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Returning straw to soil is an effective way to sustain or improve soil quality and
crop yields. However, a robust understanding of the impact of straw return on the
composition of the soil microbial communities under field conditions has remained
elusive. In this study, we characterized the effects of wheat straw return on soil
bacterial and fungal communities in a wheat–soybean rotation system over a 3-
year period, using Illumina-based 16S rRNA, and internal transcribed region (ITS)
amplicon sequencing. Wheat straw return significantly affected the α-diversity of the soil
bacterial, but not fungal, community. It enhanced the relative abundance of the bacterial
phylum Proteobacteria and the fungal phylum Zygomycota, but reduced that of the
bacterial phylum Acidobacteria, and the fungal phylum Ascomycota. Notably, it enriched
the relative abundance of nitrogen-cycling bacterial genera such as Bradyrhizobium
and Rhizobium. Preliminary analysis of soil chemical properties indicated that straw
return soils had significantly higher total nitrogen (TN) contents than no straw return
soils. In addition, the relative abundance of fungal genera containing pathogens was
significantly lower in straw return soils relative to control soils, such as Fusarium,
Alternaria, and Myrothecium. These results suggested a selection effect from the 3-
year continuous straw return treatment and the soil bacterial and fungal communities
were moderately changed.

Keywords: wheat straw return, wheat–soybean rotation, soil bacterial and fungal community, 16S rRNA and ITS
amplicon sequencing, nitrogen-cycling microbe, plant pathogen

INTRODUCTION

Burning of wheat straw after harvest is common in rural areas, which is a major seasonal source of
air pollution and haze (Marschner et al., 2011; Qu et al., 2012; Xing et al., 2018) and contributes to
the content of particulate matter of≤2.5 µm diameter (PM2.5) in China (Qu et al., 2012; Xing et al.,
2018). China produces ca. 0.9 billion tons of crop straw per year, which is rich in organic matter
and nutrients (Valdez-Vazquez et al., 2016; Lu et al., 2018; Ma et al., 2018). Thus, straw burning
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also causes great loss of renewable resources (Yang et al., 2016; Lu
et al., 2018). Consequently, straw return has been promoted as a
means of improving soil fertility and crop yield (Marschner et al.,
2011; Guo et al., 2016; Chen Y. et al., 2017; Li et al., 2018), while
mitigating particulate air pollution.

The environmental impact on soils of straw return have
been well studied, including soil water potential (Yang et al.,
2016), temperature (Yang et al., 2016), enzyme activities (Ji
et al., 2014; Zhao et al., 2016), soil organic matter fractions
(Zhao et al., 2016; Chen Z. et al., 2017; Karlsson et al., 2017),
soil quality and crop productivity (Hansen et al., 2017), soil
greenhouse gas emissions (Bao et al., 2016; Zhou et al., 2017),
soil chemical properties (Yu et al., 2018), and soil microbial
communities (Marschner et al., 2011; Chen Y. et al., 2017; Li
et al., 2017; Maarastawi et al., 2018). These results provide basic
understanding in terms of how straw return may change soil
carbon retention, soil quality, and soil ecosystem functions, and
revealed a number of positive consequences, such as reducing
soil water potential, increasing soil temperature and the activities
of hydrolytic enzymes, and enhancing soil microbial functional
diversity. However, there were limited studies on the potential
effect of straw return to soil-borne pathogens. Straw return
was usually deemed to the main causal agent for the soil-
borne diseases, by providing good circumstances for pathogen
growth, propagation, and accumulation, which then resulted in
disease epidemic (Zhen et al., 2009; Li et al., 2012; Qiao et al.,
2013). Whereas, some studies indicated that straw return could
improve soil ecological environment (Lenka and Lal, 2013; Peng
et al., 2013; Yuan et al., 2014), increase amounts of antagonistic
microbes, disturb pathogen growth, increase plant resistance to
pathogens, and then control soil-borne plant diseases (Osunlaja,
1990; Bailey and Lazarovits, 2003; Zhen et al., 2009).

