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Purpose: Pyroptosis has vital roles in tumorigenesis and cancer development; however, its relationship with cervical squamous cell
cancer (CSCC) remains unexplored. In this study, we aimed to develop a CSCC prediction signature related to pyroptosis.
Patients and Methods: Consensus clustering analysis was conducted to detect pyroptosis-related subclusters for CSCC. Next,
differentially expressed genes (DEGs) between subclusters were identified. Univariate, least absolute shrinkage and selection operator,
and stepwise multivariate Cox regression analyses were applied to establish a prognostic model and a nomogram drawn. Additionally,
functional enrichment analysis, tumor mutation burden, and immune characteristics associated with this signature were investigated.
Results:We constructed a seven-gene signature that functions as an independent predictor of prognosis in CSCC using data from The
Cancer Genome Atlas. Patients with CSCC were divided into two groups based on median risk score, and patients in the low-risk
group had significantly longer survival time than those in the high-risk group. Our findings were validated using Gene Expression
Omnibus cohort data. We also established a nomogram, to expand the clinical applicability of our findings. The seven gene signature
was associated with various molecular pathways, tumor mutation status, and immune microenvironment.
Conclusion: The pyroptosis-related risk signature consisting of seven genes developed here represents a potential robust biomarker
for predicting prognosis and immunotherapy response in patients with CSCC.
Keywords: pyroptosis, cervical squamous cell carcinoma, prognosis, immune microenvironment, nomogram

Introduction
Cervical cancer (CC) is the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in
women, representing a major global health concern. Despite the promotion of human papillomavirus (HPV) vaccination
and screening programs, there were an estimated 604,000 new cases and 342,000 deaths from CC worldwide in 2020,
most of which occurred in developing and underdeveloped countries.1 Persistent infection with high-risk HPV is a major
pathogenic factor in development of CC.2 Squamous cell carcinoma accounts for 80% of all CC tumors.3 The main
treatments for CC consist of surgery, chemotherapy, and radiotherapy. Although patients with early-stage tumors usually
can be successfully managed using modern therapies, their condition can deteriorate because of recurrent or metastatic
disease, which continue have poor prognosis.4 Given the lack of precise diagnostic markers and the limited treatment
options, novel prognostic models or innovative biomarkers are urgently required to guide targeted therapies and improve
the clinical outcomes of patients with CC.

Cell death plays critical roles in regulating cell proliferation, maintaining cellular homeostasis, and tumor progression.
Pyroptosis is a newly-discovered form of lytic programmed cell death triggered by inflammasomes, and is distinct from
autophagy and apoptosis.5 Pyroptotic cell death results in cell swelling with ballooning bubbles, plasma membrane
perforation, chromatin fragmentation, and efflux of intracellular active compounds, accompanied by immune cell
infiltration and inflammatory responses.6,7 Recent studies have identified caspases as executors and gasdermins
(GSDMs) as key effectors during the pyroptosis process.8,9 The caspase-1-dependent canonical pathway is mediated
by inflammasome assembly, along with GSDMD cleavage and IL-1β and IL-18 release. Inflammasomes and their related
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cytokines are thought to participate in oncogenesis.10,11 In the non-canonical pathway, human caspase-4/5 (mouse
ortholog, caspase-11) can be activated by directly binding to intracellular lipopolysaccharide through the N-terminal
caspase recruitment domain.12 Furthermore, other alternative pathways involving caspase-3/GSDME, caspase-8/
GSDMC, granzyme-B/GSDME, and granzyme-A/GSDMB have been confirmed to induce pyroptosis.13–16 The relation-
ship between pyroptosis and cancer is complex, and the effects of pyroptosis on cancer vary in different tissues and
genetic backgrounds. Pyroptosis can inhibit the occurrence and development of tumors, but it can also form a suitable
microenvironment for promoting tumor development.17 To date, some pyroptosis-related signatures for predicting
prognosis have been developed in different tumor types, including ovarian cancer,18 gastric cancer,19 lung
adenocarcinoma,20 and head and neck squamous cell carcinoma;21 however, the role of pyroptosis in cervical squamous
cell carcinoma (CSCC) requires further study.

