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Abstract: Visceral leishmaniasis is a chronic parasitic
disease associated with severe immune dysfunction.
Treatment options are limited to relatively toxic drugs,
and there is no vaccine for humans available. Hence, there
is an urgent need to better understand immune
responses following infection with Leishmania species
by studying animal models of disease and clinical samples
from patients. Here, we review recent discoveries in these
areas and highlight shortcomings in our knowledge that
need to be addressed if better treatment options are to
be developed and effective vaccines designed.

Introduction

Leishmaniasis is a disease caused by protozoan parasites

belonging to the genus Leishmania. It affects people and animals

in all parts of the world and can be broadly divided into visceral

and cutaneous forms. Pathogenesis and immunity associated with

cutaneous leishmaniasis (CL) have recently been reviewed [1] and

will not be discussed here. Instead, we will focus on immune

regulation during chronic visceral leishmaniasis (VL).

VL is a potentially fatal human disease with an estimated

incidence of at least 0.2 to 0.4 million cases worldwide, causing

20,000–40,0000 deaths each year [2]. Around 90% of VL cases

occur in six countries: India, Ethiopia, Bangladesh, Sudan, South

Sudan, and Brazil [2]. It should be noted that these numbers are

likely to be gross underestimates due to poor reporting and

misdiagnosis [3]. In addition, data from epidemiological studies

indicate that only 1 in 5–10 infected individuals develop clinical

VL [4–6], suggesting the number of infected individuals, and

hence potential parasite reservoirs, is far greater.

VL is caused by the obligate intracellular protozoan parasites

Leishmania donovani in humans and L. infantum (chagasi) in both

humans and dogs [7]. The parasite is transmitted by female

Phlebotomine sandflies as a flagellated, metacyclic promastigote,

which is phagocytised by host macrophages and then differentiates

into the nonflagellated, replicative amastigote [8]. Amastigote

numbers increase via binary fission and ultimately cause the

bursting of the host cell, allowing the released parasites to infect

other phagocytic cells [9]. The organs commonly affected during

VL are the bone marrow, liver, and spleen [8]. Clinical symptoms

include hepatosplenomegaly, which is characterized by an

enlarged abdomen with palpable spleen and liver. Other

symptoms include long-term, low-grade fever, muscle wasting,

anaemia, leukopenia, polyclonal hypergammaglobulinemia, and

weight loss [10,11]. Mucosal haemorrhage, and ultimately sepsis,

may also occur as a result of loss of prothrombin and

thrombocytes. VL is almost always fatal if left untreated.

Hyperpigmentation of warmer regions of the body is commonly

observed in Indian patients, hence the derivation of the name kala-

azar, meaning black fever in Hindi [12]. The diagnosis of VL is

confirmed by microscopic demonstration of amastigotes in spleen

or bone marrow biopsies. Serological tests, such as rK39 dipsticks,

are also used for diagnosis but with the limitation that they cannot

differentiate between past and present infection. Polymerase chain

reaction (PCR) is another potential diagnostic option [13] but has

not been established for use in field settings where VL is endemic.

Many VL patients become severely immunocompromised and

can succumb to secondary infections [14]. This was thought to be

associated with their inability to generate cell-mediated immune

(CMI) responses against previously encountered antigens, reflect-

ing an accumulation of dysfunctional T cells [5]. However, as

discussed below, recent studies suggest that some findings relating

to T cell nonresponsiveness might be attributed to the particular

experimental approaches employed. Regardless, the functional

capacity of antigen-presenting cells (APCs) is compromised in

these patients [8]. Furthermore, many VL patients also produce

high levels of the suppressive cytokine interleukin-10 (IL-10),

which can inhibit the activity of antiparasitic proinflammatory

cytokines such as interferon gamma (IFNc) and tumour necrosis

factor (TNF) [15]. At present, there is no effective vaccine to

prevent or treat VL in humans [16]. In addition, drug treatment is

undermined by toxicity in patients and increasing frequencies of

drug-resistant parasites [17].

Methods

References for this article were identified through PubMed

searches for articles published from 1982 to 2013 using the terms

‘‘Leishmania,’’ ‘‘donovani,’’ ‘‘infantum,’’ ‘‘human,’’ ‘‘immune regula-

tion,’’ ‘‘visceral leishmaniasis,’’ ‘‘T cell,’’ ‘‘dendritic cell,’’ ‘‘mono-

cyte,’’ ‘‘neutrophil,’’ ‘‘cytokine,’’ ‘‘chemokine,’’ and ‘‘vaccine.’’

Relevant books and articles published between 1965 and 2013

were selected through searches in the authors’ personal files.
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Past and present treatments and prevention
The most common VL treatment for the last 60 years has been

antimonial chemotherapy [18]. Pentavalent antimonials, such as

sodium stibogluconate, pentostam, meglumine antimonite, and

glucantime, have been the mainstay of antimonial therapy [19].