Due to a new environmental regulation that prohibits the
burning of straw, wheat straw return has increasingly been
adopted in the Huang-Huai region of China. Huang-Huai region
covers a huge area in Shandong, Anhui, Jiangsu, and Henan
provinces between the Yellow River and the Haihe River, and is
one of the main soybean-producing areas in China and under a
rotation of summer soybean and winter wheat. In this study, we
used Illumina-based 16S rRNA and internal transcribed region
(ITS) amplicon sequencing to characterize the effects of straw
return on soil bacterial and fungal communities, respectively,
based on a three-season field experiment conducted from 2015
to 2017 in a wheat–soybean cropping system in three sites of
the Huang-Huai region. We addressed the following questions:
What are the effects of short-term wheat straw return on the soil
bacterial and fungal communities under this system? How do
microbes involved in the soil nitrogen cycle and wheat/soybean
diseases respond to straw return?

MATERIALS AND METHODS

Field Trial and Sampling
A three-season field experiment was conducted from 2015
to 2017 in a wheat–soybean cropping system in three sites
of Huang-Huai region of China, including those at Jining,

Shandong Province (35◦27′N, 116◦35′E, sandy loam soil);
Xuzhou, Jiangsu Province (34◦17′N, 117◦17′E, yellow loam sand
soil); and Suzhou, Anhui Province (33◦38′N, 117◦05′E, mortar
black soil) (Supplementary Figure S1A). At each location, we
sampled two production fields with different treatments: no
wheat straw return (N), i.e., artificial harvest of wheat, wheat
stubble less than 5 cm in height, and all wheat straw removed
from the field; and wheat straw return (R), i.e., all wheat straw
was crushed into pieces and mulched in the soil by no tillage
after wheat harvest every year. The biomass of wheat straw
was about 5000 kg.hm−2. Each treatment area was 30 × 8
m and encompassed five replicate subplots (Supplementary
Figure S1B). The wheat–soybean cropping system dominates
all three sites, with winter wheat seeded in early October
and harvested in early June, and summer soybean seeded in
mid-June and harvested in late September. The winter wheat
cultivar is Jimai 22 (super-high yield cultivar) and the summer
soybean cultivar is Zhonghuang13 (high-protein cultivar); both
are popular in Huang-Huai region of China. The plots received
basal fertilization of 50 kg N-P2O5-K2O ha−1 and 15 kg urea
ha−1 at wheat seeding, and 10 kg N-P2O5-K2O ha−1 were applied
at soybean seeding. The agronomic management and fertilization
regimes at the three sites were similar.

Bulk soil samples were collected twice annually in June
and August from 2015 to 2017: at 0 day (pre-planting) and
60 days after planting. For each site, 10 subplots (480 m2; i.e.,
5 replicates per treatment) were chosen and 9 cores (20 cm
depth) were collected from each subplot in an S-formation
sampling method using shovels (3.8 cm diameter). The 9 cores
from each subplot were mixed to form one composite sample,
resulting in 20 samples per site per year. In total, 180 soil samples
were analyzed (3 locations × 2 treatments × 5 subplots per
treatment × 3 years × 2 time points per year). The soil samples
were placed into separate sterile plastic bags and transported to
the laboratory on ice. Each soil sample was sieved through a 2 mm
mesh to remove roots and plant detritus. The samples were stored
at –20◦C until required.

Soil DNA Extraction
To minimize DNA extraction bias, DNA was extracted in
quadruplicate from the composite soil samples. DNA was
extracted from ca. 0.25 g bulk soil using the MoBio PowerSoil
DNA Isolation Kit following the manufacturer’s protocol (MoBio
Laboratories Inc., Carlsbad, CA, United States). The four DNA
samples were pooled, and the DNA concentration and purity
were quantified using a NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific).

