagens, hyaluronic acid (HA), and proteoglycans, while
the interstitial matrix mainly consists of collagen types I and
III (Chang et al. 2016; Rienks et al. 2014). Early studies on
protein fibers using electron microscopy (EM) and X-ray

scattering have uncovered the nanoscale structure and organi-
zation of these ECM units (James et al. 1991), while newer
techniques harnessing super-resolution microscopy, e.g.,
single-molecule localization microscopy (SMLM), have fo-
cused on their molecular organization (Früh et al. 2015).

Collagen, being the most abundant protein of the heart,
plays a predominant role in force transmission and in main-
taining structural integrity (Bishop and Laurent 1995).

Fig. 1 Methods for characterizing the cardiac tissue nanoenvironment. a
AFMused to image a collagen type I fibril with diameter of ~300 nmwith
inset showing characteristic D-spacing (right panel). Adapted from
Asgari et al. (2017) under CC BY 4.0. b Labelling periodic domains
(N20:blue, IST2:red) of fibronectin protofibrils using direct stochastic
optical reconstruction microscopy (dSTORM). Adapted from Früh et al.
(2015) under CC BY 4.0. c Implementation of X-ray diffraction imaging
for cardiac tissues and cells, showing resolution capability of heart
sections down to the intracellular component scale (myosin, actin).
Reproduced, with permission, from Nicolas et al. (2019). d SHG image
of the myocardium with crosslinked collagen fibers causing disruption

and rupture of myosin fibers (red arrows). Adapted from Nicolas et al.
(2020) under CC BY 4.0. e Transmission electron microscopy (TEM) of
scar area in animals with and without Col5a1 deletion in cardiac
fibroblasts post-heart injury showing fibrillar disarray and alteration in
fibril size in Col5a1CKO (left panel) and in cross section (middle panel)
and corresponding electron tomogram (right panel). Reproduced, with
permission, from Yokota et al. (2020). f SEM images of ex vivo adult
rat myocardium at sideview (top panel), top view (middle panel), and
magnified view (bottom panel) demonstrating aligned matrix fibers.
Reproduced, with permission, from Kim et al. (2010)
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Accordingly, alterations in its expression, abundance, and orga-
nization in diseased states and throughout aging result in severe
consequences (Ozcebe et al. 2021; Yokota et al. 2020).
Structurally, type I collagen forms large, rod-like fibers up to
~300 nm in diameter, while type III collagen forms smaller fibers
closer to 100 nm in diameter (Fig. 1a) (observed by atomic force
microscopy [AFM] in Asgari et al. 2017). These fibril-forming
collagens are assembled into triple helical bundles with a charac-
teristic overlap (termed D-period or D-spacing) occurring at pe-
riodic intervals of ~67–72 nm (as shown in Fig. 1a), which is
believed to be the length scale at which cells interact with the
molecule (Wallace et al. 2010). The exact distance between these
periodic domains depends on tissue type, age, and disease state
(James et al. 1991; Wallace et al. 2010). While collagen types I
and III are themost abundant in the heart, there are other collagen
types that also have important functions in both ECM homeosta-
sis and repair. For instance, collagen type VI has been shown to
be upregulated in aging hearts (Ozcebe et al. 2021). This collagen
is highly flexible, exhibiting an arc curvature of up to 120° and
with a characteristic periodicity of globular domains of ~85 nm
(Lansky et al. 2019).

