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Abstract

The Macaronesian Scrophularia lowei is hypothesized to have arisen from the widespread

S. arguta on the basis of several phylogenetic studies of the genus, but sampling has been

limited. Although these two annual species are morphologically distinct, the origin of S.

lowei is unclear because genetic studies focused on this Macaronesian species are lacking.

We studied 5 S. lowei and 25 S. arguta populations to determine the relationship of both

species and to infer the geographical origin of S. lowei. The timing of S. lowei divergence

and differentiation was inferred by dating analysis of the ITS region. A phylogenetic analysis

of two nuclear (ITS and ETS) and two chloroplast (psbJ–petA and psbA–trnH) DNA regions

was performed to study the relationship between the two species, and genetic differentiation

was analysed by AMOVA. Haplotype network construction and Bayesian phylogeographic

analysis were conducted using chloroplast DNA regions and a spatial clustering analysis

was carried out on a combined dataset of all studied regions. Our results indicate that both

species constitute a well-supported clade that diverged in the Miocene and differentiated in

the Late Miocene-Pleistocene. Although S. lowei constitutes a well-supported clade accord-

ing to nDNA, cpDNA revealed a close relationship between S. lowei and western Canarian

S. arguta, a finding supported by the spatial clustering analysis. Both species have strong

population structure, with most genetic variability explained by inter-population differences.

Our study therefore supports a recent peripatric speciation of S. lowei—a taxon that differs

morphologically and genetically at the nDNA level from its closest relative, S. arguta, but not

according to cpDNA, from the closest Macaronesian populations of that species. In addition,

a recent dispersal of S. arguta to Madeira from Canary Islands or Selvagens Islands and a

rapid morphological differentiation after the colonization to generate S. lowei is the most

likely hypothesis to explain the origin of the last taxon.

Introduction

Macaronesia is a floristic region comprising the north Atlantic archipelagos of Madeira, the

Azores, the Selvagens, the Canary Islands and Cape Verde. These archipelagos, which are all of
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volcanic origin, are considered to be excellent models for studying plant evolutionary and dis-

persal processes because of their initial absence of life and high rate of endemism [1]. The ori-

gins of the Macaronesian islands span a wide range of ages, from 27 million years ago (Ma) for

Grande Island in the Selvagens to 0.25 Ma for Pico in the Azorean archipelago [2, 3]. Plant col-

onisation has consequently been able to occur over extended periods of time, and, in the case

of ancient colonisations, sufficient time has elapsed to allow different speciation processes to

take place. The likelihood of island colonisation is thus dependent on distance to the continent,

with colonisation of the islands closest to the mainland (Canary Islands) more feasible and pre-

dictable compared to the most distant archipelago (Azores) [4]. The existence of processes of

speciation, by contrast, is largely determined by others factors, such as island age, size and

diversity of habitats [5, 6].

Many studies have been published on the relationship of the various archipelagos to the

mainland as well as relationships within and between archipelagos [7–10]. In the first case, the

Canarian and Madeiran flora exhibits a clear affinity to the western Mediterranean, its main

source region, whereas the Azores archipelago displays important relationships with Atlantic

and Boreal Europe, and Cape Verde is related to the Saharan Tropical African flora [11–13].

Inter-archipelago dispersal events appear to be quite recent and have not resulted in any major

radiation [8]; nevertheless, a large number of Macaronesian endemics are shared between two

or more archipelagos, showing the importance of inter-archipelago dispersal to the Macarone-

sian biodiversity. The Canary Islands and Madeira share the largest number of endemic species

(42), followed by Madeira and the Azores (7 endemics) [1]. Only one species, Ranunculus cor-
tusifolius, is shared by these three archipelagos. In the case of R. cortusifolius, however, genetic

differences among populations indicate that this taxon is actually a complex comprising sev-

eral species having a common origin from a single colonisation of Macaronesia followed

by subsequent inter-archipelago dispersal [14]. The close floristic relationship between the

Canary Islands and Madeira shown in numerous studies is more often due to dispersal events

from the Canaries to Madeira than vice versa [8–11, 15–20]. Studies focusing on plant taxa of

the Azores have revealed their origins to be in south-western Europe [21], Madeira [22, 23]

and the Canary Islands [19, 24].

In oceanic islands, the general pattern of formation of endemism usually involves one or a

few colonisation events followed by evolutionary radiation, generally adaptive, into a range of

new niches that usually imply a rapid rate of phenotypic evolution [6, 25]. Several phylogeneti-

cally related Macaronesian endemic species constituting monophyletic groups have been

formed in this way (e.g. Aeonium, [26]; Argyranthemum [27]; Echium [16]; Sonchus [28]). In

other cases, the formation of endemism appears to have involved other evolutionary processes

(e.g. anagenesis) that result in the evolution of a single endemic taxon from a colonizing taxon

([6, 29]; for a discussion on the inconsistent use of the terms anagenesis and cladogenesis, see

Vaux et al. [30] and reply by Allmon [31]); these processes are more prevalent on islands with

low habitat heterogeneity and do not lead to an increased number of species [32]. Stuessy et al.

[32] estimated the level of anagenetic speciation on several oceanic and continental archipela-

gos, taking into account three from Macaronesia (the Canary Islands, Madeira and Cape

Verde); of these archipelagos, Madeira, which has the smallest number of islands and the low-

est surface area and habitat heterogeneity, had the highest percentage of endemics (48%).

Finally, from a biogeographic point of view, new species can originate in outlying or peripheral

populations of the range of a species when gene flow to and from the main population is inter-

rupted (peripatric or quantum speciation); this biogeographic model usually generates para-

phyletic groups [33]. This isolation can be due to several factors, such as the ocean, which acts

as a barrier to dispersion and gene flow between an island and the mainland and between

islands.
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The genus Scrophularia includes approximately 270 species [34] of primarily Holarctic dis-

tribution. In Macaronesia, 8 of 11 native species and subspecies are endemic. Seven of the

endemic taxa (Scrophularia hirta and S. racemosa restricted to Madeira and S. calliantha, S.

glabrata and three subspecies of S. smithii endemic to the Canary Islands) originated from a

common ancestor after a single colonization event [35, 36], thus constituting another example

of evolutionary radiation into Macaronesia. Dalgaard [37] described an eighth endemic spe-

cies, the Madeiran S. lowei, which he associated with S. arguta that is widespread in Macarone-

sia, Africa from North Africa to the Horn of Africa, and the Arabian Peninsula and some

isolated populations on the Iberian Peninsula [38].

