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Visual saliency prediction for RGB-D images is more challenging than that for their RGB counterparts. Additionally, very few
investigations have been undertaken concerning RGB-D-saliency prediction. .e proposed study presents a method based on a
hierarchical multimodal adaptive fusion (HMAF) network to facilitate end-to-end prediction of RGB-D saliency. In the proposed
method, hierarchical (multilevel) multimodal features are first extracted from an RGB image and depth map using a VGG-16-
based two-stream network. Subsequently, the most significant hierarchical features of the said RGB image and depth map are
predicted using three two-input attention modules. Furthermore, adaptive fusion of saliencies concerning the above-mentioned
fused saliency features of different levels (hierarchical fusion saliency features) can be accomplished using a three-input attention
module to facilitate high-accuracy RGB-D visual saliency prediction. Comparisons based on the application of the proposed
HMAF-based approach against those of other state-of-the-art techniques on two challenging RGB-D datasets demonstrate that
the proposed method outperforms other competing approaches consistently by a considerable margin.

1. Introduction

Saliency prediction, wherein the objective is to automatically
predict what most attracts human attention in view-free
scenarios, is a long-standing classical research topic con-
cerning visual-cognition, computer sciences [1, 2], and
imaging techniques [3–6]. Saliency models can be broadly
classified into two types—(1) salient-object detection and (2)
saliency prediction. In the former, the objective is to detect
themost conspicuous and eye-catching objects within scenes
accurately [7–16], whereas the latter aims at locating a set
number of eye-fixation points during the viewing of a scene
[17–23]. .is study focuses on the second task, namely,
saliency prediction.

In the last two decades, numerous saliency prediction
methods for RGB images have been significantly improved,
and various models have been proposed [17–19]. However,
several extant studies [1, 8, 11] reveal that features extracted
from two modalities—depth maps and RGB

images—complement each other. RGB images contain
discriminative visual-appearance information, whereas
depth maps include geometric features concerning objects.
In depth maps, the interestingness of objects degrades with
increasing distance from the camera; i.e., an object located
closer to the camera attracts greater attention. RGB-D sa-
liency prediction has attracted increased attention in recent
years [24–28], and extant studies have concentrated on the
design of depth-induced RGB-D saliency prediction
methods [29–31]. In most such methods, fusion methods are
inadequate to combine complementary features obtained
from an RGB image and depth map. .erefore, substantial
room for performance improvement exists.

.is study was inspired by the above-mentioned obser-
vation. To facilitate the appropriate fusion of features obtained
from the RGB image and depth map, a hierarchical multi-
modal adaptive fusion (HMAF) network for RGB-D saliency
prediction is proposed. In the proposed method, three two-
input attention modules are adopted to exploit the
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importance weights of different modalities instead of simply
concatenating feature vectors obtained from the two chan-
nels. Additionally, a three-input attention module is used to
fuse the hierarchical fusion saliency features adaptively,
thereby facilitating accurate RGB-D visual saliency predic-
tion. .e major contributions of this study to the literature
can be summarized as follows:

(1) A two-stream network was established to extract
hierarchical multimodal features from an RGB image
and depth map, where the features are extracted
from different levels with different properties.

(2) .e hierarchical features of two modalities were first
adaptively fused using three two-input attention

modules. Subsequently, the output hierarchical
features were fused by a three-input attention
module to facilitate high-accuracy RGB-D visual
saliency prediction.

(3) To demonstrate the robustness and effectiveness of
the proposed HMAF-based network, it has been
qualitatively and quantitatively compared against
other state-of-the-art techniques via extensive ex-
periments performed on two challenging RGB-D
saliency prediction datasets. .e results of these
comparisons demonstrate that the proposed
HMAF-based method outperforms all relevant
techniques available to date.
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Figure 1: Implementation flow of the proposed method for the prediction of RGB-D saliency.
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Figure 2: Proposed HMAF.
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Figure 3: Two-input attention module (attention modules 1, 2, and 3).
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2. Proposed Network Architecture

Figure 1 is a block diagram of the proposed algorithm
flow. In this section, we first introduce the pipeline of
our HMAF for RGB-D-saliency prediction. We use a
two-stream network to extract the hierarchical features

of two modalities. .en, three two-input attention
modules can adaptively fuse the hierarchical features of
the two modalities. Finally, the hierarchical fusion
saliency features are adaptively fused by the three-input
attention module. Figure 2 shows the proposed HMAF-
based approach.
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Figure 4: .ree-input attention module (attention module 4).