Fibronectin, whose fibrils are ~2 nmwide, plays an important
role in both heart morphogenesis and in the fibrotic response
post-injury (Erickson et al. 1981; Konstandin et al. 2013; Mittal
et al. 2013). The nanoscale structure of fibronectin has been
studied extensively, with a particular interest in how themolecule
unfolds under force, thereby exposing cryptic binding domains
(Erickson 2002; Szymanski et al. 2017). Depending on the ten-
sional state of fibronectin, changes in ligand binding site acces-
sibility, growth factor/cytokine attachment, and ECM organiza-
tion can occur, all directly affecting cellular behavior (Vogel
2018). As the tensional state of the fibronectin molecule is cor-
related with tissue transformation (either healthy transformation
that occurs in development or in loss-of-function processes such
as aging), investigation into fibronectin organization at the nano-
scale is important. In one approach, themolecular organization of
individual fibrils was elucidated using site-specific labeling com-
bined with SMLM, in which different N- and C-terminal epi-
topes exhibit periodicities ranging from 60 to 130 nm, or ~95 nm
on average (Fig. 1b) (Früh et al. 2015). This closely matches
early studies using EM and immunogold labeling of the type
III homology sequence EIIIA site, in which a periodicity of
~84 nm was identified (Dzamba and Peters 1991).

Uncovering the nanoscale architecture of proteins has led
to the understanding of how cells interact and arrange specific
ECM components. Using cryo-scanning transmission electron
tomography (CSTET) for collagen type VI and fibronectin in
fibroblast cultures has shown that these proteins organize in
distinct conformations and interact with surrounding cells in
fundamentally different ways. Particularly, fibronectin was
observed covering fibroblasts in a branching and merging pat-
tern parallel to the cell axis while collagen type VI was found
in open lattice-like networks consisting of interconnected

polygons on the order of a few hundred nanometers in size
arranged further from the cell body (Lansky et al. 2019). The
nanoscale properties of other ECM components beyond col-
lagen and fibronectin are equally important for cardiac func-
tion. In various physiological and aberrant processes of the
heart, ECM composition and organization have been shown
to change with development, disease, and age (Jallerat and
Feinberg 2020; Ozcebe et al. 2021) (and recently reviewed
by Frangogiannis 2019; Rienks et al. 2014; Silva et al.
2021). For instance, young cardiac ECM is predominantly
composed of type I collagen, followed by laminin and type
IV collagen, while aged ECM is predominantly composed of
type VI collagen, followed by collagen types I and IV (Ozcebe
et al. 2021). It has also been shown that laminin is one of the
main integrin binding partners in the adult heart, with nano-
scale domains ranging from ~15 to 50 nm depending on iso-
form (Yurchenco et al. 1997). To further complicate the issue,
heterotypic assembles of proteins can alter not only fibril size,
but also the nanoscale distribution of ligands to which cells
attach, e.g., fibrils containing both type I collagen and fibro-
nectin, exhibit a periodicity of 67 nm vs. the 84 nm observed
in fibronectin fibrils alone (Dzamba and Peters 1991).

While investigations into cell-ECM interactions at the
nanoscale in whole tissues is still lacking, methods for more
comprehensive ECM characterization at sub-micron length
scales have advanced in recent years. Scanning X-ray diffrac-
tion optics have improved, leading to the development of
nano-focused hard X-rays for studying cardiac tissue, albeit
with some structural degradation issues arising from the single
beam exposure (Fig. 1c) (Nicolas et al. 2019, 2020). Second
harmonic generation (SHG) imaging has also allowed for the
visualization of individual collagen fibrils at sub-micron scale
in heart tissue, revealing a tight correlation between CMmyo-
fibril disruption and altered collagen crosslinking in hypertro-
phic hearts, an observation that had not previously been re-
ported due to resolution limitations (Fig. 1d) (Nicolas et al.
2020). To our knowledge, this was the first study to demon-
strate that altered nanoscale properties of the ECM directly
play crucial roles in cellular function within tissues, an impor-
tant first step in understanding the effects of the cardiac tissue
nanoenvironment on heart function. Transmission electron
microscopy (TEM) has uncovered nanoscale alterations in
matrix organization as a function of collagen production, with
a collagen type V knockout model exhibiting fibrillar disarray
and increased fibril diameter post-myocardial infarction (MI)
(Fig. 1e) (Yokota et al. 2020). Other approaches have
harnessed laser microdissection (LMD) followed by mass
spectrometry (MS) to analyze components of specific
cardiac nanoenvironments, e.g., amyloid plaques in
transthyretin amyloidosis (ATTR), although losing pre-
cise spatial information (Kourelis et al. 2020).