Dalgaard [37] found that Scrophularia lowei and S. arguta can artificially hybridize, but

their hybrids were always sterile. In a phylogenetic study, Scheunert and Heubl [36] supported

that S. lowei is sister to S. arguta, while Navarro-Pérez et al. [35] dated the divergence of these

two species to the Pliocene–mid Pleistocene (0.43–5.5 Ma) and hypothesized that peripatric

speciation may explain the origin of the Madeiran S. lowei from its ancestor S. arguta. How-

ever, the number of individuals studied in either investigation was very limited (three or one

individuals of S. arguta, respectively, and one individual of S. lowei). Scrophularia arguta has

recently been shown to have distinct lineages in the Canary Islands, the Iberian Peninsula and

north-western Africa [39], with their estimated divergence in the Pliocene (1.38–5.43 Ma).

The relationship between the two species previously inferred using a low number of S. arguta
individuals may thus have been distorted by the limited sampling. In addition, S. lowei was

previously thought to be restricted to Madeira; however, a population from the Azorean São

Miguel Island was discovered during our preliminary studies, thus extending the known geo-

graphical distribution of this species. Given this background, our main objectives were to: (1)

determine the phylogenetic origin of S. lowei in regard to two exclusive hypotheses, namely,

does S. lowei constitute a sister clade to S. arguta, or, instead, has it arisen via peripatric specia-

tion from a lineage of S. arguta?, (2) analyse whether genetic differentiation between the two

species mirrors their morphological differentiation, and (3) establish the geographical origin

of S. lowei, taking into account the territories of the Canary Islands, north-western Africa or

the Iberian Peninsula.

Material and methods

Species studied

Scrophularia lowei and S. arguta (Fig 1), annual species with the same chromosome number

(2n = 40), are characterized by small flowers (corolla 3–5 mm), calyx-lobes possessing a keel,

an androecium with a well-developed staminode and white pollen grains, and conical and

beaked capsules [37]. The main morphological differences between these species are the pres-

ence or absence of cleistogamous flowers in shoots or in inflorescences arising from the plant

base (present in S. arguta but not in S. lowei) and different corolla colours (white, with some-

times purplish striae and margins in S. lowei vs. brownish red in S. arguta; Fig 1). Other differ-

ences are pedicel length (shorter in S. arguta), bracteole size (larger in S. lowei) and density of

glands on the stems (usually densely pubescent-glandular in S. arguta vs. sparsely glandular in

S. lowei).
While S. lowei is a rare endemic of Macaronesia, with only a few populations known from

the Madeiran archipelago [37, 40] and just one from the Azores (São Miguel Island, this

study), S. arguta is widespread. In particular, S. arguta is present in Macaronesia (Selvagens

and Canary islands and Cape Verde) and also ranges from north-western Africa to the Arabian

Peninsula and the Horn of Africa, with some isolated populations on the Iberian Peninsula

[38], although in all cases with low number of individuals per population. Scrophularia lowei
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inhabits rocky slopes, walls, cliffs, wastelands and banks, where it blooms from March to May.

Scrophularia arguta has a similar ecological habitat in Macaronesia, but prefers basaltic cliffs in

lowland xerophytic areas, especially Euphorbia communities on coastal rocky outcrops; in the

Canary Islands, it blooms from February to May [37, 40, pers. observ.].

Sampling strategy

We sampled 26 individuals of S. lowei from five populations (three from Madeira and one

from Deserta Grande in the Madeiran archipelago and one from São Miguel in the Azores)

(Table 1; Fig 2). We also included 46 individuals from 25 populations of S. arguta sampled in a

previous study [39]. Most of the S. arguta populations were located in the species’ westernmost

distribution range (the areas closest to Madeira and Azores archipelagos), including nine pop-

ulations from the Canary Islands (i.e. two populations each from Lanzarote, Fuerteventura

and Tenerife, and one population each from Gran Canaria, La Gomera and La Palma), ten

from Morocco and two from the Iberian Peninsula (Table 1, Fig 2). In each population, young

leaves were collected and kept on silica gel until analysis. The number of studied individuals

per population varied from one (in populations DE, GO, SA1, SA2 and SO where material

from only one individual could be obtained/collected) to seven.

DNA extraction and sequencing

Genomic DNA was extracted using a Qiagen DNeasy Plant Mini kit (Qiagen GmbH, Hilden,

Germany) following the manufacturer’s protocol. Two nuclear DNA (nDNA) and two chloro-

plast DNA (cpDNA) regions were amplified and sequenced using the following primers:

ITS5 and ITS4 [41] for the nuclear internal transcribed spacer (ITS) region, 18S-2L [42] and

ETS-Lar [43] for the nuclear external transcribed spacer (ETS) region, psbJ and petA [44] for

the chloroplast psbJ–petA spacer region, and psbA-F and trnH-R [45] for the chloroplast psbA–
trnH spacer region. Amplification was carried out as described by Valtueña et al. [39].

Sequencing in both directions was carried out by the Service of Applied Techniques to Bio-

sciences (Extremadura University, Badajoz, Spain). Sequences were manually checked and

edited using Sequencher version 4.10 (GeneCodes, Ann Arbor, MI, USA) and then manually

aligned with MacClade version 4.08 [46]. A total of 104 sequences were newly generated for

the four studied markers from the 26 sampled S. lowei individuals (Table 1). For populations

in which more than one individual was studied, all unique sequences for each marker (or two

Fig 1. Habit and flower detail of Scrophularia lowei (A, C) and S. arguta (B, D). Scale bar = 2.5 mm.

https://doi.org/10.1371/journal.pone.0178459.g001
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representative sequences if all sequences were identical) were submitted to GenBank (see S1

Table for accession numbers). For each of the G-haplotype populations of S. arguta with more

than two sampled individuals (PA, TE1 and TE2), we generated five additional sequences per

marker. Because these sequences were identical to those generated in our previous study, they

were not uploaded to GenBank (see S1 Table).

