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Abstract

Artificial intelligence methods offer exciting new capabilities for the discovery of biological mechanisms from raw data
because they are able to detect vastly more complex patterns of association that cannot be captured by classical statistical
tests. Among these methods, deep neural networks are currently among the most advanced approaches and, in particular,
convolutional neural networks (CNNs) have been shown to perform excellently for a variety of difficult tasks. Despite that
applications of this type of networks to high-dimensional omics data and, most importantly, meaningful interpretation of
the results returned from such models in a biomedical context remains an open problem. Here we present, an approach
applying a CNN to nonimage data for feature selection. Our pipeline, DeepFeature, can both successfully transform omics
data into a form that is optimal for fitting a CNN model and can also return sets of the most important genes used
internally for computing predictions. Within the framework, the Snowfall compression algorithm is introduced to enable
more elements in the fixed pixel framework, and region accumulation and element decoder is developed to find elements
or genes from the class activation maps. In comparative tests for cancer type prediction task, DeepFeature simultaneously
achieved superior predictive performance and better ability to discover key pathways and biological processes meaningful
for this context. Capabilities offered by the proposed framework can enable the effective use of powerful deep learning
methods to facilitate the discovery of causal mechanisms in high-dimensional biomedical data.
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Introduction

Gene set selection facilitates interpretation of high-dimensional
omics data by reducing it to components of greatest relevance
and then allowing them to be linked to specific functional
themes (e.g. using methods like process and pathway enrich-
ment analysis) and to extract meaningful clues for clarifying
biological mechanisms. Other important applications include
disease diagnostics, where the goal is to produce gene sets small
enough to be used for diagnostic tests in clinical practice.

Traditional machine learning (ML) algorithms (such as
support vector machines [1], random forest, RF [2] and logistic
regression [3]) are the ones most commonly applied in classifica-
tion and feature selection (or gene selection) of nonimage data.
Primarily, a d × 1 column vector is supplied to an ML algorithm
to find a smaller set of features and/or to classify samples into
one of defined classes. In the medical field, ever increasing data
complexity is pushing the limits of ML algorithms to extract
relevant information for phenotype identification related to
disease diagnosis and analysis. In this respect, the selection
of a small subset of critical elements or genes from a larger set
has become a critical step. The element or gene selection (also
known as feature selection) problem is not limited to genomic
data analysis, but is an important process in many areas of
research. The reliability of ML algorithms to find a subset of
genes is mostly determined by the feature selection, feature
extraction and classification steps.

On the other hand, convolutional neural networks (CNNs) are
a class of deep learning architectures that have shown promis-
ing results and gained widespread attention in all types image
analysis [4–14]. CNN takes an input image (a p × q feature matrix)
and through its hidden layers conducts feature extraction and
classification (note for 1-dimensional (D) CNN the input is not
of p × q size as the applied input is not an image sample). The
2-dimensional CNN is generally referred to as a CNN and this
paper will also follow suit. One of the key advantages of CNNs
are their high efficiency, i.e. fewer samples and less training time
are needed to achieve good levels of performance. This led to
their high popularity in a myriad of cutting-edge commercial
applications (e.g. driverless cars). A CNN has several advan-
tages: it automatically derives important features from spatially
coherent pixels, it finds higher-order image statistics and non-
linear correlations, it requires less neurons as its convolution
architecture can processes data for its receptive fields (or small
subareas), allowing a deeper network with fewer parameters and
its receptive fields share the coefficients and biases, reducing the
memory footprint [15]. In a local region, an image is comprised of
spatially coherent pixels; i.e. similar information is shared by the
pixels near each other. CNNs take into account the neighborhood
information by extracting features from the adjacent pixels.
On the other hand, ML techniques discard the neighborhood
information and assume every element of a sample to be inde-
pendent. Therefore, to get the maximum performance from a
CNN, the adjacent pixels of a 2D input feature matrix should
have reasonable coherence. Fortunately, for CNNs, the images
utilized are usually a representation of physical entities and,
therefore, do not require pixel rearrangement, as the lenses of
camera correctly pass the appropriate light shades of animate
or inanimate objects to the pixels. Previous attempts to apply
CNN to nonimage data were restricted to 1D CNN architectures
[16–18]. The input to 1D CNNs are in the form of feature vectors
and therefore they cannot deal with images.

One possible way CNNs can process nonimage samples is
by first converting it to an image sample considering spatially

coherent pixels in its local regions, i.e. the pixels close to each
other share similar information sometimes with patterns. The
arbitrary arrangement of pixel locations can induce an unfavor-
able impact on the feature extraction and classification perfor-
mance of CNN architecture. Therefore, the order of neighboring
pixels in an image utilized by CNN is no longer independent
as they were in ML techniques [19]. The DeepInsight approach
[19] pioneered a variant of this strategy that used t-SNE [20] for
element arrangement, followed by mappings, feature extraction
and classification steps. The element arrangement is done by
positioning elements or genes within a 2D pixel frame based on
their relative similarities, followed by the mapping of element
values onto these locations. This approach ubiquitously trans-
forms nonimage samples into images suitable for CNNs. To our
knowledge, it was the first approach to convert various kinds
of nonimage data to image forms for the application of CNN
architecture. Buturivić and Miljković [21] introduced a variant
of DeepInsight approach where tabular data (generally a non-
image data in the arrangement having rows and columns) for
CNN (with ResNet architecture) is used by transforming rows of
tabular data as an image filter, and then by applying it to a fixed-
base image. They applied their approach to gene expression data
derived from blood samples of patients with bacterial or viral
infections and showed that this pipeline can outperform many
ML algorithms. Kanber [22] applied the DeepInsight approach
to the sparse data of the MINST database of 70k samples and
showed it had superior performance than a state-of-the-art ML
(RF) method. DeepInsight approach has been applied in various
other projects [23–42].