Matrix nanotopography is another important aspect to con-
sider, as topography has been shown to dictate cellular
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morphology, interactions with other cells, and cell migration
via contact guidance (Afzal et al. 2014; D.-H. Kim et al.
2012). Using scanning electron microscopy (SEM) on
ex vivo myocardial tissue, ~100-nm diameter fibers were
found to organize in parallel, providing directional support
for the characteristic anisotropic organization of muscle fibers
(Fig. 1f) (Kim et al. 2010). Many studies have focused on
determining collagen orientation in injured hearts, from early
methods using polarized light microscopy (Whittaker et al.
1989) to more recent approaches using computational models
for describing the spatial heterogeneity observed during in-
farct remodeling (Richardson and Holmes 2016). As collagen
secretion and crosslinking increase, not only are binding sites
altered, but matrix topography itself undergoes changes. At
the individual integrin level, nanotopography has been shown
to influence mechanosensitive signaling processes in cells
(Chighizola et al. 2020). These findings demonstrate an
integrin clustering dependence on nanotopography in nascent
adhesion formation, ultimately driving the force loading re-
sponse in cells—a clear cut example of small features driving
changes at a length scale an order of magnitude higher.

Mechanical properties

There are two primary mechanical aspects of the
nanoenvironment: stiffness and the tensional state of protein
fibers. While several transmembrane molecules mediate the
attachment of cells to their surroundings, the most ubiquitous
and well-studied are integrin-based adhesions (Howard and
Baudino 2014). Integrins, whose individual unit size is on
the order of tens of nanometers, interact with specific binding
domains in proteins and transmit mechanical information to
cells and the matrix in a bidirectional manner (Hynes 2002;
Ross 2004). Due to the small-scale nature of these interac-
tions, even tiny alterations in ECM mechanics can lead to
large effects on cellular function. At the nanoscale, tissue elas-
t ic i ty has been measured using AFM, in which
nanometer-sized probes are used to apply piconewton levels
of force, which are on the order of magnitude that cells expe-
rience. The elasticity of the cardiac ECM has subsequently
been shown to change throughout development, myocardial
injury, and disease (Berry et al. 2006; Young and Engler
2011).

During cardiac remodeling post-injury, drastic changes oc-
cur in the ECM, largely via activated cardiac fibroblasts that
secrete the majority of the matrix, in order to mitigate struc-
tural damage following cardiac cell death (Dobaczewski et al.
2010). Protein composition is altered via an increased produc-
tion of collagen, particularly type I, which is stiffer than type
III, along with other components like fibronectin (Asgari et al.
2017; Konstandin et al. 2013). Furthermore, lysyl oxidases are
upregulated, which initiate crosslinking of collagen fibrils
(Al-u’datt et al. 2019; Mäki 2009). The combination of both

leads to a fibrotic scar that has reduced contractility, resulting
in heart stiffening, altered electrical signal propagation, and
reduced cardiac performance (Al-u’datt et al. 2019; Miragoli
et al. 2007; Murtha et al. 2017; Richardson et al. 2015).
Indeed, such changes in mechanical properties have been
shown to affect myofibril maturation and contractility of
CMs, with impairment of both observed on matrices of path-
ophysiological values (>50 kPa representing diseased vs.
~10 kPa representing healthy) (Engler et al. 2008; Jacot
et al. 2008; McCain et al. 2014).