Phylogenetic and genetic differentiation analyses

To estimate divergence times of S. lowei and S. arguta, a Bayesian phylogenetic analysis was

performed in BEAST version 1.8.1 [47]. The analysis was carried out using ITS sequences

from 131 Scrophularia taxa (including 10 sequences from S. lowei and 46 from S. arguta),

Table 1. Studied populations of Scrophularia lowei and S. arguta, including number of individuals studied (N) and haplotype groups (Hap).

Code Location Coordinates Voucher Collector* N Hap

Scrophularia lowei

AZ Azores Archipelago: São Miguel, Lombo Gordo 37˚46.70’ N, 25˚08.84’ W UNEX 36159 FJV & CGR 7 G1

DE Madeira Archipelago: Deserta Grande 32˚30.68’ N, 16˚30.22’ W UNEX 35996 CA, SC, RJ, LM, MS & MV 1 G1

MA1 Madeira Archipelago: Madeira, Caniço Baixo 32˚38.65’ N, 16˚51.61’ W UNEX 36010 JL & TRR 7 G1

MA2 Madeira Archipelago: Madeira, São Gonçalo 32˚39.48’ N, 16˚52.27’ W UNEX 36004 JL & TRR 4 G1

MA3 Madeira Archipelago: Madeira, Santa Cruz 32˚41.37’ N, 16˚47.52’ W UNEX 36003 JL & TRR 7 G1

Scrophularia arguta

FU1 Canary Islands: Fuerteventura, Tetir 28˚31.41’ N, 13˚56.45’ W UNEX 36128 JL & TRR 2 D1

FU2 Canary Islands: Fuerteventura, Tiscamanita 28˚21.18’ N, 14˚02.29’ W UNEX 36129 JL & TRR 2 D1

GO Canary Islands: La Gomera, Barranco de Guarimiar 28˚04.45’ N, 17˚13.81’ W UNEX 36193 FJV & CM 1 G1

GC Canary Islands: Gran Canaria, La Isleta 28˚10.17’ N, 15˚25.28’ W UNEX 36192 FJV & CM 2 A2

IB1 Iberian Peninsula: Cáceres, Santiago de Alcántara 39˚35.23’ N, 7˚12.89’ W UNEX 36131 AOO & FJV 2 C

IB2 Iberian Peninsula: Almerı́a, Pulpı́ 37˚26.38’ N, 1˚44.30’ W UNEX 36132 AOO & FJV 2 A6

LA1 Canary Islands: Lanzarote, Jameos del Agua 29˚09.38’ N, 13˚25.87’ W UNEX 36135 JL & TRR 2 D2

LA2 Canary Islands: Lanzarote, Tinajo 29˚03.61’ N, 13˚41.46’ W UNEX 36138 JL & TRR 2 D1

MO1 Morocco: Safi Cape 32˚19.32’ N, 9˚15.54’ W UNEX 36084 AOO & FJV 2 E1

MO2 Morocco: Zegangane 35˚09.80’ N, 3˚00.68’ W UNEX 36140 TRR, JL & FB 2 E3

MO3 Morocco: Hassi-Berkane 34˚50.20’ N, 2˚51.99’ W UNEX 36141 TRR, JL & FB 2 F

MO4 Morocco: Had-Rouadi 35˚08.15’ N, 4˚09.40’ W UNEX 36142 TRR, JL & FB 2 E3

MO5 Morocco: Beni-Sidel 35˚11.48’ N, 3˚03.02’ W UNEX 36143 TRR, JL & FB 2 E3

MO6 Morocco: Sidi-Bou-Othmane 31˚53.30’ N, 7˚56.90’ W UNEX 36144 AOO & FJV 2 A5

MO7 Morocco: Oued El-Abid Gorges 32˚03.66’ N, 6˚40.72’ W UNEX 36145 AOO & FJV 2 E2 / E1

MO8 Morocco: Ouzaghar 29˚44.77’ N, 9˚05.90’ W UNEX 36146 AOO & FJV 2 A2

MO9 Morocco: Oued Assaka 29˚41.45’ N, 9˚31.84’ W UNEX 36147 AOO & FJV 2 A2

MO10 Morocco: Beddouza 32˚32.88’ N, 9˚16.34’ W UNEX 36148 AOO & FJV 2 B

PA Canary Islands: La Palma, Santa Cruz 28˚42.31’ N, 17˚45.46’ W UNEX 36194 FJV & CM 7 G1 / G2

SA1 Saudi Arabia: Jabal Hada 21˚16.68’ N, 40˚22.58’ E KSU 212279 AAG 1 A4

SA2 Saudi Arabia: Al-Baha 20˚00.69’ N, 41˚27.11’ E KSU 17570 AHA 1 A4

SU Sudan: Arkawit, Jebel Elsit 18˚47.99’ N, 37˚00.98’ E UNEX 36150 UB, SAC & PK 2 A3

TE1 Canary Islands: Tenerife, Güimar 28˚18.54’ N, 16˚22.10’ W UNEX 36151 JL & TRR 7 G1

TE2 Canary Islands: Tenerife, Pal-Mar 28˚00.95’ N, 16˚41.49’ W UNEX 36152 JL & TRR 7 G1

SO Yemen: Socotra, Fiheri Park 12˚31.99’ N, 53˚58.64’ E UNEX 36153 JJA 1 A1

*AAG: A. Al-Ghuraibi; AHA: A.H. Alfarhan; AOO: A. Ortega-Olivencia; CA: C. Aedo; CGR: C.G. Relinque; FB: F. Bueno; CM: C. Mayo; FJV: F.J. Valtueña;

JJA: J.J. Aldalsoro; JL: J. López; LM: L. Medina; MS: M. Sequeira; MV: M. Velayos; PK: P. Konig; RJ: R. Jardim; SAC: S.A. Chaudhary; SC: S. Castroviejo;

TRR: T. Rodrı́guez-Riaño; UB: U. Bairele

https://doi.org/10.1371/journal.pone.0178459.t001

Origin and differentiation in a Macaronesian endemic plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0178459 June 2, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0178459.t001
https://doi.org/10.1371/journal.pone.0178459


and sequences of three related taxa in the Scrophulariaceae (two from Verbascum and one

from Teedia) were used as outgroups (S1 and S2 Tables). From each population in which

more than two individuals were sampled, only two individuals were included in the analysis

because all the individuals either shared the same sequence (populations TE1, TE2, AZ and