In the current study, we developed a novel prognostic signature, based on differentially expressed genes (DEGs) between
pyroptosis-related subclusters, and investigated its relationship with clinicopathological features and overall survival (OS) of
patients with CSCC. In addition, signaling pathways, tumor immune microenvironment (TIME), tumor mutation burden
(TMB), and immunotherapy response associated with the signature in CSCC, were explored. This study provides better
understanding of the mechanism underlying pyroptosis and more precise prognostic targets for patients with CSCC.

Materials and Methods
Data Acquisition
RNA sequence transcriptome data, somatic mutation data, and relevant clinical information from 255 patients with CSCC
and 2 normal adjacent tissue samples were obtained from The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). For external validation, RNA sequencing data and clinical information from 37 patients with CSCC
were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/, GSE30759). Only patients with patholo-
gically confirmed CSCC were included in this study; all other pathologic types were excluded. R (version 4.1.2) package
“sva” was used to normalized gene expression data for further analyses.

Identification of Differentially Expressed Pyroptosis-Related Genes
Based on the findings of previous studies,17,22–24 52 pyroptosis-related genes (PRGs) were extracted and their mRNA
expression levels compared between CSCC and normal adjacent tissue samples in TCGA cohort. Differentially expressed
PRGs were identified using the “limma” package, with P < 0.05 as the significance threshold, and presented as
a heatmap. A protein-protein interaction (PPI) network of pyroptosis-related DEGs was constructed using Search Tool
for the Retrieval of Interacting Genes (STRING), version 11.5 (https://string-db.org/). In addition, a correlation network
of pyroptosis-related DEGs was constructed (interaction score cutoff = 0.2).

Consensus Clustering
The “ConsensuClusterPlus” R package (parameters: clustering algorithm, k-means; distance, Euclidean) was applied,
with 1000 iterations.25 The optimal k value was confirmed, according to cumulative distribution function and delta area
values, and patients with CSCC then classified into different clusters, based on differentially expressed PRGs.

Identification of Differentially Expressed Genes Between Clusters
The “limma” R package was used to identify DEGs between different pyroptosis-related clusters, with a threshold of
|log2FC| ≥ 1 and P < 0.05. Intersecting DEGs were assembled in both TCGA and GEO cohorts.

Development and Validation of Prognostic Signature
Combined with survival information, PRGs in TCGA cohort data were initially screened using univariate Cox regression
(P < 0.01). Next, the R package “glmnet” was used to conduct Least absolute shrinkage and selection operator (LASSO)
Cox regression, to minimize overfitting.26 Finally, stepwise multivariate Cox regression was performed to converge
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variables and build a risk signature based on these optimal genes. Risk scores for each patient were calculated according
to the following formula:

Risk score = ∑Coefgene × Expgenes
where Coefgene represents the coefficient of each prognostic gene and Expgenes represents the expression level of

each gene. Patients were assigned to low- and high-risk groups according to the cutoff median risk score.
Principal component analysis (PCA) was performed for effective dimensionality reduction, model recognition, and

grouping visualization of overall expression profiles.
Kaplan–Meier curves were constructed using the “survival” R package. In addition, area under the receiver operating

characteristic (ROC) curve (AUC) values were calculated using the R package “survivalROC”, to assess the prognostic
value of the pyroptosis-related signature. Data from the GSE30759 GEO cohort were integrated and analyzed according
to the formula and risk scores, as an external validation dataset.

Establishment and Evaluation of a Predictive Nomogram
Univariate and multivariate Cox proportional hazard regression analyses were conducted to test whether prognosis was
influenced by independent variables, including clinicopathologic characteristics (age, grade, clinical stage) and risk
scores in both TCGA and GEO cohorts. Independent prognostic factors were selected to construct a nomogram27 using
TCGA dataset, to evaluate the 1-, 3-, and 5-year survival probability. Subsequently, a calibration curve was generated
using the “rms” R package, to illustrate the consistency between actual outcomes and model predictions. Concordance
(C)-index values were calculated using the “Hmisc” R package to validate the predictive ability of the signature.28

Further, Decision Curve Analysis (DCA) was applied to evaluate the reliability of the model.