The usability of DeepInsight based model has also been
noticed in data science online platform (such as Kaggle.com).
Recently, a competition was organized by the Connectivity Map,
a project within the Broad Institute of MIT and Harvard, the
Laboratory for Innovation Science at Harvard (LISH) and the NIH
Common Funds Library of Integrated Network-Based Cellular
Signatures (LINCS), on the Kaggle.com platform (https://www.
kaggle.com/c/lish-moa/overview). The title of the competition
was Mechanisms of Action (MoA) predictions. The organizers
posed a problem where it was required to develop an algorithm
that can classify drugs based on their biological activities. A
total of 4373 teams participated and submitted their models.
The winning team of Peng et al. [43] applied DeepInsight feature
mapping with EfficientNet-B3 NS model and ResNeSt model
with five other models to score rank 1 out of the total of 4373
teams (https://www.kaggle.com/c/lish-moa/discussion/201510).
The implementation and description of DeepInsight part by Peng
et al. [43] can be accessed at https://www.kaggle.com/c/lish-moa/
discussion/195378.

To date there are very few studies about how to perform
feature selection by CNN for nonimage samples, such as find-
ing a subset of genes. In this work, we focus on developing a
methodology to show that gene selection can be done using
CNNs. An obvious comparable method for this type of analysis
is differential gene expression analysis (DGE) and therefore it
is important to highlight some key differences between it and
the proposed DeepFeature method. In most typical types of DEG
analysis genes are processed individually and the comparisons
are made between two or more conditions based on some vari-
ation of a linear model. The analysis would return all the genes
found to be substantially different, though ability to meet the
selection threshold is heavily influenced by the variance and
magnitude of the expression, which may not necessarily align
with the overall importance of these genes to the condition of
interest. In contrast, deep learning classifier at the core of the

http://Kaggle.com
http://Kaggle.com
https://www.kaggle.com/c/lish-moa/overview
https://www.kaggle.com/c/lish-moa/overview
https://www.kaggle.com/c/lish-moa/discussion/201510
https://www.kaggle.com/c/lish-moa/discussion/195378
https://www.kaggle.com/c/lish-moa/discussion/195378


DeepFeature: feature selection in nonimage data 3

DeepFeature model performs selection by considering all of the
available genes simultaneously (which allows collinearity to be
exploited to compensate for noise) and the priority is solely
given to the overall predictive importance of the gene within the
context of the selected set. Due to these differences in selection
criteria DeepFeature can offer a rich, complementary perspective
to that of the traditional methods. As illustrated by the analysis
reported in this paper, DeepFeature-selected gene sets are both
very different from more traditional approaches like lasso and
analysis of variance (ANOVA), but also appeared to be better
aligned with meaningful biological mechanisms and therefore
consistently achieved higher enrichment for key pathways and
functional groups.

The hidden layers of CNNs can reveal complex mechanisms
(such as pathways) for nonimage samples. The development
of CNNs is inspired by biological processes to perform feature
extraction from image patterns [14, 44, 45]. Both in industries
(e.g. as driverless cars) and academia, the usage of CNN is
becoming increasingly important. It has been primarily used for
image processing but now CNNs are expanded to many fields.
Numerous research can be cited showing CNNs reveal a complex
pattern in the data to achieve superior performance [14, 46, 47].
It is possible that the proper utilization of CNN with DeepIn-
sight feature mapping can also reveal complex mechanisms for
nonimage samples. The same methodology can be extended to
other kinds of nonimage cases and is not restricted to genomic or
transcriptomic data. To this end, the proposed Feature Selection
algorithm via CNNs for nonimage samples, abbreviated as Deep-
Feature, was developed (Figure 1). The DeepFeature approach
encompasses four main steps: element arrangement, feature
selection, feature extraction and classification (see Supplemen-
tary File 1 for the definition about these terms). The steps
of DeepFeature are discussed in the Materials and methods
section.

The innovation and/or contributions of this paper are as fol-
lows. DeepFeature pipeline is introduced where feature selection
can be performed for nonimage samples (or tabular data) via
CNNs. Snowfall compression algorithm is developed to allow
more elements of data in a fixed pixel frame. Region accumula-
tion and element decoder (READ) are introduced to find genes
or elements from the activation maps. In addition to deliver-
ing high-classification performance, DeepFeature also offers a
powerful means for the identification of biologically relevant
gene sets. When applied to the task of cancer classification, our
DeepFeature approach was able to identify coherent sets with
significant enrichment of genes in cancer-associated pathways
from MSigDB and a gold-standard reference set. Further analysis
of these results suggested biologically meaningful connections
of potential interest to our understanding of the differences
between major cancer types.

Results
The results are produced by following an overall procedure of
DeepFeature (Figure 1). The model takes nonimage data, e.g.
transcriptomic or RNA-seq data, and finds a subset of genes or
elements via CNN. The model carries the following steps: image
transformation by DeepInsight, optional Snowfall compression
to accommodate more elements in a pixel-frame, classification
via SqueezeNet model of CNN architecture [48], identification
of activation maps using CAM [49], discovery of the overall acti-
vated regions for a category or class via the region accumulation
step and the decoding of gene subsets by the element decoder
procedure.