MA1) or only two different sequences were found (PA and MA3). The only exception was

population MA2, in which three different sequences were found and used in the analysis. In

this analysis, we considered three calibration points obtained from a previously constructed

phylogeny of the genus Scrophularia [48] that included minimum stem-age constraints for

Lamiales families and tribes based on five fossils following Vargas et al. [49] and Fernández-

Mazuecos and Vargas [50]. The three calibration points implemented as normally distrib-

uted priors were (1) the split between Teedia and Verbascum + Scrophularia (26.77 ± 4.27

Ma), (2) the split between Verbascum and Scrophularia (15.92 ± 3.29 Ma), and (3) the crown

age of Scrophularia (10.20 ± 2.36 Ma). The most suitable nucleotide substitution model was

estimated using jModeltest 2.1.3 [51]. The GTR+I+G model was selected with the gamma

distribution modelled with four categories. Both Verbascum + Scrophularia and Scrophularia
were defined as monophyletic. A relaxed uncorrelated log-normal clock was used and a

birth–death tree prior was set. Other priors were set to default values. Two Markov chain

Monte Carlo [52] analyses were initiated on a random starting tree and run for 20 million

generations each with a sampling frequency of 1000 generations. Satisfactory effective sam-

ple size was reached after assessing convergence in TRACER version 1.6 [53] as described in

the BEAST manual [54]. After discarding the first 10% of sampled generations as burn-in,

the two resulting tree files were combined in LogCombiner 1.8.1 [47]. The maximum clade

Fig 2. Location of studied populations (coded as in Table 1) of Scrophularia lowei (squares) and S. arguta (circles). Only populations of S.

arguta from its western distribution range and Macaronesia are shown. Population colours indicating the main haplotype as in Fig 5A.

https://doi.org/10.1371/journal.pone.0178459.g002
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credibility tree was summarized in TreeAnnotator version 1.8.1 [47] with a posterior proba-

bility limit of 0.90.

To infer relationships and divergence times between S. lowei and S. arguta, Bayesian phylo-

genetic analyses were conducted on two concatenated datasets: one consisting of the two

nuclear regions (ITS and ETS) and the other composed of the two plastid regions (psbJ–petA/

psbA–trnH). An incongruence length difference (ILD) test [55] was previously applied to the

two nuclear regions of the nDNA dataset. The results of this test, which was performed in

PAUP version 4b.10 [56] with 100 replicates, 10 random addition sequences, tree-bisection-

reconnection (TBR) branch swapping on best trees only, and using the MULTREES option,

confirmed the suitability of analysing the two nuclear markers together (P> 0.05). The

Bayesian analyses were performed in BEAST and included at least two individuals from each

population of S. arguta and S. lowei (except for GO, SA1, SA2, SO and DE, where only one

individual was collected per population), with one sequence of S. megalantha used as out-

group. Because more than two different ITS/ETS sequences were found in three S. lowei popu-

lations, all unique sequences (three for AZ and four for MA2 and MA3) were used in the

analysis of the nDNA dataset. Two calibration points were used in these analyses: the diver-

gence age (10.50 ± 1.60 Ma) and the crown age (3.51 ± 1.18 Ma) of the clade constituted by S.

lowei and S. arguta. The substitution models selected using jModeltest 2.1.3 [51] were GTR+I

+G with four categories for the nDNA dataset and HKY+I for the cpDNA dataset, and a coa-

lescent constant size tree prior was used. All other settings and calculation procedures were the

same as in the previous dating analysis. The characteristics of the analysed datasets are detailed

in S3 Table.

An ILD test with the same parameters used for the nDNA dataset was also used to test

whether the two datasets (nDNA+cpDNA) could be combined. According to the ILD test

(P> 0.05), the two datasets were congruent and were thus analysed together. The BI analysis

was performed in BEAST using the same parameters used for analyses of individual datasets.

Relationships between S. lowei and S. arguta were additionally estimated by maximum like-

lihood (ML) analysis of the nDNA, cpDNA and combined datasets. The ML analyses were

performed in RAxML version 8.1.11 [57] via XSEDE on the CIPRES Portal [58]. Automatic

termination of bootstrapping was performed in RAxML, and GTR+G and GTR+I substitution

models were selected for the nDNA and cpDNA datasets, respectively.

Genetic differentiation between S. arguta and S. lowei was assessed by analysis of molecular

variation (AMOVA) as implemented in Arlequin 3.5.2.2 [59] using the cpDNA and nDNA

datasets. AMOVA was run with 1000 permutations, and the significance of the coefficient FST

was assessed with 100 permutations. For both datasets, two different approaches were run: (1)

considering only species without taking populations into account, such that all sequences were

assigned to either S. arguta or S. lowei, and (2) assigning populations to the two species (in

which case, populations with only one sampled individual were removed from the dataset).

Haplotype network, phylogeographic and spatial clustering analyses

Relationships among chloroplast haplotypes were analysed under statistical parsimony in TCS

1.21 [60] using a cpDNA matrix of 56 sequences (9 from S. lowei, 46 from S. arguta and 1 from

the outgroup S. megalantha). Because the selected regions had several unambiguous complex

indels (between 5 and 152 bp) as well as several polymorphic (polyA) regions that could not

be coded unambiguously, two different approaches were used. In the first approach, a dataset

consisting only of the unambiguous complex indels (S3 Table) coded as single characters was

analysed with a connection limit of 12 steps. In the second approach, a dataset with all unam-

biguous mutations, including the complex indels coded as single characters, was analysed with

Origin and differentiation in a Macaronesian endemic plant

PLOS ONE | https://doi.org/10.1371/journal.pone.0178459 June 2, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0178459


a connection limit of 100 steps to include the outgroup. An analysis based on this second

approach was additionally performed considering only S. lowei populations and those S. arguta
populations having the same main haplotype (haplotype G; see Results), with the closest S.

arguta population having a different haplotype used as an outgroup. For this last analysis, com-

plex indels and polymorphic regions could be coded unambiguously. To include the outgroup,

a connection limit of 50 steps was selected.

The dispersal and diffusion of S. lowei were analysed by Bayesian stochastic search variable

selection (BSSVS [61]) of the discrete phylogeographic model as implemented in BEAST 1.8.1.