Functional Enrichment Analysis
Gene set variation analysis (GSVA) was conducted using the “GSVA” R package to explore potential molecular
mechanisms that differed among pyroptosis-related clusters. The Hallmark gene set “c2.cp.kegg.v7.4.symbols.gmt”,
retrieved from the MSigDB database (http://www.gsea-msigdb.org), was applied in GSVA. All CSCC samples were
stratified into two subgroups. DEGs between high- and low-risk groups were filtered based on a threshold of |log2FC| ≥ 1
and P < 0.05, and subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
using the “clusterProfiler” R package.

Mutation Analysis
Somatic variant data from TCGA CSCC patients were stored in Mutation Annotation Format and analyzed and
summarized using maftools.29 Mutation data included the total number of genetic coding errors, base substitutions,
and gene insertions or deletions. For each sample, the total number of mutations identified in the exome content were
used to compute the TMB per megabase via Perl (version 5.34.0, https://www.perl.org/).

Estimation of Infiltrating Immune Cells and Immune Microenvironment Characteristics
To estimate immune cell infiltrating status, single sample gene set enrichment analysis (ssGSEA) was conducted to
calculate infiltrating immune cell scores and immune-related pathway activity using the “GSVA” R package.

Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) is an
approach used to deduce the proportion of non-tumor constituents in tumor samples.30 To investigate relationships with
the risk signature, TIME, stromal score, immune-score, tumor-purity, and ESTIMATE-scores were calculated from
CSCC data using ESTIMATE.

Immunophenoscore (IPS) values can be derived without bias using machine learning, based on the expression of the
four major determinants: major histocompatibility complex (MHC) molecules, effector cells (EC), immune checkpoints
(CP), and immunosuppressive cells (SC). Higher scores are associated with increased immunogenicity.31 The IPS values
of patients with CSCC were retrieved from The Cancer Immunome Atlas (https://tcia.at/home) and compared between
the high- and low-risk groups.
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Results
Identification of Pyroptosis-Related DEGs Between Normal and CSCC Tissues
Fifty-two PRGs were identified (Supplementary Table 1), based on published data, and their RNA expression levels
compared in TCGA data from 255 CSCC and 2 normal adjacent tissue samples. We identified 20 differentially expressed
PRGs, using a threshold of P < 0.05, of which 18 (BAK1, BAX, CASP3, CHMP4C, CYCS, GZMB, IL18, TP53, TP63,
AIM2, CASP6, CASP8, GSDMB, GSDMC, NLRP7, NOD2, PYCARD, and TNF) were upregulated and 2 (CHMP6 and
ELANE) were downregulated in tumor tissues (Figure 1A). A PPI network was constructed using a minimum confidence
value of 0.7 (high confidence), and CASP8, TP53, CASP3, CYCS, TNF were identified as the top 5 hub molecules
(Figure 1B). A correlation network containing all PRGs is presented in Figure 1C (interaction score cutoff = 0.2).

Consensus Clustering Based on Pyroptosis-Related DEGs
To explore the relationships between CSCC subtypes and expression of the 20 pyroptosis-related DEGs, consensus
clustering analysis was performed to classify tumors according to expression levels of pyroptosis-related DEGs.
Clustering variable (k) values from 2 to 9 were applied; when k = 2, intragroup correlations were low. Hence, patients
with CSCC could be divided into two different subtypes, including 206 cases in cluster 1 and 47 cases in cluster 2
(Figure 2A), and there was a significant difference in OS time between the two groups (P = 0.025) (Figure 2B). Further,
we conducted GSVA KEGG enrichment analysis to investigate the biological characteristics of the distinct clusters
(Figure 2C). Cluster 2 showed enrichment for pathways in cancer, including bladder, thyroid, and small cell lung cancers.