However, there is now considerable parasite resistance against

these drugs, especially in northeastern India and surrounding areas

[17]. Therefore, although these drugs are still employed to treat

VL in Africa, drugs such as Amphotericin B, Ambisome (lipid

formulation of Amphotericin B), Miltefosine, and aminosidine

(paromomycin) have been developed as alternative treatments

against VL in areas of antimonial drug resistance [17]. However,

these drugs are still far from ideal because of cost, toxicity, the

development of parasite drug resistance after prolonged use, and

the duration of treatment times [20]. However, some progress has

been made recently in addressing this final issue, as a single dose of

Ambisome was found to be sufficient to successfully treat VL and

has now been recommended as a choice of treatment in India

[21,22].

The development of a vaccine to prevent leishmaniasis has been

a long-term goal for many researchers. In theory, a vaccine to

prevent leishmaniasis should be possible, as indicated by past

programs of leishmanisation. This process involves the deliberate

infection of people with CL-causing parasite species on unexposed

areas of the body to establish an infection that is controlled in most

individuals, resulting in long-term protection [23]. This technique

was practised for centuries throughout the Middle East and in

parts of Asia, and large-scale trials were carried out in the former

Soviet Union and Israel with some success [24,25] as long as the

parasites used were viable and infective [26]. However, despite the

solid immunity that develops in most individuals, this approach

has largely been abandoned because some individuals develop

complications, such as large skin lesions, exacerbation of skin

diseases, and poor response to other vaccines [27,28]. To the best

of our knowledge, leishmanisation has not been tested to prevent

VL in humans, but a recent report showed that infection of

BALB/c mice with a naturally attenuated L. donovani strain isolated

from skin lesions of a CL patient in Sri Lanka conferred protection

against a visceralising strain of L. donovani [29].

The vaccines currently being developed against VL can be

divided into three groups: first, there are vaccines which involve

vaccination with live-attenuated or killed parasites; second, there

are vaccines which involve genetically modified parasites, subunit

vaccines, or recombinant parasite proteins produced by virus or

bacteria; and third, there are vaccines which consist of plasmid

DNA and viral-based vaccines encoding immunogenic Leishmania

proteins [16,30,31]. One of the major hurdles for developing

vaccines to either prevent or treat VL has been a limited

understanding of the precise immune mechanisms required for

controlling parasite growth without causing disease. Because of the

intrusive techniques required to analyse tissue in VL patients, our

current understanding of the host immune response during VL

largely derives from studies performed in L. donovani–infected,

genetically susceptible mice.

Experimental VL
Lifelong, chronic infection can be established experimentally by

intravenous injection of L. donovani amastigotes into genetically

susceptible mice [32]. Resistance and susceptibility to L. donovani

infection in mice is controlled by the Slc11a1 gene (formerly

Nramp1—‘‘natural resistance associated macrophage protein 1’’)

present in both mice and humans [33]. This gene encodes an iron

and manganese transporter involved in the activation of macro-

phage antimicrobial mechanisms. Genetically resistant mice have

a functional Slc11a1 gene, while susceptible mice have a naturally

occurring Glysine R Aspartic–acid amino acid mutation, resulting

in a nonfunctional Slc11a1 gene [8]. BALB/c and C57BL/6 mice

are genetically susceptible to L. donovani infection and are

commonly used for experimental studies. Leishmania infection in

these mice is nonfatal, and the immune-related tissue pathology

observed shows some similarity to the spectrum of clinical

symptoms reported in VL patients [34].

Organ-specific immune responses. Genetically susceptible

mice infected with L. donovani develop distinct, organ-specific

immune responses as disease progresses [35]. The liver is the site of

an acute and resolving infection, whereas a chronic infection

becomes established in the spleen and the bone marrow (BM)

[34,36]. In the liver, L. donovani amastigotes multiply rapidly

during the first 4 weeks of infection but are controlled by the 8th

week of infection. In contrast, in the spleen and the BM, parasite

numbers increase slowly over the first 4 weeks, and a persistent

infection becomes established. This tissue-specific pattern of

parasite growth appears to be common for all visceralising species

and strains of Leishmania in genetically susceptible mice [37].

The establishment of immunity in the liver. In the liver

during experimental VL in genetically susceptible mice, parasitic

burdens peak between weeks 2–4 of infection, and then parasite

growth is controlled by weeks 6–8 postinfection, although sterile

immunity is not achieved [7]. Control of hepatic infection depends

on the formation of inflammatory granulomas [38]. Kupffer cells

(KCs), the resident tissue macrophages in the liver, are the primary

cells infected by L. donovani amastigotes [39]. Early chemokine and

cytokine production by KCs is thought to recruit monocytes and

neutrophils to the site of infection in the first few days after

infection that further amplify chemokine production [40,41].