PCR Amplification, Library Preparation,
and Sequencing
Targeted metagenomic profiling of the samples was performed as
described previously (Caporaso et al., 2011; McGuire et al., 2013).
The V4 region of the bacterial 16S rRNA gene was amplified
using the primers 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Peiffer
et al., 2013; Edwards et al., 2015), and the ITS1 region
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of the fungal ITS was amplified using the barcode primers
ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-
GCTGCGTTCTTCATCGATGC-3′) (Xiong et al., 2017; Yang
et al., 2018). PCR reaction mixtures (25 µL) contained
Enzymatics Veraseq 2.0 Master Mix (NEB Phusion High-Fidelity
PCR Master Mix), 13 µL PCR-grade water, 10 µL Master Mix,
0.5 µL forward primer (10 µM), 0.5 µL reverse primer (10 µM),
and 1 µL (30 ng) sample DNA. The reaction mixtures were placed
in a PCR Thermal Cycler Dice (TaKaRa, Japan) and thermal
cycle was performed as follows: 94◦C for 1 min, followed by 30
cycles of 45 s at 94◦C, 30 s at 56◦C for 16S or 52◦C for ITS,
and 90 s at 72◦C. A final extension at 72◦C for 10 min was
followed by a hold at 4◦C. The PCR products were run on a
1% agarose gel to verify successful amplification. Unsuccessful
reactions were repeated but removed from the experiment if
unsuccessful a second time. PCR products were cleaned using
the Agencourt AMPure XP magnetic beads purification system
(Beckman Coulter) (Stark et al., 2015). The final library was
quantified by determining the average molecule length using
the Agilent 2100 Bioanalyzer (Agilent DNA 1000 Reagents) and
by real-time quantitative PCR (qPCR) (EvaGreenTM). Qualified
libraries were paired-end sequenced using the MiSeq System with
the PE250 strategy (PE251+ 8+ 8+ 251; MiSeq Reagent Kit).

Bioinformatics Analyses
Paired-end reads were generated on the Illumina MiSeq
platform. The sequencing data were deposited in NCBI database
(BioProject ID: PRJNA524011). After removing the adaptors
and primer sequences, the raw sequences were assembled
according to the unique barcode using QIIME (Caporaso et al.,
2010). Split sequences for each sample were merged using
FLASH (v. 1.2.11) (Magoc and Salzberg, 2011). The tags were
clustered into operational taxonomic units (OTUs) with a 97%
threshold using UPARSE (Edgar, 2013), and chimeras were
filtered out using UCHIME (v. 4.2.40) (Edgar et al., 2011).
Representative bacterial sequences were taxonomically classified
using Ribosomal Database Project Classifier v. 2.2 against the
Silva database (v. 128) (Quast et al., 2013), and representative
fungal OTUs were classified using the UNITE database (v. 7.0)
(Koljalg et al., 2013), with a cutoff confidence value of 0.6. OTUs
not assigned to target species were removed from the data set.

Fungal and bacterial α-diversities were estimated by
calculating the OTU richness and Shannon diversity indices in
Mothur (v. 1.31.2)1. Principal coordinates analyses (PCoAs) on
Bray–Curtis dissimilarities were performed using the “pcoa”
function in the R package2. To test for significant differences
between groups of samples, an analysis of similarity (ANOSIM)
was performed in Vegan with 999 permutations based on
Bray–Curtis distances between samples. For Mantel tests, the
Bray-Curtis and Euclidean distances were used to construct
dissimilarity matrices of communities and soil characteristics,
respectively, using QIIME3. Mantel tests were used to calculate
the correlations between the soil bacterial/fungal community

1https://www.mothur.org
2https://www.r-project.org
3http://qiime.org

composition and soil characteristics. The linear discriminant
analysis (LDA) effect size (LEfSe) method was used to evaluate
bacterial and fungal taxa significantly associated with wheat straw
return (Segata et al., 2011). The LEfSe analyses were performed
using the Galaxy web application and workflow framework4. The
α-value threshold employed for the non-parametric factorial
Kruskal–Wallis sum-rank test was 0.05, and the logarithmic LDA
score threshold for feature discrimination was 2.0.

Analyses of Soil Chemical Properties
As a preliminary assay, the soils from 5 replicate subplots were
pooled as one composite sample for each treatment, and only
triplicate aliquots of each sample were subjected to elemental
analyses. Total organic carbon (TOC) levels were measured using
a TOC analyzer (TOC-L, Shimadzu, Japan). Total nitrogen (TN)
levels were analyzed using a fully automatic azotometer (Kjeltec,
2300, Foss, Sweden).

Statistical Analyses
Soil chemical characteristics, the relative abundances of bacteria
and fungi, and α-diversity indices between no wheat straw return
soils and wheat straw return soils were compared using Wilcoxon
rank-sum test (P < 0.05). The relative abundances of nitrogen-
cycling bacteria and plant pathogen-associated microbes were
compared also using the Wilcoxon rank-sum test (P < 0.05).
Spearman’s rank-correlation coefficient was used to evaluate the
relationships between α-diversity indices and soil characteristics.
All statistical analyses were performed using SPSS v. 20.0 (SPSS
Inc.). The compositions of the microbial communities in N and
R soils were compared using the Wilcoxon rank-sum test in the
R package Stats.