Nanoscale mechanics at the single protein level have been
extensively studied on fibronectin to understand how small
forces affect ligand accessibility and concomitant cell function
(Arnoldini et al. 2017; Cao et al. 2012; Diao et al. 2010;
Ohashi et al. 1999). As fibronectin is well-known to harbor
force-dependent cryptic binding sites (Erickson 2002), the
tensional state of the protein has been of particular interest,
and has been studied using a variety of techniques, including
phage display for tensile state-specific peptide binding (Cao
et al. 2012), bacterial binding domain nanoprobes specific to
the relaxed state (Arnoldini et al. 2017), and molecular dy-
namics simulations of binding accessibility vs. conformation
(Diao et al. 2010). Interestingly, fibronectin fibers have been
shown to exist in a tensed state in healthy tissues, whereas
diseased tissues exhibit a more relaxed, unstretched state
(Arnoldini et al. 2017). Using the tension-sensitive bacterial
adhesin-derived peptide FnBPA5, which binds specifically to
relaxed fibronectin, fibers were found to be distributed
throughout the healthy heart in a tensed configuration as com-
pared to that of the tumor stroma, which was more heteroge-
neous and exhibited an abundance of relaxed fibronectin
(Fonta et al. 2020). As the tumor stroma shares similarities
with fibrotic tissue, the tensional state of fibronectin is likely
to be comparably affected in myocardial injury and disease.

Nanoscale interactions between cells and matrix

CMs attach to the basement membrane through assemblies
called costameres, where their binding is mediated by
i n t e g r i n s , i n t e g r i n - r e l a t e d p r o t e i n s , a n d
dystrophin-glycoprotein complexes (DGC) (Sit et al. 2019).
Through these sites, CMs sense matrix rigidity via parallel
machinery regulated by both muscle and non-muscle myosin
contractions (Pandey et al. 2018). In turn, the force transmitted
between CMs and the surrounding ECM affects cellular con-
tractility and myofibrillogenesis (Chopra et al. 2018;
Danowski et al. 1992; Sit et al. 2019). The same principles
apply for cardiac fibroblasts, where integrin-based focal adhe-
sion complexes mediate attachment and force transmission
from the interstitial matrix, driving their phenotype and acti-
vation state (Manso et al. 2006).

Integrin expression has been shown to vary in both heart
development and disease, as well as among different cell types
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(Israeli-Rosenberg et al. 2014; Ross 2004). In CMs, the
integrin subtypes most highly expressed are α1β1, α5β1,
and α7β1, which are mainly binding receptors for collagen,
fibronectin, and laminin, respectively (Israeli-Rosenberg et al.
2014). However, predominant subtypes have been shown to
change based on developmental stage and disease state
(Brancaccio et al. 2009; Nawata et al. 1999). This is important
to note as different integrin heterodimers have been shown to
play differential, yet complementary roles in rigidity sensing.
For example, on fibronectin-based microenvironments,
α5β1 integrins are responsible for force generation,
while αv-class integrins facilitate structural adaptation
to force (Schiller et al. 2013). Furthermore, the nano-
scale spacing of integrins has been shown to dictate the
amount of tension they can sustain, with integrins
spaced 100 nm apart displaying significantly reduced
tension vs. those spaced 50 nm apart (Liu et al.
2014). As previously mentioned, ligand-binding sites
can be altered in various biological processes; therefore,
it is logical to conclude small alterations in the
nanoenvironment can cause drastic alterations in cellular
behavior. Indeed, a slew of mechanosensitive pathways
have been shown to play an important role in myocar-
dial function, many of which depend on small-scale
ECM properties (Ward and Iskratsch 2019).

