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There has been considerable progress in understanding follicular development,

the ovulatory cycle and the oviposition cycles in the hen. In particular, there

have been tremendous advances in understanding follicular development and

recruitment of follicles to the hierarchy of large yellow follicles. There is a need

to continue to follow the earlier literature while employing present techniques.

Early work allowed an understanding of the ovulation and oviposition cycles.

Models for ovulation were developed. However, while these have no passed the

test of time, there is no present model that fully accounts to the cycles. Earlier

work employed ahemoral light cycles to examine ovulation and oviposition

cycles. Recent work has demonstrated that clock genes are expressed in the

ovary. The control of incubation by prolactin has been largely elucidated in

turkeys. There is evidence that other endocrine glands influence female

reproduction in birds including the adrenal cortex, thyroid and pineal.

However, there is much that remains to be fully understood.
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Introduction

My interest in the physiology of reproduction in birds dawned with my being a

member of the team that developed a radioimmunoassay for chicken luteinizing hormone

(LH) (Follett et al., 1972); this being the first assay for a non-mammalian hormone. This

and other such assays were used, for instance, to determine changes in plasma

concentrations of LH along with progesterone during the ovulatory cycle of chickens

(Furr et al., 1973) and the circadian basis of photoperiodic induction of LH release in a

wild bird (Follett et al., 1974). Brian Follett went on to an exemplary research career

deducing much of the mechanism of photoperiodism in birds.

It is appropriate, 50 years later, to consider what has been learned on the ovulatory or

oviposition cycles of chickens and turkeys and what questions remain needing to be
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addressed. Among the unique features of female reproduction in

poultry and other birds are the following:

• A hierarchy of yellow (yolk filled) follicles with a new

follicle recruited on a daily basis.

• Ovulation of clutches of eggs with the time of ovulation

occurring later in the day as the sequence progresses

• The ovum passing through the oviduct where it acquires

albumen (egg white), membranes and a calcareous shell.

Once this is complete, the egg is released from the oviduct

in the process of oviposition (egg laying). This will not be

covered except where is impacts ovulation, oviposition and

their timing.

• Broodiness and the incubation of eggs.

Development of follicles

There is a hierarchy of yellow (yolk filled) follicles with follicles

increasing in size to a maximum diameter of 2.5 cm due to their

filling with yolk. There is also maturation of the granular and thecal

cells. The largest follicle will be the first to be ovulated and then the

next largest. A new follicle recruited on a daily basis.

Alan Johnson’s laboratory have performed a series of studies

on the recruitment and development of the ovarian follicles. Not

only does this provide a comprehensive account of follicular

development but also the studies themselves were exquisite. The

recruitment of small (pre-hierarchal) follicles involves follicle

stimulating hormone (FSH) and other factors such as growth

factors increasing FSH receptors by granulosa cells from pre-

hierarchal follicles. In turn, there are increases in the following:

1) Formation of cyclic adenosine monophosphate (cAMP).

2) Expression of steroidogenic acute regulatory protein (STAR).

3) Production of progesterone by granulosa cells (Kim and

Johnson, 2018).

Effects of growth factors include the following:

Bonemorphogenetic protein 4 (BMP4) increased expression

of the FSH receptor in undifferentiated granulosa cells from

pre-hierarchal follicles (Kim et al., 2013). Similarly,

(BMP6 increased responsiveness to FSH by granulosa cells

from pre-hierarchal follicles (Ocón-Grove et al., 2012).

Conversely, BMP2 prevented FSH receptor expression by

either transforming growth factor β (TGF β) or FSH by

undifferentiated granulosa cells from pre-hierarchal follicles

(Haugen and Johnson, 2010).

Transforming growth factor β1 (TGFβ1) increased

expression of vascular endothelial growth factor A (VEGF)

and its receptor, VEGF receptors (VEGFR) in granulosa cells

from prehierarchal follicles (Kim et al., 2016). In turn, VEGF

and VEGFR induce angiogenesis and consequently facilitate

follicular growth and the deposition of yolk precursors.