Table 1: Comparison of quantitative scores of different loss function on two datasets.

Datasets Criteria MSE KL CC′ MSE+CC′ MSE+KL CC′+KL

NUS

CC 0.5224 0.5363 0.5296 0.5533 0.5473 0.5452
KLDiv 1.1690 1.2344 1.1834 1.0794 1.1907 1.1320
AUC 0.8519 0.8637 0.8627 0.8422 0.8571 0.8613
NSS 2.0926 2.1698 2.1259 2.3069 2.2391 2.2086

NCTU

CC 0.8256 0.8390 0.8287 0.8472 0.8345 0.8308
KLDiv 0.3176 0.2736 0.4877 0.3228 0.3333 0.3438
AUC 0.9025 0.9087 0.9011 0.9130 0.9044 0.9041
NSS 2.2957 2.3137 2.3199 2.3493 2.3437 2.3111

Table 2: Ablation analysis.

Datasets Criteria Model A Model B Model C Model D Proposed

NUS

CC 0.4889 0.5248 0.5295 0.5513 0.5533
KLDiv 1.3543 1.2170 1.1741 1.1206 1.0794
AUC 0.8440 0.8598 0.8693 0.8774 0.8422
NSS 1.9523 2.1214 2.0917 2.0098 2.3069

NCTU

CC 0.7137 0.7941 0.8192 0.8364 0.8472
KLDiv 0.4594 0.3235 0.3098 0.2926 0.3228
AUC 0.8626 0.8997 0.9031 0.9105 0.9130
NSS 1.9539 2.1786 2.3057 2.3070 2.3493

Table 3: .e evaluation results of various saliency prediction models.

Datasets Criteria Fang DeepFix DVA SAM EML SMI Proposed

NUS

CC 0.333 0.4322 0.4549 0.5013 0.4857 0.5368 0.5533
KLDiv 1.560 1.8138 2.4349 2.9059 2.2353 1.2501 1.0794
AUC 0.795 0.7699 0.7236 0.7461 0.8149 0.8648 0.8422
NSS 1.209 1.6608 1.7962 2.1259 1.9419 2.1843 2.3069

NCTU

CC 0.542 0.7974 0.6834 0.7115 0.7556 0.8376 0.8472
KLDiv 0.674 1.3083 1.1045 1.8482 0.3886 0.4826 0.3228
AUC 0.806 0.8650 0.8035 0.7250 0.8818 0.9053 0.9130
NSS 1.264 1.8575 1.5546 1.5386 2.0666 2.3121 2.3493
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2.1. Hierarchical Multimodal Feature Extraction. Features
existing at different levels possess different properties.
High-level features contain more semantic informa-
tion—useful for distinguishing salient areas—but very
little spatial and local-context information. In contrast,
low-level features contain more spatial information (e.g.,

textures, edges, and contours). .us, both high- and low-
level features can be considered important and comple-
mentary to each other regarding the prediction of visual
attention, thereby making multilevel feature extraction
even more necessary to achieve high-accuracy saliency
prediction.

(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

Figure 5: Qualitative results. (a) Ground-truth, (b) Proposed, (c) Fang, (d) DeepFix, (e) DVA, (f ) SAM, (g) EML, and (h) SMI.
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In this study, VGG-16 [32]—a widely used pretrained
network—was considered as the backbone of the two-stream
network for extracting hierarchical features from the RGB
and depth modalities. However, modifications to the VGG-
16 network were affected via the elimination of its fully
connected layer. To preserve the relatively large spatial sizes
within higher layers, the stride of the last max-pooling layer
was decreased, thereby facilitating more accurate saliency
prediction. .erefore, the stride of the entire network was
reduced to 16 for a fixed input RGB (depth) image size of
M×N pixels. .e spatial size of the final feature map wasM/
24 × N/24. In the proposed study, the output hierarchical
features from max-pooling layers Pool3, Pool4, and Pool5
were used to obtain hierarchical fusion saliency feature maps
concerning the adaptive multimodal fusion. High-level
features can be used to distinguish between different object
classes while being less discriminative of objects belonging to
the same class. In contrast, low-level features include more
spatial information that can be distinguished within the
same class of objects, but they are less robust to dramatic
changes in appearance. Both high- and low-level features
were used in this study to enhance the performance of
saliency prediction. Accordingly, in the proposed HMAF-
based approach, hierarchical multimodal features were
extracted from layers Pool3, Pool4, and Pool5, as shown in
Figure 2.