First, we compared the number of selected genes and classi-
fication performance for the TCGA cancer study identification
task using different ML algorithms (Table 1). Lasso gave 1018
nonzero coefficients and as a result it discarded all other ele-
ments or genes. To perform enrichment analysis, we limited the
size of gene subset to be around 1000–2000. In this respect, for
ANOVA and variable genes method, 1000 genes were extracted.
These techniques did not provide class specific gene subsets,
however, gave one subset of genes for the all 10 cancer studies.
The classification accuracy was computed on gene subsets using
the RF classifier.

On the other hand, the logistic regression+RF method gen-
erates models for each cancer study i (for i = 1,2, . . . 10) with
coefficients wi

j, where j = 1, 2, . . . , d and d depicts the number
of features or genes. If we take the average coefficients over 10
classes and find top r features, we can then get one subset of
genes for all the 10 cancer studies. However, it will not be as
useful because in that case it will not be possible to obtain class
specific features. Considering each model separately, we take
an absolute value or modulus of the coefficients and arrange
them in descending order to find specific features related to each
cancer study (details are discussed in the Materials and methods
section).

Therefore, these algorithms, with the exception of logistic
regression+RF, provide one subset of genes for all the categories.
However, in some cases pairwise analysis is possible (e.g. by
using post-hoc Tuckey’s test [50]). In such a case, a total of

(m
2

)
subsets are to be generated, where m is the number of categories.
On the other hand, logistic regression+RF provides a separate
model for each cancer study, and with some modifications, it
is possible to obtain class dependent features. This way, it is
possible to find a subset of genes corresponding to a particular
cancer class. Other methods, such as Seurat [51], pcaReduce [52],
TSCAN [53] and SINCERA [54], also produce gene subsets. To
make sure the evaluation is meaningful, DeepFeature method
was only compared with approaches that are also capable of
returning individual sets of features for each class.

For DeepFeature, three different visualization tools were
used/developed to plot feature locations on a 2D-plane. These
methods were (1) t-SNE, (2) t-SNE with Snowfall and (3) PHATE
[55] (see Supplementary File 1 for details).

DeepFeature achieved 97–98% classification accuracy on the
independent test set when using t-SNE (with or without Snowfall
algorithm), and 96.8% accuracy when using PHATE.

For DeepFeature with t-SNE and Snowfall, four distances
(Chebychev, correlation, cosine and Hamming) were used which
gave a subset of 5228 genes (see Supplementary Tables S1.1–
S1.3 for hyperparameter details, Supplementary Figure S1.2 for
an illustration of corresponding activations and Supplementary
Figure S1.3 for gene subsets per cancer study). This subset of
genes was further processed with DeepFeature using Hamming
distance which gave 1806 genes. The details about DeepFeature
execution and results at various stages that eventually led to
the selection of 1806 genes can be found in Supplementary
File 1.

The same four distances and additional iteration were also
used in the case of DeepFeature with t-SNE (no Snowfall). The
two resulting subsets were of 1914 genes and 962 genes (see
Supplementary Table S1.4, Supplementary Figures S1.4 and S1.5
in Supplementary File 1 for details). Two different sizes of gene
subsets were generated from a particular model to examine
whether gene subset size effects pathway enrichment.

Lastly, the PHATE algorithm was used for visualization with
DeepFeature, which gave 1569 genes (see Supplementary Table
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Figure 1. An overall DeepFeature procedure for feature selection using CNN.

S1.5, Supplementary Figures S1.6 and S1.7 in Supplementary File
1 for details).

Different visualization algorithms (t-SNE with or without
Snowfall and PHATE) were applied in DeepFeature and the
resulting gene subsets were examined for enrichment of genes
in pathways of interest.

DeepFeature is also capable of finding different gene subsets
belonging to different cancer studies. As discussed above, apply-
ing different visualization tools resulted in different gene sub-
sets of sizes 962, 1569, 1806 and 1914 genes for each of the 10 can-
cer studies. We applied enrichment analysis on these 962, 1569,
1806 and 1914 gene subsets. DeepFeature using t-SNE + Snowfall
gave a 1806 gene subset and the number of genes for each
cancer study ranged between 930 and 1450 (see Supplementary
Figure S2.1 in Supplementary File 2). DeepFeature using t-SNE

gave the 962 and 1914 gene subsets. In the case of 962 gene set,
between 307 and 679 genes per cancer study were detected (Sup-
plementary Figure S2.1 in Supplementary File 2). For the 1914
gene set, between 405 and 1571 genes per cancer subtype were
found. DeepFeature using PHATE gave 1569 genes, and in this
case between 24 and 621 genes per cancer study were found (see
Supplementary Figure S2.1). DeepFeature using t-SNE + Snowfall
more consistently identified a common set of genes selected
for all cancer studies (Figure 2A and Supplementary Figure S2.2
for performance evaluation of all the algorithms; and, Supple-
mentary Figure S2.3 for overlap of gene subsets among all the
methods including gene annotation). DeepFeature using t-SNE
(962 and 1914 genes) performed satisfactorily, however, it did
not outperform DeepFeature with t-SNE + Snowfall (Figure 2B).
This shows that using Snowfall algorithm, the enrichment is
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Table 1. Classification accuracy and gene selection using ML and DeepFeature algorithms