BMP6 also increased the expression of anti-Müllerian

hormone (AMH) by granulosa cells from pre-hierarchal

follicles (Ocón-Grove et al., 2012). In the presence of FSH,

BMP4 increased AMH expression by undifferentiated

granulosa cells from pre-hierarchal follicle (Kim et al.,

2013). Moreover, the effect of BMP4 was blocked in the

presence of TGFα or noggin (Kim et al., 2013).

Ovulation and oviposition cycles

For every ovum to be ovulated, there is a surge in circulating

concentrations of LH and progesterone. A very few pre-ovulatory

surges in circulating concentrations of LH and progesterone were

not associated with an egg laid in turkeys (Liu et al., 2001a; Liu

et al., 2001b). The interval between LH/progesterone surges is

increased late in reproductive period (Liu et al., 2002). A positive

feedback loop exists with LH stimulating production of

progesterone by granulosa cells particularly those in the

largest follicle and progesterone increasing LH release.

Progesterone induces the pre-ovulatory LH surge (Rothchild

and Fraps, 1949; Wilson and Sharp, 1975). The effect of

progesterone requires the presence of estrogen. Progesterone

only provokes a LH surge when ovariectomized hens received

estradiol administration of daily prior to challenge (Wilson and

Sharp, 1976).

Timing of oviposition and ovulation

The interval between ovipositions is 24–27 h [chickens:

(Attwood, 1929) also see Table 1; turkeys: 26.8 h: (Liu et al.,

2001a); 26 h: (Brady et al., 2019)]. The interval varies with the

length of a sequence in the laying hen (Attwood, 1929) with

greater intervals with the shorter sequences (Table 1). Assuming

that the interval between oviposition and ovulation of the next

ovum in the sequence remains constant at about 30 min (Warren

and Scott, 1935), the duration the ovum spends in the oviduct is

markedly less in long sequences (Table 1) tending to less 24 h.

The interval between oviposition and the next oviposition

reflects the time an ovum spends in the oviduct together with the

approximately the time between oviposition and the next

ovulation (Table 1) [calculated from data in Biellier and

Ostmann (1960)]. The interval between ovipositions is greater

in short sequences (Table 2) and is longer with long ahemoral

light cycles (Table 1) (Morris, 1973; other data calculated from

data in Biellier and Ostmann, 1960). With ahemoral light cycles

of progressively greater than 24 h, the timing of oviposition is

earlier; migrating from during the photophase to the end of the

scotophase (calculated from data in Biellier and Ostmann, 1960)
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(Figure 1; Tables 2, 3). It is unclear how the light/dark cycle

influences the duration that an ovum spends in the oviduct?

In laying hens, ovulation occurs about 30 min following

oviposition of the previously ovulated ovum (Warren and

Scott, 1935; Melek et al., 1973). There is some difference

between the interval oviposition and ovulation irrespective of

the photoperiod; this being 24 min for laying hens on a 14L:10D

photoperiod and 36 min for hens on ahemeral light schedule

(14L:13D) (Melek et al., 1973). What is not clear is the

mechanisms for the cross talk between the ovary and oviduct?

The corollary to ovulation occurring 30 min after oviposition

of the previous ovum in a sequence is that the surge in circulating

concentrations of LH and progesterone occurs about 6 h before

oviposition of the previous ovum. What is not clear is how the

ovum/pituitary anticipate oviposition of the previous ovum in

the sequence? What is the cross talk between the ovary and/or its

hypothalamic pituitary control (ovulation) and the oviduct

(oviposition of the previously ovulated ovum)?

Laying hens have been selected for reduced intervals

between ovipositions under continuous lighting (24L:0D)

(Gow et al., 1985). These hens also exhibited reduced

intervals between surges in circulating concentrations of LH

(Gow et al., 1985). The timing of the surge in circulating

concentrations of LH and progesterone occurs at a specific

time of day. For instance, in the domestic duck, the first pre-

ovulatory surge in circulating concentrations of LH and

progesterone in a sequence occurs at the beginning of the

scotophase on a 16L:8D photoperiod and 2 h into the

scotophase on a 11L:13D photoperiod (Wilson et al., 1982).