RESULTS

Effects of Wheat Straw Return on
α-Diversity of Soil Microbial
Communities
We characterized the bacterial communities in the 180 bulk soil
samples by sequencing the V4 region of the 16S rRNA gene. In
all, 6,610,424 high-quality sequence reads were obtained with a
median of 36,272 (range 30,312–44,663) per sample. The high-
quality reads were clustered into 649,012 microbial OTUs based
on a >97% sequence identity threshold. Measures of within-
sample diversity (α-diversity) based on rarefied OTU tables
(30,312 sequences per sample) revealed that the 60 days soils
samples exhibited stronger responses to straw return in bacterial
communities diversity from 2015 to 2017 (Figures 1A,B),
although the responses differed among the three sites, and
was rarely statistically significant (Supplementary Figure S2).
Significantly higher bacterial diversity was observed in R soil than
in N soil in Suzhou (P < 0.05, Wilcoxon rank-sum test; the first
and third years of the 60 days periods). By contrast, R soil in
Xuzhou contained lower bacterial diversity than N soil (P < 0.05,

4http://huttenhower.sph.harvard.edu/galaxy
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FIGURE 1 | Richness (Sobs index) and α-diversity (Shannon’s diversity index) of the bacterial (A,B) and fungal (C,D) communities in N and R soils. Horizontal bars in
boxes are medians; upper and lower box edges are the 75th and 25th quartiles, respectively; and whiskers are 1.5-fold the interquartile range. Wilcoxon rank-sum
test results were displayed above the top whiskers; Significant differences between treatments and/or between years within a site and a period can be distinguished
with different labels (P < 0.05, Wilcoxon rank-sum test).

FIGURE 2 | Principal coordinates analysis on bacterial and fungal community differences (Bray–Curtis dissimilarities) in the groups of samples. PCoAs showing the
influence of field location and year on bacterial (A) and fungal (B) community composition. PCoAs of bacterial and fungal community composition in soils from
different field locations (C–H). ANOSIM was applied to test for differences in community composition due to straw return and field location. R values are shown with
∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
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Wilcoxon rank-sum test; the second years of the 0 day period).
The α-diversity in Jining did not differ significantly between
the N and R treatments; however, the 0 d period had a lower
bacterial α-diversity than the 60 days period (P < 0.05, Wilcoxon
rank-sum test) in Jining (Figures 1A,B).

We also evaluated the fungal communities in the 180 bulk soil
samples by sequencing of the fungal ITS1 region. In all, 6,920,939
high-quality sequences were obtained with a median read count
per sample of 36,272 (range 14,959–44,984), and 66,471 microbial
OTUs were obtained. Measures of α-diversity revealed a fungal
community-diversity gradient between N and R, calculated based
on rarefied OTU tables (14,959 sequences per sample). The fungal
α-diversity values did not differ significantly between N and R
treatments in the three fields (P > 0.05, Wilcoxon rank-sum test;
Figures 1C,D).

Effects of Wheat Straw Return on
β-Diversity of Soil Microbial Communities
Differences in the composition of the microbial communities
among samples and between groups of samples (β-diversity)
were analyzed based on principal coordinate analysis (PCoA)
and ANOSIM. Because of the strongest differences due to
field location (Figures 2A,B), the samples from each site were
analyzed separately to assess the impact of straw return in
more detail. The response of bacterial and fungal community

composition to wheat straw return was stronger in 60 days
than in 0 day. Higher correlation to the factor of straw
return were observed in fungal communities than in bacterial
communities, especially in JN and XZ soils, and the correlation
values were both increased year by year. Although the SZ soils
exhibited stronger responses to straw return in both bacterial
and fungal communities with a peak value at the second
year, they exhibited decreased correlation values in bacterial
communities year by year in 60 days (Figures 2C–H and
Supplementary Table S1).

Differential Abundance of Bacterial and
Fungal Taxa Under Wheat Straw Return
In a phylum-level analysis, bacterial OTUs were classified into
45 phyla, predominantly Proteobacteria (31.6%), Acidobacteria
(17.3%), Actinobacteria (10.9%), Bacteroidetes (9.0%),
Chloroflexi (5.4%), and Planctomycetes (4.8%) (Figure 3A); these
accounted for 86.5% of the bacterial sequences. Acidobacteria
were more abundant in N soils, and Proteobacteria were more
common in R soils. Fungal OTUs were predominantly associated
with the phyla Ascomycota, Basidiomycota, and Zygomycota,
which accounted for 90.3% of the total fungal sequences
(Figure 3B). The relative abundance of Zygomycota was higher
in R than in N soils, whereas that of Ascomycota showed the
opposite trend (P < 0.05, Wilcoxon test).