While the visualization of nanoscale integrin-based attach-
ments to the ECM remains a challenge, advancements in
cryo-electron tomography have allowed for the ultrastructural
identification of focal adhesion complexes. On fibronectin,
focal adhesions in fibroblasts were shown to assemble into
particles of ~25 nm in size with an average interspacing of
~45 nm. Furthermore, it was demonstrated that this architec-
ture is highly dependent on actin contractility, as treatment
with a Rho-kinase inhibitor, Y-27632, caused rapid reduction
in focal adhesion size by ~60% (Patla et al. 2010). 3D
super-resolution microscopy has also been harnessed to deter-
mine the molecular architecture of focal adhesion complexes
(Kanchanawong et al. 2010). The interconnectedness of the
various properties pertaining to the tissue nanoenvironment
highlighted here (composition, mechanical properties, and
cell-ECM interactions) was emphasized in a recent study on
the role of type V collagen in cardiac tissue remodeling. When
type V collagen, which is minimally expressed in the heart
post-injury, was knocked out, the scar that forms post-injury is
~15% softer than a wildtype scar. This results in enhanced
expression of αvβ3 and αvβ5 in the activated myofibrolasts,
causing a deregulation of ECM production, eventually leading
to scar expansion and increasingly poor cardiac function
(Yokota et al. 2020). Mitigation of the severe scar phenotype
can be achieved by treatment with Cilengitide, a specific in-
hibitor of αvβ3 and αvβ5 integrins, highlighting the feasibil-
ity of tissue nanoenvironment modification as a treatment
strategy for MI (Yokota et al. 2020).

In vitro systems recapitulating the cardiac
nanoenvironment

Due to the difficulties in measuring and quantifying the influ-
ence of nanoscale matrix features on cells in vivo, engineered
materials have been designed to allow for the study of cellular
responses to nanoscale properties in vitro. Since the first dem-
onstration that cells interact with nanotopographical features
of their surroundings back in 1991 (Clark et al. 1991), the field
of nanoengineered materials has made huge advancements in
the development of bio-inspired nanoscale substrates and the
subsequent s tudy of cel lu lar responses to them
(Cavalcanti-Adam et al. 2006; Dalby et al. 2007;
Schvartzman et al. 2011). This section will focus on the var-
ious material systems that have been developed specifically to
study the tissue nanoenvironment and how cells are influ-
enced by such properties.

Nanotopography

To understand the increasingly complex in vivo cardiac tissue
nanoenvironment, researchers at the forefront of nanotechnol-
ogy have designed various materials to study the impact of
topography and spatial organization of ligands, both in static
and dynamic conditions. In order to mimic nanotopographical
matrix features, approaches have been undertaken using both
nanolithographic techniques and nanofiber fabrication
methods. A seminal study demonstrating the importance of
nanotopographic cues in regulating cardiac function showed
that by employing rational design aimed at mimicking the
nanofibrous myocardial matrix observed in SEM, cardiac con-
tractility and coupling could be enhanced (Fig. 2a) (Kim et al.
2010). To do this, the authors used UV-assisted capillary
lithography-based nanomolding to create poly(ethylene gly-
col) substrates with nanoridges and grooves ranging from ~50
to 800 nm. They found cell-cell coupling and conduction ve-
locity to be a function of cell penetration into the nanogrooves,
dependent on nanoscale parameters (Kim et al. 2010). A sim-
ilar platform was later used to examine structural maturation
of human-induced pluripotent stem cell-derived CMs
(hiPSC-CMs) with a nanogrid culture array comprised of mul-
tiple nanogrooved topographies functionalized with
Arg-Gly-Asp (RGD) peptides, finding an optimal CM sarco-
mere length at ~800-nm nanogroove width (Carson et al.
2016). Biomimetic nanotopographical surfaces have also been
employed in the study of cardiac diseases such asMI, in which
the spatial organization of ECM fibers has been shown to be
altered post-injury (Goergen et al. 2016). By generating ma-
terials with random and aligned collagen nanotopography, a
link between spatial variation of collagen fibers post-MI was
shown to affect activated myofibroblast heterogeneity (Bugg
et al. 2020).
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Fig. 2 In vitro platforms for interrogating nanoscale cardiac properties.
Three properties of the cardiac nanoenvironment are highlighted:
topography (a, b), ligand presentation (c, d), and mechanics (e). a (i)
Nanotopography mimicking cardiac matrix fibers show (ii) enhanced
alignment and striations of neonatal rat ventricular myocytes (NRVMs)
(actin:red, nuclei:blue) and (iii) improved directional contractility on
patterned (bottom) vs. unpatterned (top) substrates, indicated by the
color heatmap and vector field. Reproduced, with permission, from
Kim et al. (2010) b (i) SEM image of synthetic nanofibers. (ii)
Fibronectin (red) deposits on the fibers and (iii) CMs align along fibers
(α-actinin:grey, nuclei:blue). (iv) Contractile stress is measured using a
fiber-coated gelatin microphysiological system via cantilever defection.
Reproduced, with permission from Ahn et al. (2018). c (i) Schematic of