The first LH surge of a sequence occurs at the beginning of the

scotophase in hens on a 14L:10D photoperiod (Johnson and van

Tienhoven, 1984). The pre-ovulatory LH surge in chickens

occurs at the beginning of the scotophase (Wilson et al.,

1985). If the timing of the scotophase is advanced, there is

some increase in circulating concentrations of LH, albeit not a

full LH surges (Wilson et al., 1985).

TABLE 1 Effect of sequence length on interval between ovipositions [from or calculated from Attwood (1929)].

Sequence length (number
of eggs in
a sequence)

Interval between ovipositions
(h)

Duration
in oviducta (h)

2 28.0 26.4

3 26.8 27.5

4 25.9 25.4

5 25.6 25.1

8 24.6 24.1

11 24.7 24.2

aCalculated assuming interval between oviposition and ovulation of 30 min (Warren and Scott, 1935).

TABLE 2 Effect of ahemeral light/dark cycles on interval between ovipositions (based on or calculated from data in Biellier and Ostmann, 1960;
Morris, 1973).

Light (photophase)/dark (scotophase)
cycles

Length of “day”a (h) Interval between ovipositions
(h)

Duration of ovum
in the oviductb

(h)

Biellier and Ostmann (1960)

10.5L:10.5D 21 26.4 25.9

11L:11D 22 27.5 27.0

11.5L:11.5D 23 26.1 25.6

12L:12D 24 26.4 25.9

19L:19D 38 32.3 31.8

21L:21D 42 34.9 34.4

Morris (1973)

14L:10D 24 24.9 24.4

14L:13D 27 27.1 26.6

14L:16D 30 29.0 28.5

aPhotophase plus scotophase.
bCalculated assuming interval between oviposition and ovulation of 30 min (Warren and Scott, 1935).
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Model for the ovulatory cycle

Both oviposition and ovulation occur only during a period of

8–10 h during the day in chickens and turkeys (on a photoperiod

of 14L:10D) with the first ovulation in a sequence occurring

8–9 h after the subjective dusk and the last ovulation of a

sequence occurring 18–19 h after the subjective dusk. This

was called the open-period (Fraps, 1954; Fraps, 1965). The

corollary is that the LH/progesterone surge for the first

ovulation in a sequence occurs about 3 h into the scotophase.

As the sequence progresses, the surge occurs later and later until

the last surge occurs 12 h from the subjective dusk. A further

corollary is that the LH/progesterone surge is limited to this open

period. What was not clear was what was the open period? 1)

FIGURE 1
Shifts in the time of oviposition with ahemoral light cycles.

TABLE 3 Effect of ahemeral light/dark cycles on the timing of ovipositions (calculated from data in Biellier and Ostmann, 1960.

Light (photophase)/dark (scotophase)
cycles

% Ovipositions during
photophase

Earliest time for
ovipositiona,b

Time for latest
of ovipositionsa,c

Mean
time of ovipositiona,b

10.5L:10.5D 67.3 +5 to +6 −8 to −7 +7.9

11.L:11.D 86.8 +4 to +5 −9 to −8 +8.3

11.5L:11.5D 95.5 +2 to +3 +10 to +11 +4.8

12L:12D 98.4 0 to +1 +9 to +10 +4.9

12.5L:12.5D 88.1 −1 to 0 +7 to +8 +4.6

13L:13D 74.1 −2 to −3 +3 to +4 +2.2

13.5L:13.5D 35.9 −3 to −4 +3 to +4 −0.7

aTime for earliest ovipositions (>5% of total).
bTime in hours from onset of the photophase.
cTime for latest ovipositions (<5% of total).
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Was it the ability of the ovary to produce progesterone? There is

not evidence for this. 2) Was it the ability of the hypothalamus/

pituitary gland to respond to progesterone positive feedback?

There is no evidence for this either. Occam’s razor Was it some

other mechanism?