Depletion of neutrophils early during L. donovani infection indicates

that they play an important role in controlling parasite growth

[42]. However, there is also strong evidence from models of CL

that these cells may help establish infections by acting as a safe

haven for parasites before being taken up by monocytes [43]. An

important antiparasitic role for monocytes for early control of L.

donovani infection has been established [40,44], although this may

be more complicated than first thought, given the plasticity of

these cells and their ability to differentiate into potent APCs or

regulatory cells [45,46]. The recruitment of neutrophils and

monocytes into the liver is followed by the recruitment of T cells,

which are critical for efficient granuloma formation around

infected KCs and control of parasite growth [47]. In particular,

CD4+ T cells that have been activated by dendritic cells (DCs)

producing interleukin 12 (IL-12) are critical to these processes via

the production of proinflammatory cytokines, including IFNc,

TNF, and lymphotoxin alpha (LTa) [38,48,49]. These cytokines

can further amplify cellular recruitment to infected KCs, as well as

activate antimicrobial mechanisms in these cells [8]. These

microbicidal mechanisms include the generation of reactive

oxygen intermediates (ROI) and reactive nitrogen intermediates

(RNI) that are both capable of killing parasites in infected

macrophages, although only the latter is critically important for

the resolution of the disease (Figure 1) [50]. Recent studies have

identified three C-type lectin receptors as important pattern

recognition receptors for L. infantum [51]. Dectin-1 and mannose

receptor were found to play important roles in generating

antiparasitic responses, in particular for ROI production. In

contrast, specific intercellular adhesion molecule-3-grabbing non-

integrin receptor 3 (SIGNR3; a homologue of human dendritic

cell-specific intercellular adhesion molecule-3-grabbing non-inte-

grin [DC-SIGN]), appeared to promote parasite persistence by

inhibiting IL-1b production. Another study recently showed that
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early inflammasome-derived IL-1b was critical for the induction of

RNI by L. infantum-infected macrophages [52], thus identifying

critical early events in parasite recognition and control by the host.

After 4 weeks of L. donovani infection, well-organised and

functional mature granulomas are observed in the liver, associated

with the control of parasite growth and a decline in parasite

burden [49]. Parasite numbers decline until 6–8 weeks postinfec-

tion, after which a relatively low-level persistent infection that is

contained within granulomas by CD4+ T cells becomes established

[53,54]. Following reinfection, parasite growth is controlled within

1–2 weeks, with parasite burden only reaching a fraction of the

primary infection, indicating the development of productive

immunological memory that may include a CD8+ T cell

component [39].

The proinflammatory environment that develops in order to

control parasite growth in the liver of mice and in asymptomatic

individuals infected with L. donovani (Figure 1) has the potential to

cause tissue damage, as can be the case during chronic infection

(see below). However, this does not occur, thereby suggesting the

efficient generation of immune regulatory networks to protect

tissues. Whether these networks can be distinguished from those

that become established during chronic infection and contribute to

parasite persistence and disease remains unknown but will be an

important area of future research.

The development of a chronic infection in the spleen and

bone marrow. L. donovani also infects tissue macrophages found

in the spleen and BM [34,55]. These initially include the marginal

zone macrophages (MZMs) and marginal metallophilic macro-

phages (MMMs) in the spleen [56] and stromal macrophages in

the BM [55]. In the spleen, subsequent infection of red pulp (RP)

macrophages by parasites also occurs [57]. Despite a small drop in

parasite burden in the spleen 24 hours after infection, parasites

numbers increase and then stabilise over the following 1–2

months, leading to a chronic infection [56]. A similar pattern of

parasite growth also occurs in the BM [58]. Chronic infection in

the spleen leads to splenomegaly and results in structural

alterations in the macroarchitecture of the spleen tissue [59],

which are thought to contribute to immune suppression in this

organ during VL [34,59].

The marginal zone (MZ) region of the spleen plays an important

role in directing cellular traffic and is located between the

macrophage beds of the RP and the T and B cell zones contained

within the white pulp. MZMs and MMMs, sinus-lining reticular

cells, B cells, and DCs, as well as blood migrating cell populations,

make up the MZ region [60]. During a chronic L. donovani

infection, widespread remodelling of the MZ region takes place,

including the loss of MZMs and some displacement of MMM

populations [59]. The loss of MZMs during VL is associated with

Figure 1. Overview of cellular responses during an asymptomatic L. donovani infection. Infected macrophages can produce TNF and IL-1b
in response to L. donovani infection as part of the innate immune response. However, DC IL-12 production in response to L. donovani infection is
required to drive the differentiation of antigen-specific CD4+ T cells into IFNc- and TNF-producing Th1 cells. These cells can activate infected
macrophages and monocytes to produce ROI and RNI that kill intracellular parasites. There are also reports in humans that Th17 and Th22 cells
develop in asymptomatic, infected individuals, possibly driven by IL-23 and IL-6. However, the antiparasitic mechanism mediated by these CD4+ T cell
subsets following L. donovani infection remains unknown. Although parasite-specific antibodies are readily detected in asymptomatic individuals,
their role, if any, in control of infection and protection against reinfection is unknown. Abbreviations: MO, monocyte; Mw, macrophage.
doi:10.1371/journal.pntd.0002914.g001
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disrupted lymphocyte migration into the white pulp of the spleen