Machine learning methods #Genes selected Classification accuracy

ANOVA+RF 1000 94.2%
Lasso+RF 1018 96.0%
Variable genes+RF 1000 92.8%
Logistic regression+RF 1051 96.6%
DeepFeature (t-SNE) 962 97.6%
DeepFeature (t-SNE) 1914 96.6%
DeepFeature (t-SNE with SnowFall) 1806 97.9%
DeepFeature (PHATE) 1569 96.8%

improved while using DeepFeature. The PHATE visualization
method for DeepFeature did not perform well and consistently
showed inferior performance (Figure 2B). The number of selected
genes for PHATE (1569) was also higher than t-SNE (962), but
the number of significantly enriched pathways was less than
half for most of the cancer studies. Interestingly, in addition to
this overall trend, logistic regression and DeepFeature appear to
preferentially select the nonoverlapping sets of genes relative to
each other. Still, DeepFeature was far better in recovering signif-
icantly enriched cancer-relevant pathways (Figure 2B). This sug-
gests both that the proposed algorithm is better at discovering
biologically coherent groupings of genes and that most of these
grouping also appear to be highly relevant to cancer-associated
processes. Notably, sets of genes from DeepFeature are also
depleted for housekeeping genes (Figure 2A). As housekeeping
genes usually tend to have stable expression across all cell types
and tissues, this result is likely an indication that fewer false
positive genes, which are unlikely to be of interest, were chosen.

To compare these results with previously proposed gene
sets suitable for identification of cancer types, an additional
comparison was made with a ‘hallmark gene sets’ and ‘chem-
ical and genetic perturbations’ collections from the MSigDB
database (Supplementary Figure S2.4) that aim to characterize
coherently expressed biological processes and signatures for key
biological and clinical sets, respectively. Although the overlap
with this dataset was somewhat marginal, the topmost enriched
pathways recovered from this set were still highly relevant.
From the hallmarks collection, most significant gene set was
‘Epithelial mesenchyma transition’, which is a core process in
both tissue differentiation and initiation of cancer metastasis.
Other cell proliferation and differentiation processes near the
top of the list were angiogenesis (3rd highest) and myogeneis
(6th); notably the former of these encompasses genes respon-
sible for regulation of new blood vessel formation, which is
crucial for tumor growth and cancer progression. Core cancer
signaling pathways mediated by KRAS, TNF-alpha and JAK/STAT
proteins were also found near the very top of the list. Other
recovered mechanisms commonly associated with cancer were
coagulation (2nd highest, typically abnormally enhanced in can-
cer patients) inflammatory response (7th, associated with anti-
tumor immune response) and hypoxia (5th, a common condi-
tion that occurs in regions of tumor that grow too rapidly to
ensure adequate oxygen supply). In summary, this analysis has
confirmed that DeepFeature method was able to consistently
identify important processes well-known to be highly relevant
for cancer and therefore may be also be potentially promising
for the discovery of new candidate pathways and genes.

To explore possible underlying biological meaning behind
these selected gene groupings, each set of cancer study-
specific genes was evaluated for enrichment of specific

pathways in Reactome database (Supplementary File 3). This
analysis revealed that DeepFeature consistently identified genes
belonging to the ‘Extracellular matrix organization’ pathway
(Reactome: R-HSA-1474244), which was the top group for all
cancer studies—both by number of genes and enrichment
significance (see Supplementary File 3 for top pathways). The
importance of this pathway is in line with current understanding
of its wider biological role, where it is known to be both highly
diverse in its expression across different tissues and subject to
dysregulation in cancer [56]. Another two pathways that were
highly enriched across all cancer studies were ‘Signaling by
Receptor Tyrosine Kinases’ (R-HSA-9006934) and ‘GPCR ligand
binding’ (R-HSA-500792). Tyrosine kinases mediate both cell
proliferation and apoptosis, and their importance for multiple
types of cancers is relatively well-studied [57]. Interestingly,
although it has been observed that different GPCRs are expressed
in different cancers and some of them may be suitable for use
as biomarkers [58], overall roles of specific genes in cancer is
not well understood and the ligands of many GPCRs still have
not been identified [59]. Further analysis of these DeepFeature
results, like holistic analysis of which parts of specific pathways
were found to be important for different types, may help
to explain key cancer study specific differences, and allow
to connect the GPCR signaling to other better understood
mechanisms of oncogenesis.

Discussion
The performance evaluation of DeepFeature is gauged by both
finding significantly enriched pathways within the selected
subset of genes and classification accuracy on the indepen-
dent test set. As expected, promising results were obtained
when compared with the state-of-the-art ML techniques. The
gene enrichment results for DeepFeature were reasonably
sound compared with the benchmarked ML methods. The
classification accuracy on the independent test set was ∼98%,
which is better than the ML technique. This shows that deep
learning architectures have a possibility to provide solutions
for biomarker discovery, genomic analysis for a variety of input
samples ranging from RNA-seq to various omics data. In general,
this method is suitable for applications where given data is in a
nonimage form.