This analysis was made on the cpDNA dataset and conducted using the same individuals stud-

ied in the haplotype network analysis. There were considered 2 geographic areas for S. lowei
(Madeira and Azores archipelagos) and 11 geographic areas for S. arguta (the Iberian Penin-

sula, north-western Africa, eastern Africa, the Arabian Peninsula, Socotra Island and each

Canarian island from which samples were collected). In the analyses, the coalescent model for

the discrete geographical data used both symmetrical and asymmetrical substitution models,

with all other settings and calculation procedures identical to those in the previous cpDNA

analysis. Bayes factor (BF) analysis as implemented in SPREAD 1.0.7 [62] was used to identify

well-supported geographical state transitions having strong posterior support (BF� 3).

To determine the genetic structure of the combined region dataset, a spatial genetic mixture

analysis [63] was performed using ‘Bayesian analysis of population structure’ (BAPS, version

6.0) [64] with the population coordinates incorporated into the analysis and 30 selected as the

maximum number of populations present in the sample.

Results

In the ITS-based Bayesian tree, S. lowei and S. arguta together constitute a highly supported

clade (posterior probability, PP = 1.00) that is the most basal lineage within the genus Scrophu-
laria (Fig 3, S1 Fig). The dating analysis placed the origin of this clade in the Miocene (10.50

Ma; 7.52–13.75 Ma, 95% highest posterior density confidence interval, HPD) and its diversifi-

cation in the Late Miocene-Pleistocene (3.51 Ma, 1.59–5.81 Ma HPD). All S. lowei individuals

constitute a highly supported clade (PP = 1.00), whose differentiation was dated to 0.70 Ma

(0.21–1.36 Ma HPD). The tree is insufficiently resolved to allow determination of the relation-

ship of the S. lowei clade to the various S. arguta clades and its time of divergence.

Bayesian analyses of the individual nDNA and cpDNA datasets produced different results.

In the nDNA tree (Fig 4A), all S. lowei individuals constitute a marginally supported clade

(PP = 0.94) with a diversification age of 1.91 Ma (0.52–3.67 Ma HPD), but the poor resolution

of the tree does not allow the relationship of this clade to the different S. arguta lineages to be

inferred. Within the S. lowei clade, the Azorean individuals cluster together with strong sup-

port (PP = 0.99). In the cpDNA tree, all S. lowei individuals are included in a well-supported

clade (PP = 1.00) along with individuals of S. arguta from the three most western sampled

Canary Islands (Tenerife, La Gomera and La Palma), which pinpoints the differentiation of

this clade to the Pleistocene (0.71 Ma, 0.15–1.51 Ma HPD) (Fig 4B). The lack of resolution in

the tree prevents inferences regarding relationships among the different populations in this

clade and between this clade and other S. arguta lineages (Fig 4B).

The tree generated by analysis of the combined dataset (nDNA+cpDNA), which is similar

to the chloroplast tree (S2 Fig), includes a highly supported clade (PP = 1.00) consisting of all

S. lowei individuals and the three most western sampled Canary Island S. arguta populations.

This clade diversified in the Pleistocene (1.10 Ma, 0.32–2.05 Ma HPD). Within this clade, the

S. lowei individuals are clustered together with high support (PP = 1.00; differentiation 0.54

Ma, 0.13–1.07 Ma HPD). As in the cpDNA tree, the time of the diversification of this clade as
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Fig 3. Molecular dating of Scrophularia based on ITS sequence variation using BEAST. Core

Scrophularia includes all analysed Scrophularia species except S. arguta and S. lowei; the complete tree is

shown in S1 Fig. Clade posterior probabilities� 0.90 are indicated above branches. The 95% posterior

density distribution of node ages is superimposed in red on branches with a PP� 0.90. Calibration points

used in the analyses are indicated (A, 26.77 ± 4.27 million years ago [Ma]; B, 15.92 ± 3.29 Ma; C, 10.20 ± 2.36

Ma). Scrophularia lowei sequences are indicated by the light green background. The scale is in millions of

years. Abbreviations: Pleist., Pleistocene; Plioc., Pliocene; Mid. Mioc., Middle Miocene. Colours on the right

correspond to the main haplotype indicated as in Fig 5A.

https://doi.org/10.1371/journal.pone.0178459.g003
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Fig 4. BEAST chronogram of Scrophularia lowei and S. arguta based on (A) nuclear (ITS/ETS) and (B) chloroplast (psbA–trnH/

psbJ–petA) DNA sequences. Black and red numbers above and below branches are posterior probability (PP) and maximum likelihood (ML)

bootstrap (BS) values, respectively. Only values corresponding to a PP� 0.90 and a ML BS� 65 are shown. The light green background

indicates S. lowei populations. Colours on the right correspond to the main haplotype indicated as in Fig 5A.

https://doi.org/10.1371/journal.pone.0178459.g004
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well as its relationship to the remaining clades, which comprise only S. arguta individuals, is

unresolved.

The results of ML analyses were similar to those generated by the Bayesian analyses, but the

trees were poorly resolved (Fig 4 and S2 Fig).

The close relationship revealed between S. lowei and populations of S. arguta from the west-

ern Canary Islands was corroborated by the results of the haplotype network analyses, where

these populations were found to share haplotype G (Fig 5A, Table 1), the most divergent hap-

lotype in the S. lowei + S. arguta group (Fig 5B). The analysis focused only on haplotype G dis-

tinguished seven subtypes based on variation in four different positions of the matrix (Fig 5C,

S4 Table)—three in S. lowei and four in S. arguta populations—with no shared subtypes

among populations of both species. The closest haplotype to the remaining S. arguta haplo-

types was found in the Azores and Madeira (Fig 5C). In all populations with haplotype G, all

analysed individuals in a given population had the same sequence. The one exception was in

population PA, where one individual had a divergent sequence that was shared with another

population from Tenerife.

When populations were ignored, AMOVA indicated that the genetic variability found in

the S. arguta–S. lowei complex is mainly due to intraspecific differences (76.5% in cpDNA and

92.5% in nDNA), being much smaller the proportion of genetic variability explained by the

species, which was higher in the cpDNA than in the nDNA (23.5% vs. 7.5%) (Table 2). When

populations were considered, most variability was explained by differences at the inter-popula-

tion level (Table 2). FST values were high in both analysed regions (cpDNA: 0.90465; nDNA:

0.66021), indicating the existence of a strong population structure (Table 2).