BCML for controlling ligand presentation with nanopatterns and (ii) SEM
image of a cell interacting with an 80-nm pattern. Reproduced, with
permission, from Hirschfeld-Warneken et al. (2008). d Controlling
ligand presentation using a modified NIL technique for producing
nanodot arrays of various geometries—shown here clusters of (i) three
and (ii) seven, with cell interactions in (iii) lower and (iv) higher
magnification. All are SEM images. Reprinted, with permission, from
Schvartzman et al. (2011). e (i) Force maps of NRCMs (outlined in
yellow) on nanopillars during systole (left) and diastole (right) with
displacements indicated in green. (ii) Proposed model of CM
matrix rigidity sensing using non-muscle and muscle myosin
contractions, which work in series. Adapted from Pandey et al.
(2018) under CC BY 4.0
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In another strategy, electrospun nanofiber composites have
been developed to mimic the fibrous nature of cardiac ECM
(reviewed elsewhere: Capulli et al. 2016; Kim and Cho 2016).
Fiber size, mechanical properties, and orientation can all be tuned
to match specific nanoscale matrix properties (Kai et al. 2011;
Kumar et al. 2020). As the cardiac ECM is comprised of parallel
fiber bundles, anisotropy is an important matrix feature to reca-
pitulate. Using a poly(ε-caprolactone) (PCL)/gelatin composite,
aligned nanofibrous electrospun scaffolds with fiber diameters of
~250 nm were produced, exhibiting anisotropic wetting and me-
chanical characteristics matching that of native tissue (Kai et al.
2011). When cultured on these substrates, rabbit CMs showed
enhanced alignment and spreading on parallel vs. random fibers,
highlighting the importance of nanoscale contact guidance (Kai
et al. 2011).Mechanical pulling has also been employed to create
anisotropic nanofibers, which support the formation of aligned,
contractile cardiac microtissues (Fig. 2b) (Ahn et al. 2018).
Furthermore, mimicking the native ECM in 3D using
PCL-aligned nanofiber scaffolds demonstrated the critical role
nanoscale matrix features play in development, as differentiation
of stem cells into functional CMs was enhanced by these scaf-
folds (Ding et al. 2020).

Cells exist in a dynamic environment, which is especially
true for contractile CMs, where topographical matrix features
do not remain in a static state. Thus, numerous studies have
aimed to mimic the spatiotemporal reorganization of ECM
features in vitro (Kumar et al. 2019; Sun et al. 2020; Young
and Engler 2011). Using a PCL shape memory polymer
(SMP), nanogrooves were designed that transition their orien-
tation by 90° upon heating. The effect of temporal changes in
anisotropic nanotopography was observed on primary CMs,
in which alterations in cell alignment, contraction orientation,
and focal adhesions occurred post shape transition
(Mengsteab et al. 2016). A similar approach was used to ob-
serve time-dependent myofibril reorganization of hiPSC-CMs
via SMP-coated polyelectrolyte multilayers yielding flat to
wrinkled topographies, underscoring the importance of pre-
cisely coordinated cues in cardiac development (Sun et al.
2020). Furthermore, dynamic changes in nanotopography
were shown to regulate two well-known Hippo pathway ef-
fector proteins, yes-associated protein (YAP) and transcrip-
tional co-activator with PDZ-binding motif (TAZ), which
have previously been identified in adult cardiac progenitor cell
mechanosensing and fate decision (Gise et al. 2012; Xin et al.
2011). Using this system, YAP/TAZ were shown to shuttle
between the nucleus and cytoplasm in response to dynamic
modifications of the substrate nanostructure, highlighting the
fine mechanosensitivity of CMs (Mosqueira et al. 2014).