The three visualization methods used in the DeepFeature
pipeline were t-SNE, PHATE and t-SNE + Snowfall. Though the
Snowfall algorithm adds distortion in the visualization of t-
SNE, t-SNE + Snowfall performed better than t-SNE as measured
by gene enrichment analysis. The distortion is introduced
when the image is transformed from a Cartesian coordinate
system to the fixed size pixel framework, as many features
overlap, i.e. various features having the same pixel location. This

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data


6 Sharma et al.

Figure 2. (A) Commonality of gene selected by DeepFeature (t-SNE + Snowfall) and logistic regression techniques. Each row represents a gene and yellow denotes that

gene was selected for that cancer study (column). Housekeeping genes, as identified by two annotation sources, are shown in blue. (B) Enrichment analysis in MSigDB

C6 gene sets. The number of significantly enriched cancer sets for genes selected by DeepFeature (orange, pink, purple and light green) and logistic regression (dark

green) for each of the 10 cancer studies. DeepFeature (orange) produced higher counts than logistic regression for MSigDB for all the cancer studies.

overlapping reduces the chance of a feature to be selected. In
such a case, the application of Snowfall is to find nearby pixel
locations for features and expose more features to selection. If
we could have very large pixel frame size where no overlaps
occur while transforming from Cartesian coordinate system to
pixel frame, then perhaps the application of Snowfall will not be
useful as distortion is added by it while adjusting the features
in the nearby pixel locations. Nonetheless, in a given fixed size
pixel framework, the application of Snowfall for DeepFeature
was found to be useful in finding more meaningful features
or genes. On the other hand, although PHATE [55] has been
promoted to be an advanced visualization technique, it did not
perform well when compared with t-SNE in the DeepFeature
pipeline. This inferior performance may be attributed to the error
induced while converting from Cartesian coordinates system to

pixel coordinates system as many elements are susceptible to
overlap due to the fixed size of pixel frame.

The feature selection results indicated that DeepFeature was
much better than alternative algorithms at recovering biologi-
cally meaningful groups of genes that were relevant to classes
(phenotypes) of interest. A notable advantage of the method is
its ability to narrow down the set of candidate genes even in
cases where the differences are very substantial, like different
cancer types. On the contrary, under such circumstances
approaches like DGE return very large number of significant
hits and therefore are not useful in sufficiently reducing the
candidate list(s) to allow meaningful interpretation. Therefore,
the algorithm is likely to have great utility for tasks like
prioritization of diagnostical signatures and interpretation of
complex multi-omics data.
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It is now generally accepted that in order to fully under-
stand the dynamic quintessential complexity of cancer, it is
essential to profile and collect data using a wide array of pos-
sible methods. As a result, a typical study commonly needs to
consider wide array of possible data types, possibly including
images, clinical records, as well as protein-coding and non-
coding RNA expression profiles and full genome sequencing.
Understanding mechanisms and discovery of clinically relevant
subtypes frequently require appropriate aligning of these dif-
ferent types of data and, most often, subsequent use of ML
algorithms to identify meaningful patterns. Among current gen-
eration of approaches, deep learning-based methods offer the
greatest flexibility and can potentially allow fuller automation
and more comprehensive integration of these different types.
In principle, by combining different specialized encoder lay-
ers, any types of data can be converted into a set of inter-
compatible embeddings and used within the same ML system.
This innate flexibility is difficult to match using other methods
and is particularly valuable for mining complex multimodal
datasets.

Good correspondence of identified gene sets with known gold
standard cancer-associated pathways is particularly promising
as a means of interpreting the deep learning results from a bio-
logical perspective. Despite many recent advances, deep learning
still commonly has a reputation for generating high quality
but ultimately ‘black box’ models, where discovering how an
algorithm arrived at a particular conclusion is very challenging.
However, given that structures of key cancer pathways are very
well understood, their high degree of overlap with DeepFeature
results could be crucial for correctly contextualizing the impor-
tance of individual genes and offer possible explanations for why
they were selected by the algorithm.

Materials and methods
We obtained RNA-seq data from the TCGA project. To main-
tain large enough categories, only 10 cancer studies were con-
sidered, namely, TCGA-BRCA, TCGA-COAD, TCGA-HNSC, TCGA-
KIRC, TCGA-LGG, TCGA-LUAD, TCGA-LUSC, TCGA-PRAD, TCGA-
THCA and TCGA-UCEC. A total of 6280 HTSeq-FPKM-UQ expres-
sion files were downloaded using the GDC data transfer tool.

From these, 64 files were removed for sharing submitter IDs,
resulting in a final total of 6126 samples. The FPKM-UQ files
contain expression for 60 483 genes. In this study, we only used
the 19 086 genes classified as protein-coding genes by the HUGO
Gene Nomenclature Committee (download date: 22 November
2019). Next, we will describe the DeepFeature model.

An overall procedure for feature selection using CNN
(Figure 1). The model takes nonimage data, e.g. transcriptomic or
RNA-seq data, and finds a subset of genes or elements via CNN.
The transformation of nonimage samples to image samples is
done following the element arrangement step of the DeepInsight
model. A Snowfall compression algorithm is developed to fit
more elements in a given pixel-frame to enable every possible
gene to be part of the selection. Here three visualization methods
are used: t-SNE, t-SNE with Snowfall and PHATE. Image samples
obtained from the DeepInsight and Snowfall algorithms (if
selected) are submitted to the CNN model (using SqueezeNet
architecture). The feature extraction and classification are
performed by CNN. Feature selection is performed collectively
by the class activation maps (CAMs), region accumulation and
element decoder (READ). CAM are used to find activations
of each sample. The activations for individual samples are
integrated to find active regions for a class or category at the

region accumulation step. The accumulated regions (for one or
all classes) define pixel locations of interest for categorization of
samples. These selected pixels are decoded to provide a subset of
elements at the element decoder step. If the number of selected
genes is higher than the desired number of genes, then the
whole procedure can be executed again with the selected genes
as input to find further subsets of genes. Repeating these steps
will reduce the number of selected genes. This way the feature
selection is performed with DeepFeature method.