2.2. Fusion of Multimodal Features. Attention modules as-
sign different weights to the features extracted from the two
modalities [33]. .e two-input attention modules employed
in this study comprise three operators—Transformation,
Fuse, and Select, as illustrated in Figure 3, where a two-input
case is illustrated.

2.2.1. Transformation. Let fm, i, j ∈RH×W×C represent the
feature maps of m modalities (values 1 and 2 of m corre-
sponding to the RGB and depth modalities, respectively),
wherein i can assume the values 1, 2, and 3 to represent the
extraction of different level features frommax-pooling layers
Pool3, Pool4, and Pool5 of VGG-16, respectively, and j
denotes the spatial position. Two transformations—F1: f1, i,
j⟶U1 ∈RH×W×C andF2: f2, i, j⟶U2 ∈RH × W × C—were
first performed with a dilated convolution involving a 3× 3
kernel and dilation size of 2.

2.2.2. Fuse. Transformation results obtained from the two
modal streams were subsequently fused through an element-
wise summation expressed as

U � U
1

+ U
2
. (1)

.e global information obtained was subsequently
embedded using global average pooling to obtain channel-
wise features—S ∈ RC. Furthermore, a compact feature
Z ∈ Rd×1 was created to facilitate guidance for precise and
adaptive selections. .is was accomplished with the use of a
fully connected layer, with a decrease in dimensionality for
better efficiency, where Z � δ(β(WS)); β is the batch nor-
malization; δ denotes the rectified linear unit function, and
W ∈ Rd×1.

2.2.3. Select. According to soft computing techniques
[33, 34], a soft attention across streams was used to select
different streams guided by the feature Z. In particular, a
fully connected layer with a sigmoid operator was applied to
stream-wise digits to generate a probability statistical dis-
tribution comprising two streams,

(a) (b) (c)

Figure 6: Some failure cases. (a) RGB. (b) Ground-truth. (c) Proposed.
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Here, Ac (Bc) denotes the cth row of A (B), and w1,c (w2,c)
denotes the cth element of a (b). Additionally, A, B and a, b
denote the soft attention vectors for U1 and U2, respectively.
.e final output feature map Y was obtained by redis-
tributing weights via w1,c and w2,c to features corresponding
to modalities RGB and depth, respectively. .e corre-
sponding equation can be written as

Y � w1,c · U
1

+ w2,c · U
2
. (3)

It must be noted that the above equation is only ap-
plicable to the two-input case. However, one can easily
deduce the corresponding formulae for cases involving more
inputs by simply extending equations (1)–(3), and the de-
tailed structure of a three-input case is shown in Figure 4.

2.3. Saliency Prediction. Upon completion of the multi-
modal feature fusion stage, hierarchical fusion saliency
features elevated to the same size were obtained via bilinear
interpolation. Subsequently, the final fusion result was ob-
tained via the use of a three-input attention module (by
extending equations (1)–(3)). As previously mentioned in
Section 2.2, the attention module can adaptively assign
importance weights to fused saliency features belonging to
different levels.

After obtaining the final fusion result, the overall sa-
liency-prediction result was obtained via a combined op-
eration of two convolution layers, a final prediction with a
1× 1 convolution layer, and a sigmoid activity function. To
obtain the same resolution as the input, bilinear interpo-
lation was performed using a factor of four.

2.4. Combined Loss Function. In this study, the mean square
error (MSE) was used as a baseline reference in combination
with the linear correlation coefficient (CC) criteria to train
the proposed HMAF network. However, the CC criteria
were slightly modified to represent dissimilarities without
the need for empirical coefficients. .e modified loss was
observed to mimic cross-entropy behavior, which is used in
visual classification, approaching zero in the absence of any
mistakes.