Ligand presentation

Controlling ligand presentation at the nanoscale requires the
implementation of precise lithographic techniques due to the

small-scale nature of such interactions. A variety of methods
have been described to achieve defined nanoscale cell-ligand
interactions, mostly employing self-assembly or nanolithography
(Glass et al. 2003; Schvartzman et al. 2011). Block copolymer
micelle nanolithography (BCML) has been utilized for arranging
metallic nanoparticles onto substrates, to which cell-adhesive
peptides can be directly linked, with nanometer control over
interparticle/ligand spacing (Fig. 2c) (Glass et al. 2003;
Hirschfeld-Warneken et al. 2008). Numerous studies have
shown that cell adhesion (Arnold et al. 2004), migration
(Cavalcanti-Adam et al. 2006), force loading (Oria et al. 2017),
and drug sensitivity (Young et al. 2020) are dependent on small
(~tens of nanometers) changes in ligand spacing. Furthermore,
this technique has identified how cells sense both physical and
spatial nanoscale matrix features by recruiting more integrins to
distribute force (Oria et al. 2017). Top-down lithographic tech-
niques, such as e-beam lithography (EBL) and nanoimprint li-
thography (NIL), have also been employed to create metal-based
patterns with customizable features. Studies employing EBL and
NIL have identified the existence of a minimal matrix adhesion
unit size for fibronectin that supports cell adhesion and spreading
(Fig. 2d) (Schvartzman et al. 2011), as well as have shown that
the spatial arrangement of integrin nanoclusters depends on ma-
trix fiber organization (Changede et al. 2019). This has important
implications in cardiacmatrix remodeling that can occurwith age
or injury post-MI, as fibrosis results in the production of large
fibers, thereby reducing the ability of the cell to remodel the
matrix (Changede et al. 2019).

In another approach, DNA origami nanostructures have
been utilized for controlling nanoscale ligand organization,
as they can be designed to display a specific ligand number,
spacing between ligands, and multivalency (Hawkes et al.
2019). To this end, structures with 6 or 12 RGD peptide li-
gands, equivalent to interligand spacings of 60 or 30 nm,
respectively, were immobilized 200 or 300 nm apart to ob-
serve the effects of local vs. global ligand concentration on
neonatal rat CMs (NRCMs). While overall cell area and
F-actin content increased with increasing local and global
concentration of ligands, significant differences in adhesion
of NRCMs could be observed when altering the global ligand
concentration while maintaining local concentration. This in-
dicates that the density between ligands regulates CM adhe-
sion, yet exactly which integrin subunits are responsible for
this response remains to be elucidated (Hawkes et al. 2019).

Nanomechanics

Mechanical properties of the matrix influence cardiac cell be-
havior in development, homeostasis, and disease. This neces-
sitates in vitro tools for both controlling and measuring forces
cells experience at the matrix in order to quantify CM
mechanotransduction (reviewed by Chin et al. 2019; Yadav
et al. 2021). To study how CMs measure rigidity at single
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adhesion sites, a nanopillar platform was employed to corre-
late nanometer displacements of cells to their exerted forces
(Fig. 2e) (Pandey et al. 2018). This setup identified that CMs
sense simultaneous cardiac and non-muscle myosin contrac-
tions, with talin, a mechanosensitive unit within the cell, being
stretched in an oscillating manner on physiological substrate
rigidity vs. no tension on embryonic stiffness and continuous
tension on a fibrotic stiffness. As tissue mechanics, CM con-
tractile machinery, and adhesion sites are all altered in cardiac
disease/injury, altered CM function can occur via aberrant
mechanotransduction (Fig. 2e) (Pandey et al. 2018).