DeepFeature: feature selection for nonimage
data using CNN

This section defines the proposed DeepFeature methodology.
The constituents of the model are (1) image transformation by
DeepInsight, (2) Snowfall compression to enable more elements
in a pixel-frame, (3) SqueezeNet model of CNN architecture, (4)
CAM model to find activation maps, (5) region accumulation to
obtain overall activated regions for a category or dataset and
(6) element decoder to decode genes from active regions. These
steps are discussed below.

DeepInsight: nonimage to image conversion for CNN

DeepInsight transforms a nonimage sample to a well-organized
image form by effectively arranging elements while considering
neighborhood information. The feature extraction and classi-
fication tasks are done by CNN. DeepInsight integrates three
steps: (1) element arrangement, (2) feature extraction and (3)
classification. This approach of element arrangement can be
useful in uncovering hidden mechanisms (e.g. pathways). In
this way, the relative importance of features for assignment of
samples to particular classes can be better understood. An input
feature vector is transformed to a feature matrix using t-SNE
[20], kernel PCA [60], PHATE [55] or UMAP [61], and then the
smallest rectangle containing all the elements is found using
the convex hull algorithm. A necessary rotation is performed to
align the image, and then Cartesian coordinates are converted
to pixel coordinates. After that, mapping of element values onto
pixel locations is performed to construct an image of a feature
vector. The details of image transformation procedure have been
previously described in our earlier work [19].

Snowfall compression algorithm

If the dimensionality of a sample with d elements, x ∈ R
d, is very

large, then it becomes very difficult to place all the elements in
a given pixel frame of size m × n. Therefore, the question is, how
to compress, such that all the elements can be arranged in the
same pixel size, while maintaining the data topology. There are
two ways of performing compression, quantized compression
and non-quantized compression. In quantized compression, two
or more elements can overlap, i.e. these elements will have
an identical pixel location. In this case, the values of elements
are averaged at that particular pixel location. On the other
hand, in non-quantized compression, no overlap occurs and
each element maintains a unique pixel location and thus there
is no averaging of their values at a given location. The Snowfall
algorithm is a non-quantized compression algorithm. However,
depending upon the memory requirements of a given hardware
by CNN, the size of the pixel frame can be adjusted such that all
the elements are represented in the frame, but with quantized
compression. See Supplementary File 4 for details about the
Snowfall compression algorithm.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data
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It is important to note that when an image in transformed
from Cartesian coordinates to pixel coordinates, it brings dis-
tortion due to the limited or fixed size of the pixel frame. Due
to limited size, many features may overlap on the same loca-
tion and it would become difficult to perform feature selection.
The Snowfall algorithm tries to find nearby empty pixel loca-
tions of such features so that overlapping can be minimized.
Therefore, it tries to make features visible to CNN by relocating
them to neighboring points thereby helping to perform feature
selection.

CNN architecture for feature selection and classification

Since class activation maps (CAMs) [49] cannot be used for
networks that have multiple fully connected layers at the out-
put layer, we used SqueezeNet in this work [48]. Other series
nets (e.g. AlexNet, VGG-16 and VGG19) can also be used to find
CAMs.

The SqueezeNet architecture of DeepFeature has fixed
input size (see Figure 3A). The input image of size N × M is
adjusted to 227×227 due to the input image size requirement of
227 × 227 the first convolutional layer of SqueezeNet (conv1).
Therefore, the input image size would be 227 × 227. The
activation maps are retrieved from the last connected ReLu
layer (ReLu_conv10). After training the CNN model on the optimal
hyperparameters, each new sample could be categorized into
one of the classes or phenotypes (new_classoutput) at the output
layer. Here, an RNA-seq gene expression sample was first
converted to an image by DeepInsight and Snowfall compression
algorithm, and then used as an input. At the input, the RNAseq
sample can be visualized and a particular region leading to its
identification can be analyzed at ReLu layer. The activation
map at ReLu layer defines which localities of an image are
of interest for decision making process. This activation map
has three colors in order of preference as red, yellow and
blue. The red zone is the most active and blue is the least
(Figure 3A).

CNN has various hyperparameters such as momentum, L2
regularization and learning rate. These hyperparameters are
tuned on the training set, and the model’s fitness is evaluated
on the validation set by employing a Bayesian optimization
technique for all the trials. The hyperparameters are selected
to minimize the validation error. The test set is never been
used in the training or model fitting steps. The chosen CNN
hyperparameters produce the optimum performance on the
validation set. Description of the parameters is further discussed
in Supplementary File 1.

Class activation maps (CAMs)

Zhou et al. [49] proposed CAMs which is an interesting
addition of CNNs with global average pooling. CAMs reveals
discriminatory image regions of a particular class or category
of CNN used for classification. Here, the predicted scores of
a category are mapped back to the previous convolutional
layer to generate CAMs [49]. The region of image used for
classification by CNNs can be visually observed by CAMs.
The CAMs are fitted in the last convolutional layer at spatial
location to perform global average pooling. The CAM for class c is
defined as

Mc(x,y) =
∑

k
ωc

kfk(x,y) (1)

where fk
(
x, y

)
depicts the activation of unit k in the last convolu-

tional layer at spatial location
(
x, y

)
, ωc

k is the weight correspond-
ing to class c for unit k. The score for class c can be obtained by
Sc = ∑

x,yMc
(
x, y

)
.