An alternate model for the sequence of ovulations postulated

two asynchronous cycles with ovulation only occurring when

these were synchronized (Bastian and Zarrow, 1955). What was

not clear is what was the physiological bases of each cycle? This

would seem to be a non-testable hypothesis as the cycles are not

defined.

Circadian genes

There are multiple circadian genes. For instance, BMAL1 is

heterodimeric transcriptional protein and one of the master

genes of the circadian clock (Menet et al., 2014). There is

expression of Bmal1 together with other circadian genes in

the ovary of the laying hen: cryptochrome circadian regulator

(Cry1), Clock and period circadian regulator (Per 2). Moreover,

there is evidence that the pre-ovulatory LH surge influences

expression of circadian genes (Tischkau et al., 2011; Li et al.,

2014). Expression of BMAL1 by chicken follicular granulosa

cells has been reported with expression increased by vasoactive

intestinal peptide (VIP) (Kim and Johnson, 2016). What are not

clear include the following: 1) Are circadian genes expressed in

the oviduct? 2) How are circadian genes in the ovary and,

potentially also, the oviduct entrained following a shift in

photoperiod and under ahemoral cycles? Are they entrained

by the light dark cycle or the stage of the sequence and, if so,

what is the mechanism of entraining expression of the clock

genes? Is the expression of the clock genes influenced by phase

advancing or phase delaying the LH/progesterone surge or the

imposition of ahemeral lighting cycles?

Neuroendocrine control of female
reproduction

A series of papers from J. P. Advis’s laboratory provided

evidence for noradrenergic, neuropeptide Y (NPY) and

dopaminergic effects on gonadotropin releasing hormone

(GnRH) release from the median eminence (Contijoch et al.,

1990; Contijoch et al., 1992; Contijoch et al., 1993).

Norepinephrine stimulated GnRH release from the median

eminence from laying hen (Contijoch et al., 1990). Similarly,

neuropeptide Y increased in vitro GnRH release from hen

median eminence (Contijoch et al., 1993). Basal GnRH release

from the median eminence of hens subjected to feed withdrawal

was increased but decreased in the presence of dopamine

(Contijoch et al., 1992). Unfortunately, this group did not

appear to have continued research on the reproductive

physiology of hen. There is further evidence for both

dopaminergic and adrenergic control of preovulatory LH

surge with the surge blocked in the presence of the dopamine

agonist (apomorphine) or an α adrenergic antagonist

(phenoxybenzamine) (Knight et al., 1982). What is still

unclear whether additional neuropeptides are involved in the

control of the pre-ovulatory surge?

Recent progress in dissecting the
hypothalami-pituitary—ovarian axis

Gene expression in the hypothalamus, pituitary and ovary

was compared between during the pre-ovulatory LH/

progesterone in a study of turkey hens in Tom Porters’s

laboratory. The changes appear to be not those expected. For

instance, there is reduced expression of GnRH in the

hypothalamus (Brady et al., 2019). Moreover, there is

decreased expression of GnRH receptors and increased

expression of GnIH receptors in the pituitary gland (Brady

et al., 2019). There was also shifts in expression in the

preovulatory surge in the ovary such as decreases in LHR in

the granulosa of F1 follicle (Brady et al., 2019). What is not clear

is how the role for each component of the hypothalami-

pituitary—ovarian axis controlling ovulation?

Broodiness and the incubation of
eggs

Our knowledge of the endocrine control of incubation (sitting

on eggs) and brooding (care of chicks/poults). Much of this stems

for the work of Mohamed El Halawani. Circulating concentrations

of prolactin are markedly increased in turkeys during incubation

with a decline when the birds are deprived of access to nests (El

Halawani et al., 1980). This increase in prolactin is controlled by

hypothalamic peptide, vasoactive intestinal peptide (VIP).