FIGURE 3 | Effects of wheat straw return on the composition of the soil microbial community. Relative abundances of the most abundant bacterial (A) and fungal (B)
phyla in each stage, site, year, and straw treatment.
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We further assessed the impact of straw return on the
abundances of individual OTUs (relative abundance > 1%).
For fungi, straw return led to an enrichment of OTUs
belonging to classes Mortierellales (phylum Zygomycota)
and Dothideomycetes (phylum Ascomycota) (Figure 4). The
phylum with the most straw return-depleted OTUs across
all site soils was Ascomycota. The majority of these OTUs
were classified as Sordariomycetes, mostly represented by the
family Nectriaceae and genus Fusarium (Figure 4). Thus, the
straw return-responsive OTUs generally followed a consistent
trend within certain phyla, classes, orders, families, and
genera. For bacteria, among straw return-enriched OTUs,
Proteobacteria was the most highly represented phylum in
R soil communities (Figure 4). The relative abundances
of several OTUs classified as Chloroflexi, mainly from the
class Anaerolineae, increased under straw return. Within
Proteobacteria, most straw return enriched OTUs were classified
as Alphaproteobacteria and Gammaproteobacteria. In particular,
Alphaproteobacteria was mainly represented by the orders
Sphingomonadales and Rhizobiales (mostly in SZ and XZ
soils). The phylum with the most straw return-depleted
OTUs across all sites was Acidobacteria (Figure 4). The
majority of these OTUs were classified as Acidobacteria, with
Acidobacteria and Blastocatellales being the orders most broadly
affected. OTUs from the class Gemmatimonadetes (phylum
Gemmatimonadetes) were also depleted by straw return in
SZ and XZ soils.

Based on the LDA effect size (LEfSe) method, we identified
several bacterial, and fungal genera which were significantly
associated with wheat straw return. The bacterial genera
Rhizobium, Devosia, Altererythrobacter, and Chitinophaga
were more abundant in R soils, and RB41, Microcoleus,
Desulfurivibrio, and Elioraea were more common in N soils
(Figure 5A). The fungal genera Mortierella, Pyrenochaetopsis,
Pyrenophora, Aspergillus, Scedosporium, Phialocephala,
Stropharia, Myrmecridium, Crocicreas, Dactylella, Arthrographis,
and Pluteus were more abundant in R soils, and Fusarium,
Crinipellis, Bjerkandera, Amauroascus, Myceliophthora,
Lepidosphaeria, Myrothecium, and Magnaporthiopsis were
more common in N soils (Figure 5B). Interestingly, the bacterial
genus Rhizobium was related to nitrogen cycling (Figure 5A),
and the fungal genera Fusarium and Myrothecium contain
pathogens of soybean or wheat (Figure 5B).

Microbes Involved in the Nitrogen
Cycling
We further identified 19 genera associated with nitrogen cycling
from the sequencing results, according to the description of
previous reports (Nelson et al., 2016 and Supplementary
Table S2). In most of the cases (72%), the total abundance
of these nitrogen cycle-related bacteria was higher in R soils
than in N soils, and among the three sites, the overall
increasing rates in R soils were higher than in N soils
during the 3 years, particular at 60 days (Figures 6A,B).
Among these bacteria, the total abundance of nitrogen-
fixing bacteria (Bradyrhizobium, Rhizobium, and Burkholderia)

FIGURE 4 | Straw return-responsive taxa (P < 0.05) of fungi and bacteria in
each stage, site and year. The color of the cell indicates the log2 fold change
in relative abundance with respect to the control treatment: an increase tends
toward red, while a decrease tends toward green. The short dashes in the
heatmap indicate the class (-), order (–), family (—), and genus (—-), the red
fonts without short dash indicate the phylum level. Fungal genera marked in
blue fonts. The plot displays all taxa detected as significantly affected by straw
treatment in at least one site or year. “U” represents the relative abundance
significantly increased in R soils, and “D” represents the relative abundance
significantly decreased in R soils.
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FIGURE 5 | Histogram of the LDA scores computed for differentially abundant bacterial (A) and fungal (B) genera between the N and R soils.

and denitrifying bacteria (Hyphomicrobium) was significantly
increased by straw return. For example, Rhizobium was
significantly enriched in R soils of Jining and Suzhou, and
Bradyrhizobium was significantly enriched in R soils of Suzhou
(Figures 6A,C,D).