[59]. Within the white pulp region, remodelling causes disruption

to both the gp38+ fibroblastic reticular cell (FRC) network, which

guides T cell and DC migration to the T cell zone [61], and the

follicular DC (FDC) network in the B cell follicles[34]. Work

carried out by Dalton et al. showed that, by using a receptor

tyrosine kinase inhibitor (RTKI) sunitinib maleate (Sm), vascular

remodelling and splenomegaly associated with VL can be blocked

and the effects can be reversed [62]. However, use of Sm alone did

not cause a reduction in parasite burden in the spleen, but when

used in combination with conventional antimonial drugs,

enhanced leishmanicidal activity was observed [62]. L. donovani

infection also appears to promote development of regulatory DCs

in the spleen. Examination of DC populations in the infected

spleen showed an increase in CD11cluCD45RB+ DCs, compared

to the CD11chi DC population [63]. DCs with the

CD11cluCD45RB+ phenotype secrete IL-10 when stimulated with

lipopolysaccharide (LPS) and skew T cell development to IL-10-

producing regulatory T cell (Tr1, producing both IFNc and IL-10)

responses (Figure 2) [64]. The development of these regulatory

DCs was mediated by stromal cells in both naive and infected

spleens [63]. CD11cluCD45RB+ DCs show features of immature

DCs, indicated by low expression of co-stimulatory molecules and

intracellular major histocompatibility complex (MHC) class II

[63]. These DCs were capable of inhibiting mixed lymphocyte

reactions (MLRs) driven by conventional DCs, and this effect

could be reversed by the presence of an anti-IL-10 receptor

monoclonal antibody (mAb) [63]. Comparative analysis of

regulatory DCs (CD11cluCD45RB+) generated in the presence

of naive spleen stromal cells and L. donovani-infected spleen stromal

cells showed that the latter had elevated regulatory capacity which

could overcome the effects of anti-IL-10 receptor mAb. In

addition to inhibiting MLRs, these DCs also had elevated levels

of IL-10 mRNA accumulation compared to CD11cluCD45RB+

DCs generated in the presence of naive spleen stromal cells [63].

The TNF family of cytokines and their associated signalling

molecules play an important role in the development of the splenic

MZ region [65–69]. TNF is expressed throughout the spleen

during established L. donovani infection and plays an important role

in tissue remodelling and, in particular, in the breakdown in tissue

microarchitecture. L. donovani–infected mice receiving TNF

blockade, as well as TNF-deficient mice infected with L. donovani,

had a reduced loss of MZM, compared with control animals, and

although some structural changes were found in the spleens of

these animals, they were far fewer compared to those found in

control-infected mice [59]. One of the consequences of this overt

TNF production and the subsequent impact on the MZ region is

thought to be that DCs and naive T cells fail to migrate to the

periarteriolar lymphoid sheath (PALS) of the spleen, resulting in

reduced priming of naive T cells [7].

We and others have previously shown that mice deficient in IL-

10 fail to establish a substantial L. donovani infection and that

blockade of IL-10 signalling during an established L. donovani

infection dramatically enhances antiparasitic immunity [8,70,71].

There is strong evidence that IL-10 plays a key role in regulating

the expression of the programmed death (PD)-1 ligands (PD-L1

and PD-L2) on APCs [72], and there has been a report that the

splenic environment during chronic VL is associated with the

increased expression of PD-L1 on DCs [73]. Furthermore,

following ligation of PD-L1 to its receptor PD-1 found on T cells,

there is diminished T cell proliferation and cytokine production

[74]. Blocking PD-L1 ligation during L. donovani infection results in

increased survival of CD8+ T cells and also partially restores the

functional capacity of these cells [7]. The partial restoration of

CD8+ T cell functionality indicates that there may be several other

important immune regulators that also suppress cytokine produc-

tion by these cells.

IL-27 has been shown to play a major role in the induction of

IL-10-producing T cells [75]. A study in mice revealed that IL-27

drives the expansion and differentiation of IL-10-producing Tr1

cells, promoting c-maf-mediated IL-21 production, which acts as

an autocrine growth factor for the expansion and/or maintenance

of IL-27-induced Tr1 cells (Figure 2) [76]. IL-27 belongs to the IL-

12 cytokine family, and previously, IL-27Ra-deficient mice

infected with Toxoplasma gondii were found to develop a normal

T helper (Th) 1 response but then died when this response became

severely dysregulated [77]. IL-27 has been reported to play critical

roles in experimental Leishmania infection. IL-27Ra-deficient mice

infected with L. donovani developed enhanced Th1 responses, but

severe liver pathology was also observed in these mice [78]. In

nonhealing L. major infection, IL-27 was also found to regulate IL-

10 and IL-17 production by CD4+ cells [79]. Thus, IL-27

signalling appears to be important for the generation of IL-10

during experimental leishmaniasis, and one way this cytokine

regulates host immune responses appears to involve regulating

expression of PD-1 and its ligands.