Immunization of turkeys against VIP prevents the increase in

circulating concentrations of prolactin in turkeys (El Halawani

et al., 1996; El Halawani et al., 2000). VIP increases prolactin

expression and release in turkeys with the effect blocked by

dopamine (Sun and El Halawani, 1995; Al Kahtane et al.,

2005). Hypothalamic expression of vasoactive intestinal peptides

is high in incubating turkeys (Rozenboim et al., 1993). Similarly,

there is increased VIP receptor expression in the anterior pituitary

glands in turkeys during incubation (Chaiseha et al., 2004).

Administration of a dopamine antagonist prevented brooding

behavior in poults (Thayananuphat et al., 2011). Unfortunately,

Mohamed El Halawai has now retired and is inactive.
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Other endocrine inputs

The relationship between adrenal cortical
hormones and the ovulation cycle

There is evidence from early studies that adrenal cortical

hormones influence can influence ovulation. Ovulation was

blocked by administration of the glucocorticoid,

dexamethasone, 14 h prior to ovulation (Soliman and Huston,

1974). The effect of dexamethasone was overcome by the

administration of adrenocorticotropic hormone (ACTH)

(Soliman and Huston, 1974). This is consistent with

dexamethasone suppressing adrenocorticotropic hormone

(ACTH) release either acting directly at the level of the

anterior pituitary gland or indirectly by depressing release of

corticotropin releasing hormone and/or the releasing hormones

for ACTH, namely arginine vasotocin (AVT) from the

hypothalamus. Premature ovulation was induced by the

following in order of potency: Deoxycorticosterone,

progesterone, and, at very high dose, corticosterone (Etches

and Cunningham, 1976). Moreover, each agent induced

premature oviposition (Etches and Cunningham, 1976; Wilson

and Sharp, 1976). In contrast, ovulation was inhibited by either

the synthetic glucocorticoid, dexamethasone (Rzasa et al., 1983)

or corticosterone (Williams et al., 1985).

The relationship between thyroid
hormones and reproduction

There is evidence for relationships between thyroid hormones

and egg laying in poultry with, for instance, plasma concentrations

of triiodothyronine decreased during the LH/progesterone surge

(Brady et al., 2021). There are decreases in the plasma

concentrations of thyroid hormones, triiodothyronine (T3) and

thyroxine (T4) prior to the onset of ovulation during sexual

maturation (Sechman et al., 2000). Moreover, T3 has been

demonstrated to depress plasma concentrations of both LH and

estradiol, to induce follicular atresia and to bind to thyroid hormone

receptor in ovarian follicles (Sechman et al., 2009; reviewed:

Sechman, 2013). What is not clear is whether the shifts in

thyroid hormones can be advanced or delayed experimentally?

The relationship between gonadotropin
inhibitory hormone and reproduction

The RFamide peptide, gonadotropin inhibitory hormone

(GnIH) depresses both release of LH and FSH and expression

of the common alpha and FSH beta gonadotrophin subunit

in vitro (Ciccone et al., 2004). There are also direct effects of

GnIH on the ovary. There is expression of both GnIH and its

receptor (GnIHR) in the chicken ovary (Maddineni et al., 2005).

Expression of GnIH declines during sexual maturation

(Maddineni et al., 2005).

The relationship between melatonin and
reproduction

Melatonin administration increased ovarian expression of

both melatonin receptors type 1A (MTNR1A) and melatonin

receptors type 1B (MTNR1B) (Hao et al., 2020). There have been

studies on the effects on light spectrum on ovarian expression of

MTNR1A, MTNR1B and melatonin receptors type 1C

(MTNR1C) (Li et al., 2015). Expression of MTNR1A and

MTNR1C was greater in hens on monochromatic red

(660 nm) than green (560 nm) and blue (480 nm) light in

small yellow follicles, F5 and F2 follicles (Li et al., 2015).

However, there were no effects on ovarian expression of

MTNR1B (Li et al., 2015). A role for gonadal receptors

melatonin receptors in seasonal breeding has been proposed

in starlings (McGuire et al., 2011).

There is a positive correlation between plasma concentration

of melatonin and both hypothalamic concentrations of GnIH

and GnIHR during reproductive development in chickens

(Zhang et al., 2017).
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