Microbes Related to Wheat and/or
Soybean Pathogens
Comparing to the R soils, the N soils exhibited higher abundances
of fungal genera that contain wheat and/or soybean pathogens,
such as Fusarium, Alternaria, and Myrothecium (Bai et al.,
2015; Zeng et al., 2016; Dewangan et al., 2017). In our
amplicon sequencing annotation results, we identified 23 fungal
genera and one bacterial genus containing plant pathogens.
The 23 fungal genera were of the phyla Ascomycota and
Basidiomycota. The relative abundances of these genera were
low (<1%), with the exceptions of Fusarium, Alternaria, and
Mycosphaerella (Figure 7A). Surprisingly, straw return decreased
the total abundance of pathogenic fungi (Figures 7A,B) but
increased that of the pathogenic bacterium Xanthomonadales
(Figure 7C). In detail, the relative abundances of the pathogenic
fungal genera Fusarium, Alternaria, and Myrothecium were
significantly lower in R soils, while that of Mycosphaerella, which
was significantly higher (P < 0.05, Wilcoxon rank-sum test)
(Figures 7A,D–G).

Effects of Soil Total Organic Carbon and
Total Nitrogen on Microbial Communities
Mantel tests revealed that contents of TOC and TN in soil were
significantly correlated with the composition of the soil bacterial
and fungal communities (R = 0.61, P < 0.01 for bacteria and
R = 0.57, P < 0.01 for fungi). According to Spearman’s rank-
correlation coefficients, the bacterial richness and diversity, and
the fungal diversity but not richness, were significantly correlated
with soil TOC and TN contents (P< 0.01). TOC and TN contents
were slightly different between R than N soils; however, some
results indicated that there might be tendency that TN content
was increased after wheat straw return. For example, TN content
was significantly higher in R than N soils of SZ (0 day) and XZ
(60 days) collected in 2017 (P < 0.05, Wilcoxon rank-sum test;
Figures 8A,B).

DISCUSSION

Despite its widespread applications to improve soil fertility and
crop yields, the effects of wheat straw return on soil microbial
communities in a wheat–soybean rotation system was unclear.
Our results of investigation in the Huang-Huai region showed
that wheat straw return altered the taxonomic and functional
traits of soil microbial communities, including increases in the
relative abundances of nitrogen cycle-related bacterial taxa and
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FIGURE 6 | OTUs involved in the nitrogen cycle in N and R soils from different sites. (A) Detailed relative abundances of 19 nitrogen cycle-related genera in indicated
samples. Asterisk indicates a significant difference with P < 0.05 (Wilcoxon rank-sum test). (B) Accumulated relative abundance of 19 nitrogen cycle-related genera
in N and R soils during the three-season experiment. (C,D) Relative abundance of the genera Rhizobium and Bradyrhizobium, respectively. Asterisk indicates a
significant difference with P < 0.05 (Wilcoxon rank-sum test).

decreases in those of some pathogenic fungal taxa. These shifts
are likely to impact belowground ecosystems.

To evaluate the consistent effects of straw return on
soil microbial communities, we collected samples from three
different fields. Comparing to the effects of straw return, the
effects of field location was stronger. The bacterial and fungal
α-diversity differed among the three sites, and the primary
source of β-diversity was the field location (Figures 1, 2).
This is expected and probably due to the differences of soil
type and environmental factors (Brockett et al., 2012; Peiffer
et al., 2013; Edwards et al., 2015; Almario et al., 2017). In
addition, the response of the α-diversity of the soil bacterial
community to wheat straw return differed among the three sites
(Supplementary Figure S1), probably due to the influence of
soil texture and agronomic management history (Cookson et al.,
2008; Bach et al., 2010; Xiong et al., 2015; Zhang et al., 2017).
Furthermore, planting year and sampling period affected the soil
bacterial and fungal communities (Figures 1, 2). These results are
in line with prior reports (Sugiyama et al., 2014; Zeng et al., 2014;
Bai et al., 2015; Shen et al., 2015; Dang et al., 2017).