Region accumulation

The region accumulation (RA) step integrates regions of impor-
tance. Let a training set with N samples be defined as S ={
s1, s2, . . . , sN

}
. Let the activation region corresponding to N sam-

ples be given as H = {
r1, r2, . . . , rN

}
; i.e. cardinality of H is same

as S; i.e.
∣∣∣H

∣∣∣ =| S |. Let c be the number of categories (or

phenotypes) defined as � = {
ω1, ω2, . . . , ωc

}
. Each of the sample

will have one of these categories; i.e. si ∈ � and ri ∈ �, for
i = 1, 2, . . . , N. The overall region of the training data S can be
evaluated by performing union operation of individual regions; i.e.
R = r1 ∪ r2 · · · ∪ rN is the integrated region for all samples or for all
categories. The region per class is also important to find genes
belonging to a particular phenotype. In this case, Rj = ∪nj

k=1 r̂k,
where nj is the number of samples in the subset represented by
ωj category, the region r̂k ∈ H for k = 1, 2, . . . , nj and belongs to
a particular class, r̂k ∈ ωj. Basically, Rj is the union of all regions
depicting a particular class or phenotype. The active region size
can vary depending on the threshold value. An illustration is
given in Figure 3B where two samples

{
s1, s2

}
are from category

ω1, and another two samples
{
s3, s4

}
are from ω2. The active

region in each of the samples is depicted as
{
r1, r2, r3, r4

}
. All the

four samples are processed via RA step, and it gives two outputs.
In the first output, integrated regions Rj (where j = 1, 2), belongs
to individual categories are shown, i.e. active regions related
to a particular phenotype. In the second output, all the active
regions are integrated as R, depicting the necessary active zones
for classification of two phenotypes.

Element decoder

The output of RA is processed to the element decoder model.
The pixels underneath the selected region are considered for
this task. Figure 3C shows the element decoder system. In gen-
eral, a pixel pi will have a normalized value 0 ≤ vi, ≤ 1. The
decoder will find the argument or index of this pixel pi located
at

(
ai, bi

)
, i.e. the unique elements or genes, Gi, that it contains.

If the compression (see the section describing the Snowfall
compression algorithm) is quantized then chances are high to
get

∣∣Gi

∣∣ > 1, and if non-quantized then
∣∣Gi

∣∣ = 1, where | • |
is its cardinality. In general, for some pixels

∣∣Gj

∣∣ = 1 and for
some

∣∣Gk

∣∣ > 1 in a given pixel frame (where j and k are any
two pixels).

For a region R, a subset of elements or genes will be obtained.
It is possible to find a subset of genes for a particular class and
also for all the classes. Furthermore, the element decoder can
also reveal a subset of genes for a sample. It should be noted that
the model can give different subsets of elements for different
categories enabling class dependent findings.

Reduction of elements through iteration

For genomic or transcriptomic data, the number of genes is
normally very high and it becomes very difficult to fit all genes
into a finite image size due to fixed hardware limitations. In this
case, it is inevitable to get quantized images, i.e. some image
pixels will carry multiple genes in a location. One might wonder,
how to perform the selection on those batch genes (where batch

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data
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Figure 3. (A) SqueezeNet structure with 227 × 227 input image sample from DeepInsight and Snowfall algorithm, and corresponding class activation map at the output

ReLu layer. (B) Region accumulation (RA) step for the DeepFeature method. (C) Element decoder for the DeepFeature method, the region R is supplied to the element

decoder. A pixel under R could have three possibilities: a pixel representing only one gene g_m at location (a_1,b_1), a pixel representing multiple genes (g_1,g_2, . . . ,g_k)

at location (a_2,b_2), and a pixel that has no element, e.g. at location (a_3,b_3) (here a pixel value or Base is 1, see Supplementary File 1 for further discussion).

gene refers to a set of two or more genes having the same pixel
location in the frame). One may also want to reduce the number
of selected elements. These issues can be addressed by running
DeepFeature iteratively. The first iteration will find a subset of
elements, which can be used as the input for the subsequent
iteration. Continuing this procedure will reduce the number of
elements.

Logistic regression

Here we developed L2-regularized logistic regression model, i.e.
each of the 10 cancer studies has its model as shown below [62].

min
w

1
2

wTw + C
∑d

j=1
log

(
1 + e−yjw

Txj

)
, (2)

where 1
2 wTw is the L2 regularization term (Ridge), i = 1, 2, . . . , 10

and d is the number of genes. We create models for all the 10 can-
cer studies and therefore get coefficients wi

j (where j = 1, 2, . . . d).