Although IL-10-related pathways can explain important aspects

of parasite persistence that promote the development of VL, other

factors include changes to macrophage cell-signalling pathways.

This area has been extensively reviewed [80–82] and is not

covered in detail here except to highlight several major findings.

Leishmania parasites can activate the macrophage protein tyrosine

phosphotase SHP-1, which in turn inhibits the activation of Janus

kinase 2 (JAK2) and extracellular signal-regulated kinases 1 and 2

(Erk1/2) signalling pathways [83–85]. SHP-1 also interferes with

macrophage toll-like receptor (TLR) signalling by directly

inactivating interleukin-1 receptor-associated kinase 1(IRAK-1)

[86,87]. Other important parasite-mediated changes include

blocking protein kinase C activity [88–90], inhibition of NFkB

and activator protein 1 (AP-1) transcriptional roles [91,92], and

suppression of JAK/STAT (signal transducer and activator of

transcription) signalling pathways [83,93]. Many of these manip-

ulations are mediated by parasite cell surface molecules, such as

lipophosphoglycan (LPG) and gp63 [94,95], resulting in reduced

inflammatory cytokine, RNI, and ROI generation (Figure 1),

which enables parasite survival and growth within macrophages

(Figure 2).

Relatively few studies have been conducted to investigate the

effect of L. donovani infection on the BM in experimental VL.

However, work by Cotterell et al. showed that in BALB/c mice, L.

donovani affects the regulation of haematopoiesis [55]. Stromal

macrophages in the BM were found to be targeted by L. donovani,

and following exposure to granulocyte macrophage colony-

stimulating factor (GM-CSF) and TNF, stromal macrophages

were able to support increased level of myelopoiesis [55]. Related

changes reported in VL-patient BM include an increase in plasma

cell numbers, erythroid hyperplasia, and moderate-to-severe

megaloblostosis [96].

Although studies in the spleen and BM of L. donovani–infected

mice have provided a better understanding of the immune

mechanisms associated with progressive and chronic infectious

diseases, studies on disease models have limitations, and ultimately

discoveries need to be validated in humans if they are going to be

used to improve disease treatments or design better vaccines.

Recently, a model of natural VL has been established, whereby

hamsters were infected with parasites transmitted by sand flies

[97]. Although infection was delayed in comparison to intracardial

injection of high parasite numbers, this model may prove useful in
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characterising the initiation and establishment of VL, particularly

in defining the roles of various resident and recruited skin cell

populations. Thus, this new model may shed new light on early

immune events, while the mouse model of VL caused by high-dose

intravenous injection of parasites might be more suitable for

studying immune responses during established and/or chronic

infection.

Human VL
Disease susceptibility. As mentioned previously, the ma-

jority of the people infected with L. donovani never develop VL [4–

6,98]. The factors that influence susceptibility to VL are not fully

understood. However, several genetic factors have been identified

that are associated with susceptibility to VL. These include a

major susceptibility locus on chromosome 22q12 [99] and

polymorphisms in the NRAMP1/Slc11ia gene [100,101]. However,

these latter factors appear to have no role in VL affecting the

Indian population [102]. Polymorphisms in the CXCR2 gene,

which encodes receptors for IL-8 and other CXC chemokines,

appear to play a role in determining VL outcome in Indian

patients [103]. Polymorphisms in the IL-2Rb gene, which is

involved in T cell activation, are also implicated in determining

VL susceptibility [104]. However, not only do polymorphisms in

the human-leukocyte-antigen (HLA) genes play roles in suscepti-

bility to experimental VL [105–107], but a recent study has also

identified single nucleotide polymorphisms in this gene region that

are strongly associated with both resistance and susceptibility to

VL in Indian and Brazilian populations [108]. Some caution must

be applied to these types of analysis because of reports of

significant founder effects caused by rapid and recent migration of

populations into VL-endemic regions [109]. More recently, the

production of IL-17 and IL-22 by peripheral blood mononuclear

cells (PBMCs) in response to heat-killed L. donovani was found to

identify people protected from VL in the Sudan (see also below)

[110]. Nutritional status can also influence disease susceptibility,

with malnutrition being a major risk factor for VL, especially in

rural settings [111]. Malnutrition negatively impacts on both cell-

mediated and innate immunity [112,113]. Furthermore, helminth

infections are very common in these rural areas, which may favour

Leishmania parasite replication [114,115]. Other epidemiological

factors, such as living in proximity to a previous VL patient, are

also risk factors for developing VL [116]. More extensive

discussions on epidemiological risk factors have been reviewed

elsewhere [117–120].