.e MSE function is generally used to detect deviations
between the predicted value (P) and the true value (Q) of the
model..e smaller the value is, the closer the predicted value
is to the real value. Its calculation formula is as follows:

MSE �
1
N

􏽘

n

i�1
‖P − Q‖

2
, (4)

where N is the number of pixels per image; i indicates the ith
pixel; index n ranges from 1 to N; Q denotes the ground-
truth, and P represents the predicted saliency map.

.e CC criteria are deployed to calculate the linear CC
between two distributions, and its value lies within the range
[−1, 1], with CC� 1 indicating that the two distributions are
correlated and vice versa. .e CC function is defined as
follows:

CC(P, Q) �
σ(P, Q)

σ(P) × σ(Q)
, (5)

where σ represent the standard deviation of the input.
For the efficient application of root mean square

propagation (RMSprop), the CC criteria can be simplified to
the form

CC′(P, Q) � 1 −
σ(P, Q)

σ(P) × σ(Q)
, (6)

where CC′ represents the modified CC criteria. It converts
the similarity criteria into dissimilarity criteria, the value of
which lies within the range [0, 2]. In this study, a simple
summation ofMSE and CC′was considered to formulate the
loss function, i.e.,

Loss �
1
N

􏽘

n

i�1
‖P − Q‖

2
+ 1 −

σ(P, Q)

σ(P) × σ(Q)
. (7)

In Section 3.3, we quantitatively justify the rationale
behind selecting the loss combination by comparing our
results with those obtained using one evaluation criterion or
two evaluation criteria as a loss function.

2.5. Implementation Detail

2.5.1. Data Processing. We randomly sampled 70%, 10%,
and 20% of all RGB-D images as the training, verification,
and test sets, respectively.

Prior to data entry, the image size was adjusted to
224× 224 pixels. To boost the generalization performance of
the network, each RGB image was mean centered and
normalized to unit variance using precomputed parameters
before it was input to the network.

2.5.2. Training Methods. .e proposed HMAF method was
trained by loading the weights of a pretrained VGG-16
network as initial weights. Eight RGB-D images were used
during each iteration. .e learning rate was initialized at
1× 10–4. .e values of the model parameters were learned
via backpropagation of the loss function described in (6)
using RMSprop. An early termination method was used to
prevent model overfitting. Furthermore, we applied a
transition of 0–2 pixels and random horizontal flips on both
axes of the input RGB-D images to augment the dataset at
training time. All experiments were conducted on a
workstation equipped with an NVIDIA TITAN V GPU and
12GB of RAM.

3. Experimental Results and Analysis

3.1. Datasets. To verify the prediction performance of our
proposed HMAF network, all saliency prediction methods

6 Computational Intelligence and Neuroscience



were applied to various datasets. Presently, there are very few
public RGB-D datasets for performing visual saliency pre-
diction research. .is study evaluates the performance of
saliency-prediction methods applied to two representative
datasets—NUS3D [35] and NCTU [36], as follows: (1)
NUS3D contains 600 RGB-D images and involves several 2D
and RGB-D view scenes; it provides depth images, RGB
stimuli, and 2D and RGB-D fixation maps; (2) NCTU
comprises 475 RGB-D images along with depth maps; this
dataset includes various scenes, most of which have been
adapted from existing stereo movies and videos.

3.2. Evaluation Criteria. Four commonly used performance
criteria—CC [20], Kullback–Leibler divergence [19]
(KLDiv), area under the ROC curve [18] (AUC), and nor-
malized scanpath saliency [22] (NSS)—were used to evaluate
the prediction performance of the competing saliency-
prediction methods [18, 19].

3.3. Comparison between Different Loss Functions.
Table 1 compares single (KLDiv, CC′, and MSE) and
combined (MSE+CC′, MSE+KLDiv, and CC′+KLDiv)
loss-function values. As seen from the table, the proposed
method, on average, achieves better results than extant
methods. .e values of the combined loss functions, how-
ever, attain better results in favor of the proposed method
compared to those of single functions. Our combined loss
(MSE+CC′) obtains competitive prediction results on all
criteria, unlike other loss functions. Based on this, all results
were obtained by training the proposed HMAF with our
combination.

3.4. Ablation Studies

3.4.1. Effects of Hierarchical Features. To demonstrate the
effects of hierarchical features, the output features from
convolution layers Pool3, Pool4, and Pool5 were used for
visual saliency prediction (we denoted this as models A, B,
and C, respectively). .us, hierarchical features can be
considered important and complementary to each other,
thereby achieving high-accuracy saliency prediction.