Phylogeographic reconstruction based on cpDNA identified north-western Africa as the

ancestral region of the clade constituted by S. lowei + western Canarian S. arguta populations,

with a PP of 0.49 under the symmetrical model and 0.61 under the asymmetrical one (S3 Fig).

In both analyses, S. lowei populations from the Azores and Madeira were inferred to have been

derived via two separate dispersal events from Canarian populations. Under both models, the

dispersal to Madeira was suggested to have occurred from Tenerife (S3 Fig). The ancestral

location of the Azores population was inferred to be Tenerife under the symmetrical model

Fig 5. TCS statistical parsimony network of chloroplast DNA haplotypes found in Scrophularia arguta and S.

lowei in the matrix considering only complex gaps as mutational steps (A) and the matrix including all

unambiguous mutations (B, all haplotypes; C, only haplotype G). In these analyses, gaps were coded as single

mutations. Dashed lines indicate connections to the outgroup (S. megalantha in A and B; haplotype E1 in C). Haplotypes

found in S. lowei populations are indicated by solid margins. Small circles represent inferred mutational steps. The size of

a given haplotype symbol indicates the relative number of populations harbouring that haplotype. Haplotype abbreviations

(A, B) and population codes (C) are the same as in Table 1.

https://doi.org/10.1371/journal.pone.0178459.g005
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(Figure A in S3 Fig), and La Palma under the asymmetrical model (Figure B in S3 Fig). The

symmetrical model detected six significant connections (dispersal routes) among geographical

regions associated with S. lowei populations vs. nine connections identified using the asymmet-

rical model (S5 Table).

The best partition of the spatial clustering analysis yielded two clusters (log(marginal

likelihood) = –2797.8527) that did not correspond to the two species. Populations of S. lowei
grouped in one cluster with the western Canarian populations of S. arguta, whereas the

remaining S. arguta populations constituted the other cluster. Remarkably, assignment of pop-

ulation DE of S. lowei to the group comprising only S. arguta lowered more the likelihood to a

greater extent than changes in the position of any western Canarian populations of S. arguta
(S6 Table).

Discussion

Scrophularia lowei–S. arguta relationships

In this study, we have shown that S. lowei is differentiated genetically from S. arguta, except at

chloroplast loci. Scrophularia lowei is a species with high phenotypic and geographic differenti-

ation with respect to S. arguta. Their phenotypic differentiation is supported by clear morpho-

logical differences, while their geographical differentiation is reflected in their distribution in

different archipelagos: S. lowei is restricted to the Azores and Madeira, whereas S. arguta is

found in the other Macaronesian archipelagos. According to phylogenetic analyses, these two

taxa constitute a well-supported clade and are not independent sister lineages; consequently,

they should not be recognised as autonomous species if monophyly is considered an essential

requirement for species circumscription. In the literature, however, examples of plant and ani-

mal taxa are emerging that are not monophyletic because of speciation processes that do not

involve cladogenesis or bifurcating trees (e.g. [65, 66]).

In addition to the morphological differences pointed out by Dalgaard [37], the two species

differ with respect to several reproductive characteristics. In particular, S. arguta is an amphi-

carpic plant, having mainly chasmogamous (but sometimes cleistogamous) aerial flowers

and cleistogamous basal and/or underground flowers. By contrast, S. lowei lacks basal or sub-

terranean cleistogamous flowers, but sometimes with cleistogamous flowers produced only in

ordinary cymes. As a consequence, S. arguta has dimorphic flowers (whitish, cleistogamous

Table 2. Analysis of molecular variance (AMOVA) of nuclear DNA (nDNA) and chloroplast DNA (cpDNA) between Scrophularia arguta and S.

lowei.

Source of variation d.f. Sum of squares Variance components % of variation FST P

Only species considered

cpDNA Among species 1 5.015 0.12628 23.50 0.2350 0.000

Within species 85 34.950 0.41118 76.50

nDNA Among species 1 1.838 0.03768 7.50 0.07505 0.000

Within species 85 39.472 0.46438 92.50

Population considered into species

cpDNA Among species 1 5.185 0.08339 15.86 0.90465 0.000

Among populations within species 23 29.250 0.39221 74.60

Within populations 57 2.857 0.05013 9.53

nDNA Among species 1 1.936 –0.00266 –0.54 0.66021 0.000

Among populations within species 23 27.222 0.32649 66.56

Within populations 57 9.500 0.16667 33.98

https://doi.org/10.1371/journal.pone.0178459.t002
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flowers lacking staminodes vs. brownish-red chasmogamous flowers with staminodes) and

dimorphic fruits, with the cleistogamous fruits being thinner and with a lower number of

seeds than the chasmogamous ones [38]. Both selfing species produce abundant fruits by spon-

taneous self-pollination; the typical protogyny of the genus is not effective because styles never

become deflexed and the length of the stigmata places this structure at the same level as the

open anthers [37].

The S. arguta–S. lowei group is reproductively isolated from all other Macaronesian Scro-
phularia species as a result of cross-incompatibility [37]. Although artificial hybrids within this

group can be easily obtained, a distinct barrier to gene exchange exists between the two species

that prevents the growth of F1 hybrid plants, which either die before flowering or shortly there-

after and are consequently completely sterile.

Our results provide evidence for a close relationship between the two species, as they consti-

tute a well-supported clade. Molecular dating using the ITS region estimated an origin in the

Late Miocene-Pleistocene, with all S. lowei individuals grouped in a well-supported clade

(PP = 1.00) that differentiated during the Pleistocene (0.70 Ma, 0.21–1.36 Ma HPD). Because

of a lack of resolution at the base of the clade, however, the relationship between S. lowei and

the different S. arguta lineages could not be determined by this analysis. By contrast, analysis

of chloroplast regions (maternally inherited) yielded a better-resolved tree, with S. lowei indi-

viduals grouped in a well-supported clade (PP = 1.00; ML bootstrap = 99%) with S. arguta
individuals from the western Canarian islands (Tenerife, La Gomera and La Palma). Because

genetic structure detected using paternally or biparentally inherited markers is considerably

weaker than that based on maternally inherited markers [67], the latter type of markers is

more suitable to infer historical evolution and relationships among populations [68].