The disease spectrum. Unlike experimental VL, in which

there is a well-defined organ-specific course of infection, human

VL manifests as a more heterogeneous form of disease with

different levels of chronic infection observed in the spleen, liver,

and BM [37]. Following the course of the infection in VL patients

requires invasive techniques such as spleen and BM aspiration,

which are uncomfortable, potentially dangerous, and time

consuming. These techniques are still used for diagnostics

Figure 2. Overview of cellular responses during a chronic L. donovani infection. During an established L. donovani infection, a subset of
regulatory DCs in the spleen can produce IL-10 that promotes the expansion of IL-10-producing regulatory T cells (Tr1), as well as inhibiting
antimicrobial mechanisms in macrophages and other phagocytic cells (including suppression of ROI and RNI generation). IL-27 produced by
regulatory DCs and macrophages, along with T cell–derived IL-21, can drive the differentiation of Th1 cells into Tr1 cells, as well as inhibit Th17
development. IL-10 produced by Tr1 cells can suppress antigen presentation, contributing to T cell dysfunction, as well as down-regulate CD4+ T cell
IFNc production. There has been a report that IL-10 can also be produced by Treg cells in the BM of VL patients. Although uptake of infected
neutrophils undergoing apoptosis by macrophages contributes to the establishment of L. major infection in mice, no such mechanism has yet been
described during L. donovani infection. Abbreviations: N, neutrophil.
doi:10.1371/journal.pntd.0002914.g002
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purposes, and spare tissue provides rare opportunities to study

disease manifestation in human target organs and to better

understand human disease.

Most human Leishmania infections are subclinical or asymptom-

atic, and this can be attributed to the development of effective

antiparasitic, cell-mediated immune responses [116,121]. Only a

small proportion of infected individuals develop disease, and VL

patients that recover from infection are usually resistant to

reinfection [116,122]. Depressed cell-mediated immunity is a

characteristic of human VL and is observed by negative

leishmanin skin test and the failure of PBMCs to proliferate and

produce IFNc in response to Leishmania antigen [123]. In contrast,

PBMCs taken from patients cured of VL are able to proliferate

and produce IFNc and TNF [123], suggesting that T cell

responses in VL patients are refractory to antigenic stimulation

[31]. However, several studies have shown that whole blood cells

taken from active VL patients and stimulated with parasite antigen

were able to produce elevated IFNc at similar levels as those

observed in cured VL patients, indicating that antigen-specific T

cells were not refractory to stimulation but rather that other

immunosuppressive factors might contribute to unfavourable

clinical outcomes [123–125]. They also showed that significant

amounts of IL-10 were produced by whole blood cells from VL

patients in response to stimulation with parasite antigens in whole

blood assays [123,124].

Immune regulation. VL initially was thought to be associ-

ated with a dominant Th2-type immune response seen as elevated

levels of IL-4 and/or IL-13 [126,127]. Typically, VL is associated

with increased production of multiple proinflammatory cytokines

and chemokines. VL patients have elevated plasma protein levels

of IL-1, IL-6, IL-8, IL-12, IL-15, IFNc inducible protein-10 (IP-

10), monokine induced by IFNc (MIG), IFNc, and TNF

[126,128]. Elevated levels of IFNc mRNA have been found in

the spleen and bone marrow during the acute phase of infection

[126]. These observations suggest that unfavourable clinical

outcomes are not related to Th2 skewing per se but that other

mechanisms contribute to VL pathogenesis.

Studies on clinical samples have shown that elevated levels of

IL-10 correlate with increased incidence of several human chronic

infectious diseases, such as HIV, tuberculosis (TB), and malaria

[129–132]. As mentioned earlier, IL-10 is an important regulatory

cytokine that suppresses potentially damaging inflammatory

immune responses [133]. However, these immunosuppressive

properties of IL-10 can also target antigen presentation pathways

in macrophages and DCs, thereby affecting T cell activation and

cytokine production during chronic infection, potentially promot-

ing parasite persistence [133]. VL patients have elevated levels of

IL-10 in serum, and IL-10 mRNA accumulation was increased,

relative to controls, in BM and spleen tissue [123]. IL-10 blockade

in ex vivo cell assays using spleen tissue from VL patients showed

increased IFNc and TNF production associated with significantly

reduced parasite growth [15], indicating that IL-10 is a major

suppressor of leishmanicidal immune mechanisms in human VL

patients (Figure 2). Other IL-10 neutralizing studies also showed

enhanced IFNc production by antigen-activated whole blood cells

taken from VL patients [123]. A similar result was also found in

studies on PBMCs from VL patients, in which increased IFNc
production, as well as enhanced T cell proliferation, was observed

following IL-10 blockade [134–136]. The IL-10 in these human

samples appeared to be produced predominantly by IFNc-

producing Tr1 cells [126]. However, another study recently

showed that regulatory T (Treg) cells accumulated in the BM of

VL patients and were a source of IL-10 that could suppress

antiparasitic immunity [137].

Recent work by Ansari et al. showed elevated levels of

circulating IL-27 and increased IL-27 mRNA accumulation in

the spleen of VL patients, as well as enhanced expression of IL-21

mRNA [124]. IL-21 plays a role in amplifying IL-10 production

by Tr1 cells induced by IL-27 [138]. The IL-27 and IL-21 in these

samples appeared to be produced mainly by CD14+ (monocytes/

macrophages) cells and CD3+ (T cells) cells, respectively [124].