Arranging the absolute of coefficients in the descending order,
we get

∣∣∣wi
1

∣∣∣ >

∣∣∣wi
2

∣∣∣ > . . . >| wi
m | (3)

This gives the top m genes xj. Since i = 1, . . . , 10, this gives
different gene subsets Si for 10 cancer studies. Training dataset
was employed to find gene subsets specific to each cancer
studies. However, it will be difficult to apply a ML technique for
computing classification accuracy using different genes belong-
ing to different cancer studies. Since for ML techniques, the same
features (or genes) should be employed, it is not possible to find
classification accuracy by using class specific features obtained
from Equation (3). Therefore, we took a union of all gene subsets
S = ∪10

i=1Si and used subset S to find classification accuracy
using a RF classifier. The validation set is used to tune the
hyperparameters of the RF, and a separate test set is employed
to perform evaluation. We used liblinear package in MATLAB to
implement L2 regularized logistic regression (https://www.csie.
ntu.edu.tw/~cjlin/liblinear/).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab297#supplementary-data
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Experimental setup

The dataset was partitioned into 80:10:10 segments correspond-
ing to training set, validation set and an independent test set,
respectively. The training set is employed to achieve model
fitting, whereas the validation set is used to evaluate its fitness.
This picks the hyperparameters for which the validation error
is small. The independent test set is held aside and applied
to provide an unprejudiced evaluation of the final model. The
DeepFeature model is implement on Matlab R2020a version
software. The appropriate links are given under Code Availability
section.

Performance evaluation

The main aim of this experiment is to show that a subset of
imperative elements or genes of nonimage data can be selected
by CNN with the utilization of DeepFeature method. We have
used high-quality reference resources for enrichment analy-
sis like Reactome and Molecular Signatures Database (MSigDB)
[63, 64] to discover the importance of the selected genes to
phenotypes by the proposed deep-learning based technique.
DeepFeature can find different subset of genes for each of the
phenotypes.

We compared our methodology with alternative ML tech-
niques. A number of ML algorithms exist to find a subset of
genes [65, 66]. We applied ANOVA, Lasso [67], highly variable
genes method [68] and logistic regression [3] for feature selection
and RF as a classifier. The feature selection step was applied on
the training set. This gives a subset of genes. Since enrichment
analysis usually requires a smaller set of genes, the aim is to
find roughly ∼1500 genes. Thereafter, hyperparameters of RF is
tuned using training set on a subset of selected genes, and model
fitness is evaluated using the validation set. The classification
accuracy was from the independent test set.

Evaluation of feature selection capabilities

As outlined above, both DeepFeature and other exemplar algo-
rithms offer some functionality for reducing the number of
genes to a more focused subset enriched for the genes used
for correctly identifying the relevant cancer study. This feature
selection is of particular importance in biological data analysis
where identification of key genes and underlying mechanisms
is usually part of the overall goal—especially for tasks like iden-
tification of clinically useful sparse diagnostic signatures. To
evaluate the utility of DeepFeature from this perspective, we
have quantified the enrichment of ‘gold standard’ cancer spe-
cific gene sets and pathways from MSigDB (C6 subset). In all
instances the enrichment was calculated using Fisher’s exact
test and reported P-values were corrected for multiple testing
using Benjamini–Hochberg FDR method. In addition, we report
the housekeeping gene counts based on the annotation from The
Human Protein Atlas (THPA, http://www.proteinatlas.org) [69]
and a study by Eisenberg and Levanon [70]. Here, the assumption
is that a more relevant selection would tend to have fewer
housekeeping genes.

Running the DeepFeature algorithm

Analyzing a large number of elements will cause overlaps in the
small pixel frame and it becomes challenging to perform feature
selection. This can cause important elements to be overlooked in
the selection process. Therefore, it is useful to perform element
reduction to reach a manageable size due to the pixel frame size
and hardware limitations.

The element arrangement step of DeepFeature utilizes t-SNE
(with or without Snowfall) and PHATE. In the case of t-SNE tech-
nique, it supports various distance measures, distj. In this study,
distj are Chebyshev, cosine, correlation and Hamming. A gene set,
G, processed to DeepFeature with a distance distj of t-SNE, gives
a gene subset gj. Since four distances are adopted, a union of
gene subsets are retrieved, i.e. ĝ = ∪4

j=1gj. Furthermore, the gene
subset ĝ is sent to DeepFeature with Hamming distance until a
subset of around 1500 genes are obtained (see Supplementary
Figure S1.1 and corresponding discussion in Supplementary File
1). Thereafter, gene set and pathway enrichment analyses were
performed to evaluate overall relevance of the recovered gene
set with respect to current knowledge.

Key Points
• In this paper, we present, DeepFeature, a more

advanced version of our previous work, DeepInsight,
that can now recover underlying feature combinations
specific to each class of interest. DeepInsight (which
is part of a winning model in Kaggle.com organized
by MIT and Harvard, and applied in many fields of
research), established a novel approach that allows
high-throughput biological data to be represented in
a form compatible with current state-of-art convolu-
tional neural network (CNN) architectures.

• In addition to delivering high classification perfor-
mance, DeepFeature also offers a powerful means for
the identification of biologically-relevant gene sets.

• DeepFeature converts non-image samples of RNA-
seq data into image-form, and, furthermore, performs
gene selection via CNN. To our knowledge, this is the
first approach to employ CNN for element or gene
selection on non-image data.

• When applied to the task of cancer classification,
our DeepFeature approach was able to identify coher-
ent sets with significant enrichment of genes in
cancer-associated pathways from MSigDB and a gold-
standard reference set. Further analysis of these
results suggested biologically meaningful connections
of potential interest to our understanding of the differ-
ences between major cancer types.

• DeepFeature is available for download and the web-
links provided in the paper.

Supplementary material

Supplementary data are available online at Briefings in Bioin-
formatics.
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