Based on the samples collected from three different fields
across three seasons, we found that wheat straw return affected
the relative abundance and diversity of the overall soil bacterial
community (Figures 1A,B). Although there was no significant
overall effect on fungal community (Figures 1C,D), stronger
responses of fungal communities to wheat straw return were
observed, especially in the second, and third years (Figures 2C–H

and Supplementary Table S1). This may because that the life
generation cycle of bacteria is more rapid than fungi, and bacteria
dominate in the initial phases of crop straw decomposition and
fungi dominate the latter stage (Poll et al., 2008; Marschner et al.,
2011; Chen Z. et al., 2017). Furthermore, soil bacteria dominated
the decomposition of crop residue in agricultural soils, and
fungi were the main decomposers in prairie soils (Allison et al.,
2005). The short-term responses of soil microbial communities
to wheat straw return were relatively weak compared to the
other factors, they became evident after excluding the variation
caused by field location and year. For example, wheat straw
return enhanced the relative abundance of the bacterial phylum
Proteobacteria and the fungal phylum Zygomycota, but reduced
that of the bacterial phylum Acidobacteria and the fungal phylum
Ascomycota (Figures 3A,B). The Proteobacteria to Acidobacteria
ratio has been suggested to be an indicator of the trophic
level of soils (Smit et al., 2001; Castro et al., 2010; Gottel
et al., 2011; Beckers et al., 2017), as Proteobacteria are favored
in nutrient-rich soils and Acidobacteria in nutrient-poor soils.
Alphaproteobacteria genera such as Rhizobium, Devosia, and
Altererythrobacter were more abundant in R soils, and RB41
(Acidobacteria) were more common in N soils (Figure 5A).
Ascomycota was more abundant in N soils, whereas Zygomycota
was more common in R soils. Ascomycota includes various
soil-borne plant-pathogenic fungi as well as non-pathogenic
genera, and its relative abundance is higher in areas of low
productivity (Chang et al., 2017). Among them, the relative
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FIGURE 7 | OTUs involved in wheat or soybean pathogen-associated genera in N and R soils from different sites. (A) Detailed relative abundance of 23 fungal
genera in indicated sample. Asterisk indicates a significant difference with P < 0.05 (Wilcoxon rank-sum test). (B) Accumulated relative abundance of 23 fungal
genera in N and R soils during the three-season experiment. (C–G) Relative abundance of the bacteria order Xanthomonadales and the fungal genera Fusarium,
Alternaria, Myrothecium, and Mycosphaerella, respectively. Asterisk indicates a significant difference with P < 0.05 (Wilcoxon rank-sum test).

abundances of Fusarium were significantly lower in R soils.
Zygomycota is reportedly rare in agricultural soils (Huang et al.,
2015; Wang et al., 2015). However, dominant Zygomycota species
such as Mortierella may play a role in disease suppression
(Tagawa et al., 2010; Wani et al., 2017; Xiong et al., 2017).
In our results, Mortierella was the most abundant genus in R
soils. These results indicated that wheat straw return could be
beneficial to soil health.

Wheat straw return enriched bacteria genera related to the soil
nitrogen cycle, including Nitrospira, Bradyrhizobium, Rhizobium,
and Hyphomicrobium (Figure 6A). Nitrospira were thought to
be capable only of nitrite oxidation but recent evidence suggests
that they may oxidize ammonia (Daims et al., 2015; Longa
et al., 2017; Kuypers et al., 2018). Bradyrhizobium and Rhizobium
are related to nodulation, and their symbiosis with legumes
enhances nitrogen fixation and increases crop productivity
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FIGURE 8 | Total nitrogen (A) and total organic carbon (B) contents in the indicated soil samples, and soybean yields between no straw return and straw return
fields (C). Significant differences between the treatments are indicated by arrows (P < 0.05, Wilcoxon rank-sum test).

(Sugiyama et al., 2014; Chang et al., 2017; Kuypers et al., 2018).
Hyphomicrobium has denitrifying activity and is widely used in
wastewater treatment (Rissanen et al., 2016; Sun et al., 2017;
Yasuda et al., 2017). The relative abundances of Bradyrhizobium
and Hyphomicrobium have been reportedly to be higher in a
straw-returned than control (no straw return) soil in the North
China Plain (Chen Y. et al., 2017). In additional to microbial
community traits, soil characteristics may also be affected by
wheat straw return. In this study, TN contents were moderately
higher in R than N soils (Figure 8A). This is in line with a
previous report that wheat straw return significantly increased
the TN content compared to the control treatment (Chen Y.
et al., 2017). Although we found that wheat straw return did
not significantly influence the soil TOC content (Figure 8B), we
speculated that impacts of straw return on soil C and N contents
are strongly dependent on initial soil C and N, the rates and
duration of straw return, and local soil and climate conditions.