Thus, these studies support the notion that IL-27 and IL-21 are

key cytokines that promote the differentiation and expansion of

antigen-specific IL-10-producing Tr1 cells during VL (Figure 2).

Human VL is also associated with a high level of plasma

antibodies. Although sometimes useful in diagnosis, the role of

antibodies in pathogenesis of VL is not clear. The high level of

antibodies may drive the formation of immune complex, which

can bind to the Fc receptors on macrophages, leading to the

production of IL-10 by macrophages [139], and thus contribute to

VL pathogenesis. Another cytokine, transforming growth factor

beta (TGF-b), also has suppressive functions, and active VL is

associated with increased plasma and mRNA levels of this cytokine

[140]. The parasite-derived factor cathepsin-B, present in L.

donovani, can activate TGF-b, which then has the potential to

negatively impact on macrophage activity by lowering nitric oxide

(NO) production [141,142]. A better understanding of the precise

mechanisms of TGF-b and IL-10 induction and activity during

VL is required.

IL-17 has emerged as a potentially important cytokine in VL. A

study in a Sudanese village during a VL outbreak over a 6-year

period found that IL-17 and IL-22 production by PBMCs was

tightly and independently associated with resistance to VL [110].

Thus, IL-17 and IL-22 may play complimentary roles to Th1

cytokines in controlling parasite growth and preventing the

development of VL (Figure 1). The cellular mechanisms of

parasite control induced by these cytokines remain unknown.

Furthermore, the factors involved in blocking the production of

these cytokines during active VL have not been fully elucidated,

although IL-27 has been suggested to be involved in blocking

Th17 expansion during infection [98]. Dissection of these

processes should provide new insights into host control of parasite

growth and resistance to VL.

The role of CD4+ T cells and Treg cells in human VL has been

widely studied, but data on the role of CD8+ T cells are scarce.

CD8+ T cells, like CD4+ cells, have immune regulatory capacity

and can also directly kill the parasite-infected macrophages

through cytolytic enzymes granzyme, granulysin, and perforin

[143–145]. IL-10-producing CD8+ cells have been reported in

human post-kala-azar dermal leishmaniasis (PKDL) and L.

guanyensis infection [146,147], while a recent study has shown that

CD8+ T cells have an anergic or exhausted phenotype, as

indicated by high expression of CTLA-4, PD-1, and IL-10, which

may affect the protective capacity of these cells during clinical VL

[148]. A better understanding of the role of CD8+ T cells in VL

may help to harness the antiparasitic potential of these cells

through vaccination or immune therapy.

PKDL. Post-kala-azar dermal leishmaniasis is a complication

of VL characterised by a nodular, macular, or maculopapular rash

on individuals who have recovered from VL. PKDL appears in

individuals after apparently successful VL treatment and is

possibly caused by suppression of immunity in the skin to

persisting parasites [149,150]. PDKL is mainly observed in the

Indian subcontinent and East Africa, where an estimated 10%–

20% of cases in India and 50%–60% of cases in the Sudan

progress to PKDL after VL treatment [151]. Indian PKDL

appears 2 to 7 years or even decades after the VL treatment, while

in the Sudan it appears earlier (6 to 7 months after treatment)
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[151]. In some cases, there may be no previous history of

leishmaniasis [152,153]. PKDL cases are of epidemiological

importance because these patients can serve as parasite reservoirs

[151].

Immunological features of PKDL differ from VL in several ways

[154]. In VL, a suppressed CMI response is observed, which is

restored on successful treatment, and most cured individuals are

resistant to reinfection [155]. PDKL, on the other hand, arises in a

proportion of cured VL patients due to the suppression of immune

response against Leishmania parasites present in the skin [156,157].

PKDL cases studied in Sudan show an increase in CD3+ T cell

infiltration within lesions containing Leishmania parasites or

antigen, and IFNc, IL-10, and IL-4 are the main cytokines

produced in the inflamed lesions [158]. In another Sudanese

study, Gasim et al. showed that PKDL could be predicted by

assessment of IL-10, as higher levels of IL-10 were observed in

plasma and keratinocytes of patients who developed PKDL

compared to patients who did not [159]. A subsequent study by

the same group also reported a positive association between the

onset of PKDL and an increase in circulating parasite-specific

PBMC, made evident by the stronger parasite-specific T cell

responses [160]. In India, increased CMI responses were also

observed in patients at the onset of PKDL compared to during

chronic PKDL [161]. However, another study failed to find

detectable antigen-specific immune responses in Indian PKDL

patients [162], while Ganguly et al. reported that CMI responses

were present in Indian PKDL patients but were dominated by

antigen-specific IL-10 production by CD8+ T cells [146]. Clearly,

further studies are required to both identify predisposing immune

factors associated with PKDL development as well as to better

define dysfunctional immune pathways operating during this

serious disease complication.