Topological incongruence, frequently observed among trees derived using different geno-

mic regions, is generally interpreted to be a consequence of hybridization, introgression or

incomplete lineage sorting [69–74]. In our study, the absence of differentiation in chloroplast

sequences among S. lowei and western Canarian populations of S. arguta may indicate recent

hybridization between populations from these regions. As indicated above, however, hybrid

offspring of the two species are sterile [37], which eliminates hybridization as an explanation

for the observed differences in the two markers. In addition, the strong population structure

(i.e. limited inter-population gene flow) detected and the fact that all individuals from a given

population had the same cpDNA sequence—excluding one of the seven studied individuals in

population PA—do not support the hypothesis of a hybrid origin for the populations with hap-

lotype G.

An alternative hypothesis is that both population groups have diverged so recently that

insufficient time has elapsed for differentiation of cpDNA regions. The close relationship of S.

lowei to some Canarian populations of S. arguta would thus be consequence of incomplete

lineage sorting, a phenomenon in which a studied gene or DNA region has diverged before

species differentiation. In other words, the region is polymorphic in the ancestral population

or species and after speciation the same gene pool is shared by the new species or populations

[75]. In our case, the great differentiation among haplotypes in S. arguta is consistent with a

haplotype differentiation predating the speciation process that generated S. lowei. This idea is

also supported by the spatial clustering analysis, in which both groups of populations were

identified as belonging to the same genetic group.

The large differentiation in nDNA regions might be a possible consequence of these two

species’ annual and selfing habits [37]. Mutations arising in the nuclear genome would thus

have become rapidly fixed in a given population, thereby leading to differentiation of nDNA

regions [76]. This idea is supported by the high level of inter-population differentiation

uncovered by the AMOVA and the high detected FST values. In addition, the absence of a
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relationship between S. lowei and western Canarian S. arguta populations at the nDNA level

might be due to the existence of gene flow between the two Canarian clades; this influence

may be reflected in the nuclear tree, where one population from Tenerife and one from Fuerte-

ventura constitute a well-supported clade.

In phylogenetic analyses, the ITS region presents additional difficulties, such as the amplifi-

cation of homologous genes or pseudogenes [77, 78]. With respect to our results, this possibil-

ity can be eliminated from consideration for two reasons. First, we never observed double

bands on electrophoretic gels following amplification. Second, we sequenced all samples in

both directions, but found no polymorphism in the sequences suggesting homologous gene

amplification. Because the nuclear genome is recombinant and fixation of neutral mutations

within populations is favoured by the reproductive traits of both species, mutation rates in the

studied regions could have been overestimated; consequently, the obtained differentiation age

of S. lowei should be taken with caution.

Clear morphological differentiation without genetic divergence, a phenomenon also

observed in other studies, has been interpreted as a very early stage of differentiation [79–81].

Considering the low level of cpDNA differentiation between S. lowei and western Canarian

populations of S. arguta, we conclude that these two groups of populations have recently

diverged and that the absence of genetic differentiation at that level is only due to the factor of

time [82]. While marked genetic differentiation has not been accompanied by morphological

differentiation (morphological stasis [39]) within the bulk of the S. arguta complex, the oppo-

site pattern is interestingly observed in the north-western region of its distributional range,

where morphological differentiation has progressed much more rapidly than genetic differen-

tiation. Natural hybridization within this group of “species” is virtually impossible because

they inhabit different islands, similar to the situation observed in some Bidens species in the

Hawaiian Islands [83].

The range of both taxa and the close phylogenetic affinity of S. lowei to the western Canar-

ian S. arguta populations imply that S. lowei originated through peripatric speciation from a

lineage of the latter group of populations. This finding supports the hypothesis of Navarro-

Pérez et al. [35], who only studied one individual of each species. Studies have indicated that

the usual initial result of peripatric speciation is that the widespread species becomes paraphy-

letic (as in S. arguta in our study), with monophyly being achieved only after enough time has

elapsed for lineage sorting and extinction to take place [33].

Our results imply that S. arguta is currently a paraphyletic taxon that needs to encompass S.

lowei to be considered monophyletic. However, the existence of different clades with clear geo-

graphical circumscription into S. arguta may imply that this species is actually a complex of

different genetic groups, a possibility that was recently suggested by a study of the colonization

of the Canary Islands by this species [39].

Geographical origin of Scrophularia lowei: Macaronesian colonization

Scrophularia lowei has been considered to be endemic to the Madeiran archipelago. In this

study, however, its distribution range has been slightly expanded, with a single population (see

below) having been located on São Miguel island (Azores archipelago). Chloroplast markers

indicate a close relationship between S. lowei and western Canarian S. arguta populations

involving a recent divergence among the populations with haplotype G. An affinity between

Canary Islands and Madeira has been previously indicated for the genus Scrophularia [35, 36].

Unfortunately, the poor resolution obtained in those studies hindered determination of the

dispersal route between archipelagos and identification of the archipelago initially colonized

from the mainland. Although our results similarly do not allow the geographical origin of S.
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lowei or the direction of dispersal to be determined with certainty, we propose two main

hypotheses based on our data.

The first hypothesis involves initial colonisation of the Canary Islands by an ancestor with

haplotype G from the mainland (or, alternatively, colonisation of the Selvagens, located

between Madeira and the Canary Islands). A subsequent, recent dispersal from these islands

(Canaries or Selvagens) to Madeira was followed by extensive morphological differentiation as

the introduced population rapidly adapted to the different evolutionary pressures existing on

Madeira. This hypothesis, which best fits the observed morphological pattern of differentia-

tion, is supported by multiple studies inferring the dispersal of various taxa from the Canary

Islands to Madeira [8–10, 19, 20].

Our second hypothesis entails initial colonisation of Madeira (or the Azores) from the

mainland (north-western Africa), with the Canarian populations then originating after dis-

persal from Madeira. This hypothesis is supported by the results of our BSSVS analysis using

the asymmetrical model, which implies that the location of the ancestor of the clade consti-

tuted by S. lowei and western Canarian S. arguta was Madeira, and by the generated haplotype

network, where the subtype of haplotype G connected to the outgroup is found in Madeira

and the Azores. Other studies focused on Macaronesian genera such as Tolpis [22] and Festuca
[84] have also considered the possibility of dispersal from Madeira to the Canary Islands. This

second hypothesis, however, implies that morphological differentiation in Madeira/Azores

giving rise to S. lowei took place after recent dispersal to the Canary Islands. Considering that

the populations with haplotype G have long been isolated from the remaining populations of

S. arguta (i.e. since divergence in the Pliocene [39]), this hypothesis implies that the Madeiran/

Azorean populations have been in morphological stasis for an extended period of time.