Wheat straw return significantly reduced the abundances
of plant pathogen associated fungal genera such as Fusarium,
Alternaria, and Myrothecium (Figures 7A,D,E,F). Some
Fusarium species can cause Fusarium root rot of soybean
and Fusarium head blight of wheat both diseases markedly
decrease crop productivity (Bai et al., 2015; Cainong et al.,
2015; Lenc, 2015; Lu et al., 2015). Similarly, some Alternaria
species can cause leaf-spot disease of soybean, sunflower,

Withania somnifera, and Pelargonium (Furukawa and Kishi,
2001; Oliveira et al., 2004; Pati et al., 2008; Kumar and Kumar,
2017). Plant-pathogenic Myrothecium species cause foliar
spots in soybean, cotton, Anthurium, Nicandra physaloides,
tomato, and cucumber (Quezado Duval et al., 2010; Kwon
et al., 2014; Dewangan et al., 2017). However, the relative
abundances of other microbial taxa that include some plant
pathogens, such as Mycosphaerella, were enhanced in R soils
(Figure 7G). Mycosphaerella species can cause leaf-spot disease
in economically important crops including wheat, soybean,
banana, citrus, and eucalyptus (Stukenbrock et al., 2011; Ohm
et al., 2012; Zeng et al., 2017). In addition, the relative abundance
of the bacterial order Xanthomonadales was increased in R soils
(Figure 7C). Xanthomonadales species cause major losses of
tomato, cabbage, pepper, banana, citrus, rice, grape, peach, plum,
almond, coffee, and maple crops (Ryan et al., 2011; Naushad and
Gupta, 2013; Garita-Cambronero et al., 2018).

Straw return is often considered to increase pathogen loads
and promote diseases of crops (Li et al., 2012; Qiao et al.,
2013). Yet, there are other examples where long-term straw
return suppressed some plant diseases and promote healthy plant
growth (Osunlaja, 1990; Bailey and Lazarovits, 2003). Tillage and
straw incorporation into soil may reduce pathogen inocula, while
facilitating nutrient cycling, probably because no-tillage, and
straw-returning practices improving soil nutrition condition for
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soil microbial communities (Guo et al., 2016). In our 3-yr study,
as an indication of plant healthy, crop yield in R soils did not
differ significantly than that in N soils every year (Figure 8C). The
lower pathogenic fungal diversity in our straw return soil may be
to the result of the lower returning amount (ca.5000 kg.hm−2)
of wheat straw before soybean production. Some previous
studies observed that the occurrence of soil-borne diseases was
significantly different under different straw amendment rates. For
example, the indexes of wheat soil-borne diseases were reduced
significantly at the maize straw amendment rates of 7500 and
3750 kg.hm−2), but increased dramatically when the amendment
rate increased to 15000 kg/hm2 (Zhen et al., 2009). In our study,
although the abundance of pathogenic fungi in R soil is lower
than that in N, abundances of many fungal genera in R is still
very high, and straw return could increase soil moisture, which
may further promote the occurrence of diseases. Future studies
using a series of root-associated compartments experiments
would be helpful for disentangling the relationships between soil
microbiota and straw return.

CONCLUSION

Our results from a short-term, multisite experiment showed that
wheat straw return could alter the taxonomic, and functional
traits of the soil bacterial and fungal communities. The bacterial
phylum Proteobacteria and the fungal phylum Zygomycota were
enriched in R soils, but the bacterial phylum Acidobacteria,
and the fungal phylum Ascomycota were depleted. Wheat straw
return enriched the population of bacteria related to the soil
nitrogen cycle, such as Bradyrhizobium and Rhizobium. Wheat
straw return significantly depleted plant pathogen associated
fungal taxa, such as Fusarium and Alternaria. R soils had
moderately higher TN contents than N soils. Long-term
experiments are needed to examine whether our observed
changes in the microbial community composition induced by
wheat straw return persist over time.
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