CD4+ CD25+ Foxp3+ Treg cells are a subpopulation of CD4+ T

cells involved in immune homeostasis with the potential to

produce IL-10 during inflammation [163]. Studies by Katara et

al. showed that Treg cell markers and IL-10 were elevated in tissue

samples from PKDL patients when compared to tissue taken from

healthy controls [164]. Furthermore, Treg cells were found to

aggregate in tissue lesions of patients with PKDL in which there

was a positive association between parasite burden, certain Treg

cell markers, and IL-10 levels [164]. In another recent study,

elevated IL-17, IL-23, and RORct mRNA accumulation was

found in PKDL lesions when compared with tissue after drug

treatment, and this was accompanied by increased IL-17 and IL-

23 plasma levels [165]. Thus, although PKDL is accompanied by

IL-10-mediated immune suppression in many cases, the picture is

not always clear and may also involve other deregulated

inflammatory responses. Again, this is an area requiring further

investigation at the molecular and cellular level.

HIV coinfection. Recent studies have shown that secondary

infections are common in VL patients, possibly due to the marked

immune suppression observed in infected patients [8]. L. donovani

and L. infantum coinfection with HIV has now been recognised as a

significant clinical problem [166]. Compared to other coinfections,

a higher mortality rate has been reported in AIDS patients

coinfected with L. donovani or L. infantum [167]. HIV patients with

VL have enhanced proinflammatory cytokine responses, associat-

ed with increased HIV viral load, which can accelerate the

progression from asymptomatic HIV to AIDS [168,169]. In

addition, parasite multiplication promotes survival, proliferation,

and elevated levels of cellular dinucleotide triphosphate (dNTP) in

human monocytes, which can also accelerate HIV replication

[170,171]. Treatment of VL in HIV patients involves the use of

standard drugs, but due to the enhanced immune suppression in

HIV patients and the partial reliance on host immune

mechanisms for drug efficacy [149], these treatment strategies

are often inadequate, and in most cases, patients are unresponsive

to drug treatment [149]. Furthermore, those patients who do

respond to treatment often relapse, possibly due to the low CD4+

T cells numbers associated with HIV infection and parasites

persisting after drug treatment [172]. Host T cell responses are

abrogated in HIV infection, including skewing away from Th1

responses [173] that are required for effective leishmanicidal

responses [143]. Wolday et al. showed that PBMCs from

Leishmania/HIV-coinfected individuals produce low levels of IL-

12 and IFNc and higher levels of IL-4 and IL-10 following

stimulation with parasite antigen [174]. IL-15 is involved in

promoting and maintaining Th1 responses and was also

decreased in plasma from patients with Leishmania/HIV coinfec-

tion [175]. Hence, these results suggest that HIV infection

suppresses the antiparasitic Th1 immune response required for

parasite clearance [172].

Future prospects
In the absence of a licensed human vaccine, new and improved

VL therapies are required to reduce drug toxicity in patients and

combat parasite drug resistance. Successful treatment of VL is

dependent on host immune responses, and manipulation of these

responses, alone or in combination with a drug, may be useful in

improving VL treatment. Immune modulation aimed at improv-

ing host immune responses may be one way to enhance Leishmania-

specific immune response, in the presence or absence of

conventional therapy, thereby allowing lower drug doses or

shorter drug treatment periods, as well as reducing the risk of

drug-resistant parasites emerging. IFNc in combination with

pentavalent antimonial has been used in the past for treating

VL and diffused CL [176]. However, targeting regulatory

molecules or other cytokines might result in better outcomes.

Studies on regulatory immune molecules in mice with

established experimental infection and in VL patients may

identify suitable targets for such immune modulation. As

discussed above, IL-10 is one such candidate identified by

these approaches, since inhibiting or neutralizing IL-10 results

in improved immune regulation and parasite killing both in

mice and humans [15,70,71]. A number of other promising

targets have also been identified [73,177], and it is anticipated

that many more soon will be. One of the major challenges will

be identifying strategies for immune modulation that are

affordable and suitable for implementation in the clinical

setting where VL patients must be treated.

Leishmania vaccine research is another area which requires

further work, particularly given that available epidemiological and

historical data indicate that an effective vaccine is a realistic goal.

A major challenge in developing such a vaccine is the necessity of

inducing a strong and lasting CMI response. Most Leishmania

vaccines that reach clinical trials have been unable to initiate

strong T cell responses [31], possibly due to relatively poor

adjuvants used in vaccine formulations. In addition, there is an

urgent need for good surrogate markers of immunity so that

vaccine candidates can be effectively evaluated in a timely

manner. Nevertheless, parasite antigens for vaccines that show

protective efficacy against L. donovani or L. infantum infection in

experimental VL models have recently been evaluated for use in

humans [178]. In addition, clinical trials have begun to test

promising vaccine candidates [179–181]. This is now an active

area of research, and with our increasing knowledge of protective

immune mechanisms required to prevent the onset of VL, it is

likely that suitable adjuvants can be developed for combining with
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vaccines to induce long-lasting protection against VL in the near

future. Again, making these vaccines affordable and deliverable

will be a major challenge.
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