Although dispersal events related to colonization of oceanic islands are generally unpredict-

able [85], events involving shorter dispersal distances are considered to be more likely [22]. In

our case, our first hypothesis (north-western Africa! Canary Islands!Madeira) is more

feasible because it involves a shorter distance than that of the second hypothesis (north-west-

ern Africa!Madeira! Canary Islands) (760 vs. 1070 km). The most plausible hypothesis is

thus the one placing the origin of S. lowei in either the western Canary Islands or in the Selva-

gens Islands, from whence a relatively recent dispersal event northward to Madeira was fol-

lowed by rapid morphological differentiation in situ. This hypothesis involves the shortest

dispersal distance and best fits the process of S. lowei morphological differentiation.

Finally, the colonization of São Miguel Island (Azores archipelago), which has increased the

range of S. lowei, is probably very recent. The only population found on this island comprises

approximately 300 individuals inhabiting basaltic rocks along the margins of a road. Given

this location, the population may be the result of an accidental human introduction. This spec-

ulation is supported by the fact that more than 80% of the Azorean flora is non-native (only

205 of 1110 known species are native [86]). If this population is native, however, other popula-

tions may exist in steep inaccessible areas of this or other Azorean islands. In this context, we

note that the latest checklist of Azorean biodiversity reveals a roughly 15% increase in the

number of vascular plant taxa [87].

Conclusions

A close relationship exists between western Canarian S. arguta populations and S. lowei, with

both having recently diverged from a common ancestor. This close relationship supports the

hypothesis that S. lowei originated by peripatric speciation from a S. arguta lineage. The results

obtained from the cpDNA data suggest that S. arguta without the inclusion of S. lowei is a

paraphyletic species, consistent with the observation that paraphyly is a relatively common
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phenomenon following recent speciation. Finally, our study supports an affinity between the

Canary Islands and Madeira, and the most likely hypothesis to explain the origin and evolution

of S. lowei involves a first colonization of Madeira from islands located south of its current

range (Canary Islands or Selvagens Islands) and a rapid morphological differentiation after the

dispersal.
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S1 Fig. BEAST chronogram of Scrophularia based on ITS sequence variation. BEAST chro-

nogram of Scrophularia based on ITS sequence variation. Posterior probabilities of clades are

indicated above branches (only PP� 0.90). The 95% posterior density distribution of node

ages is shown in the node bars (only branches with a PP� 0.90). The scale is in million years.

Arrows indicate calibration points used in the analysis (A, 26.77 ± 4.27 Ma; B, 15.92 ± 3.29 Ma;

C, 10.20 ± 2.36 Ma).

(TIF)

S2 Fig. BEAST chronogram of Scrophularia lowei and S. arguta based on the analysis of the

combined cpDNA-nDNA dataset. Black and red numbers above and below branches are pos-

terior probability (PP) and maximum likelihood (ML) bootstrap (BS) values, respectively.

Only values corresponding to a PP� 0.90 and a ML BS� 65 are shown. The light green back-

ground indicates S. lowei populations. Colours on the right correspond to the main haplotype

indicated as in Fig 5.

(TIF)
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S3 Fig. Maximum clade credibility tree generated by BSSVS analysis of cpDNA. Maximum

clade credibility tree generated by BSSVS analysis of cpDNA in Scrophularia lowei and S.

arguta considering symmetrical (A) and asymmetrical (B) models. Branches are colored

according to highest probability inferred ancestral geographical range. Highest probability of

geographical range is indicated above branches (only values < 1.00).

(TIF)
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10. Trusty JL, Olmstead RG, Santos-Guerra A, Sá-Fontinha S, Francisco-Ortega J. Molecular phyloge-

netics of the Macaronesian-endemic genus Bystropogon (Lamiaceae): paleo-islands, ecological shifts

and interisland colonizations. Mol Ecol. 2005; 14(4):1177–1189. https://doi.org/10.1111/j.1365-294X.

2005.02487.x PMID: 15773944

11. Carine MA, Russell SJ, Santos-Guerra A, Francisco-Ortega J. Relationships of the Macaronesian and

Mediterranean floras, molecular evidence for multiple colonization into Macaronesia and back-coloniza-

tion of the continent in Convolvulus (Convolvulaceae). Am J Bot. 2004; 91(7):1070–1085. https://doi.

org/10.3732/ajb.91.7.1070 PMID: 21653463

12. Rivas-Martı́nez S. 2009. Ensayo geobotánico global sobre la Macaronesia. In Beltrán-Tejera, E., J.

Afonso-Carrillo, A. Garcı́a-Gallo, and O. Rodrı́guez Delgado [eds.], Homenaje al Prof. Dr. Wolfredo

Wildpret de la Torre, Monografı́a LXXVIII, 255–296. La Laguna: Instituto de Estudios Canarios;

2009. pp. 255–296.
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no genetic differentiation between Myrica rivas-martinezii and M. faya (Myricaceae). Ann Bot. 2009;

103(1):79–86. https://doi.org/10.1093/aob/mcn222 PMID: 19008254

80. Hardion L, Dumas P–J, Abdel-Samad F, Kharrat MB, Surina B, Affre L et al. Geographical isolation

caused the diversification of the Mediterranean thorny cushion-like Astragalus L. sect. Tragacantha DC.

(Fabaceae). Mol Phylogenet Evol. 2016; 97:187–195. https://doi.org/10.1016/j.ympev.2016.01.006

PMID: 26804816

81. Johnson CM, He T, Pauw A. Floral divergence in closely related Leucospermum tottum (Proteaceae)

varieties pollinated by birds and long-proboscids flies. Evol Ecol. 2015; 28(5):849–868.

82. Stuessy TF, Crawford DJ, Soltis DE, Soltis PS. 2014. Plant Systematics. Regnum Vegetabili, 156. Bra-

tislava: Koeltz Scientific Books; 2014.

83. Ganders FR, Nagata KM. The role of hybridization in the evolution of Bidens on the Hawaiian islands.

In: Grant WF, editor. Plant Biosystematics. Toronto: Academic Press; 1984. pp. 179–194.
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