3.4.2. Effect of VGGNet as Model Backbone. To further verify
the effectiveness of the VGGNet, we kept the pipeline un-
changed while only replacing the VGGNet with the ResNet
block [37] (we denoted this as model D). .e results are
listed in Table 2. We can observe that applying the VGGNet-
based approach generally provides better performance than
the ResNet-based approach.

3.5. Comparison against State-of-the-Art. To demonstrate
the effectiveness of the proposed HMAF-based saliency-
prediction method, it was compared against four state-of-
the-art approaches—Fang [24], DeepFix [19], DVA [20],
SAM [21], EML [22], and SMI [23]. Table 3 lists the results of
the quantitative comparison obtained by applying the
competing methods to both the aforementioned datasets in

terms of CC, KLDiv, AUC, and NSS. .e results in Table 3
show that the proposed HMAF-based method clearly out-
performed all others considerably, thereby demonstrating its
superior effectiveness, robustness, and generalization
capabilities.

A qualitative comparison of the proposed HMAF
method against the other six methods is depicted in Figure 5.
Clearly, the proposed HMAF yields more accurate predic-
tion results than other techniques because the saliency maps
are fused by three two-input attention modules and a three-
input attention module to facilitate high-accuracy predic-
tion. It can be seen from Figure 5 that the proposed method
is less distracted by high-contrast edges and complex
backgrounds and that it can easily predict bottom-up sa-
liency maps while also dealing well with global and local
contrast levels. Another important fact is that the proposed
method can highlight many top-down factors, such as hu-
man faces, people in complex backgrounds, and objects
located at long and short distances from the camera. More
specifically, although the images in lines 3, 4, 5, and 6 include
complex backgrounds and various attention-grabbing ob-
jects, our proposed method can still highlight semantic
regions preferentially.

.us, the qualitative and quantitative experimental re-
sults both show that HMAF outperforms all other presently
available techniques in terms of both robustness and
accuracy.

3.6. Failure Case Analysis. Some typical failure cases are
shown in Figure 6. .e first row indicates that the proposed
HMAF method does not perform well for RGB-D images
with people. .e second row indicates that when there are
many objects, the proposed HMAF method prefers high-
contrast objects and ignores small objects. To address this
problem, we intend to consider deep networks [38, 39] to
improve the performance of HMAF in the future.

3.7. Computational Complexity. .e computational com-
plexity of the proposed HMAF-based approach and other
approaches was estimated from tests on the NCTU dataset.
It takes approximately 1 h to train the proposed HMAF
using an NVIDIA TITAN V GPU and an Intel i5-8500
3.0GHz CPU. Inference takes approximately 0.01 s using the
proposed HMAF on an image of size 640 × 480. In con-
clusion, our approach has low computational complexity
and can satisfy the requirements of real-time image pro-
cessing systems.

4. Conclusion

In this study, multimodal fusion of 3D data was studied, and
a layered multimodal adaptive fusion network based on an
attention module was proposed. .e proposed network
effectively extracts and combines features from different
modes and levels. .e dual input attention module uses the
weights of importance associated with RGB and depth
modes. Adaptive fusion of hierarchical features was
extracted from the two patterns, rather than simply joining

Computational Intelligence and Neuroscience 7



them together. In addition, the three-input attention module
assigns different weights to the fusion significance charac-
teristics at different levels for the RGB-D significance pre-
diction. Experimental results show that the RGB-D
significance prediction method based on HMAF is superior
to all other advanced methods. .is model exhibits superior
performance, largely because of its attention mechanism
design. It has the potential to mimic human visual systems
more closely, which we hope to investigate in the future by
introducing this technology to develop a direct convolution
kernel that adapts the convolution kernel to identify targets
quickly, allowing significant compression of the model
parameters, for a variety of tasks. In addition, in the bottom-
up process, if a feature refinement unit module can be
designed for feature enhancement, the prediction errors in
feature coding can be further repaired through the prior
knowledge learned.

Data Availability

NUS3D data are available at https://sites.google.com/site/
vantam/nus3d-saliency-dataset. NCTU are available at
http://shallowdown.wixsite.com/chih-yao-ma/nctu-
3dfixation-database.
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