Approaches for measuring piconewton-scale forces exerted
by cell surface receptors have harnessed tension probes (e.g.,
molecular tension-based and DNA-based), optical tweezers,
as well as AFM (Krieg et al. 2019; Li et al. 2017; Liu et al.
2014; Rao et al. 2020). Due to their sensitivity, tension probes
can quantify the amount and localization of integrin tension
during cell attachment and spreading, while AFM-based tech-
niques can measure single molecule mechanics as a function
of applied force. Such techniques have been coupled with
nanoscale matrix features, e.g., ligand spacing and
nanotopography, demonstrating that adhesion formation and
force sensing exhibit nanoscale sensitivity to ligand presenta-
tion (Chighizola et al. 2020; Liu et al. 2014). Small variations
in nanoscale matrix features have also been shown to directly
affect cellular-level tension as measured by traction force mi-
croscopy on soft nanopatterned hydrogels (Oria et al. 2017).

Force loading can be explained by a modified molecular
clutch model, in which clutches (i.e., integrins) reach a thresh-
old force where they can no longer be recruited to stabilize
adhesions, thereby resulting in adhesion collapse. This occurs
at a critical ligand spacing and substrate rigidity, which can
explain how altered mechanotransduction in diseased cardiac
tissue leads to aberrant cardiac cell function, as both tissue
mechanics and composition become transformed (Oria et al.
2017; Yokota et al. 2020).

Conclusions and perspectives

Cardiovascularmechanobiology has uncovered new insights into
how subcellular forces, matrix cues, and signaling molecules
guide cardiac development, homeostasis, and disease progres-
sion.While contributions exist acrossmultiple length scales, here
we focused particularly on nanoscale features of the extracellular
environment. We have defined such features (matrix composi-
tion, organization, mechanics, and ligand interactions) and sum-
marized the high-resolution imaging techniques that have identi-
fied these small-scale properties. We then outlined in vitro sys-
tems for controlling nanoscale tissue properties using new mate-
rials design and described the resulting cellular responses
(summarized in Fig. 3). While we mainly focused on aspects
of the ECM, it is important to note that other nanoscale features
of the cardiac system are equally important. Many studies have

Fig. 3 Overview of the cardiac tissue nanoenvironment. Here we
summarize components of the tissue nanoenvironment and identify
examples of methods discussed in this review to characterize these

properties at the nanoscale, in vitro tools developed to recapitulate
ECM features, and cellular responses that rely on nanoscale matrix cues
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identified subcellular structures in muscle cells that exhibit
nanometer-sized features and are critical to their proper function,
including the sarcoplasmic reticulum (Rog-Zielinska et al. 2021),
the cardiac couplon (Jayasinghe et al. 2018), and sarcomeres
(Wang et al. 2021). Furthermore, there are numerous
cutting-edge techniques not mentioned in this review that could
unravel the complexities of the cardiac nanoenvironment, includ-
ing, but not limited to, serial block face SEM (Pinali et al. 2013),
DNA-paint (Schnitzbauer et al. 2017), localization AFM (Heath
et al. 2021), AFM-based simultaneous topography with recogni-
tion imaging (TREC) (Chtcheglova and Hinterdorfer 2018), as
well as various super-resolution microscopy techniques (e.g.,
VividSTORM) (Barna et al. 2016). We are only at the tip of
the iceberg of understanding how nanoscale features affect car-
diac function. New technologies and methodologies will be re-
quired to identify sub-micron-sized structures, and engineering
approaches must be undertaken for designing materials to enable
the study of such small-scale properties on cellular behavior
in vitro. As is often the case in life, small contributions can make
a big difference.
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