Establishment of a Gene Signature Based on Pyroptosis-Related Clusters
First, 727 DEGs (|log2FC| ≥ 1, P < 0.05) were identified based on the pyroptosis-related clusters and survival information
for 253 patients with CSCC retrieved. Next, we screened for prognostic genes in TCGA cohort data by univariate Cox
regression analysis. Expression levels of 84 genes were significantly correlated with OS (P < 0.01) (Figure 3A).
Following LASSO analysis to minimize overfitting, 17 genes were identified (Figure 3B and C). Then, multivariate
analysis was conducted to explore genes with independent prognostic value (Figure 3D). Finally, 7 genes (CST7, EPHB6,
CCL17, ANGPTL4, CCL20, TMEM100, and FAM3B) were selected to construct a prognostic signature associated with
pyroptosis. The risk score formula was defined as follows:

Figure 1 Expressions of the 20 pytoptosis-related genes and the interactions among them. (A) The heatmap showed the 20 pytoptosis-related genes in tumor and normal
adjacent tissues. P values were showed as: *P < 0.05. (B) PPI network indicated the interactions of the pyroptosis-related genes. (C) The correlation network of the
pyroptosis-related genes (red: positive correlations; blue: negative correlations).
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Risk Score = (-0.293× CST7 exp.) + (-0.228× EPHB6 exp.) + (-0.499× CCL17 exp.) + (0.304× ANGPTL4 exp.) +
(0.132× CCL20 exp.) + (0.821× TMEM100 exp.) + (-0.251× FAM3B exp.)

Using this signature, patients were further categorized into equal high- and low-risk groups, based on the median risk
value (Figure 4A). As illustrated in the scatter diagram in Figure 4B, individuals in the high-risk score group had worse
outcomes than those in the low-risk group.

Next, we conducted PCA to verify the ability of the model to group patients in the entire set. We observed
that patients in different groups were dispersed in two directions (Figure 4C). In addition, a significant difference
in OS time was detected between the two groups by Kaplan-Meier analysis (P < 0.001) (Figure 4D). ROC curve
analysis was conducted to evaluate the sensitivity and specificity of the prognostic model, resulting in AUC
values of the models for predicting 1-, 3- and 5-year OS of 0.885, 0.791, and 0.771, respectively (Figure 4E).

Figure 2 Tumor subclusters based on the pyroptosis-related DEGs. (A). Consensus clustering matrix for k = 2. (B) Kaplan–Meier curves of OS in two clusters. (C) The
heatmap of KEGG pathways between two distinct clusters analyzed by GSVA.
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External Validation of the Seven-Gene Signature
To assess the prognostic power of the model built using TCGA dataset, data from 37 patients with CSCC in the GEO
cohort, GSE30759, were used as a validation set. Gene expression data from the two datasets were normalized.
According to the uniform formula, risk scores were calculated and patients divided into different risk groups. Based
on the median risk score, 18 patients in the GEO cohort were classified into the high-risk group, while the remaining 19
patients were classified into the low-risk group (Figure 5A). Similar to the results using TGCA data, patients in the high-
risk group had shorter survival time and higher mortality compared with those in the low-risk group (Figure 5B). PCA
revealed satisfactory separation between the two groups (Figure 5C). Further, Kaplan–Meier analysis generated results

Figure 3 Establishment of the pyroptosis-related signature in the TCGA dataset. (A) Univariate cox regression analysis screened prognostic genes from DEGs based on
pyroptosis-related clusters (P < 0.01). (B) LASSO regression of the 84 prognostic genes. (C) Cross-validation for tuning the parameter selection in the LASSO regression.
(D) Stepwise multivariate cox regression analysis showed 7 independent prognostic genes.
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comparable to those derived from TCGA cohort data. The OS of high-risk patients was lower than that of low-risk
patients (Figure 5D). ROC curve analysis of the validation set showed that our model has excellent predictive power,
with AUC values for 1-, 3-, and 5-year OS of 0.882, 0.868, and 0.754, respectively (Figure 5E).

Independent Predictive Value of the Risk Model
Both univariate and multivariate cox regression analyses were applied to determine independent prognostic factors in patients
with CSCC. First, we carried out univariate Cox regression analysis to define potential risk factors. Risk score and stage were
associated with prognosis in TCGA cohort (Figure 6A), and risk score, stage, and grade were prognostic factors in the GEO
cohort (Figure 6C). Additionally, risk score (hazard ratio (HR) = 1.141, 95% confidence interval (CI): 1.095–1.189, P < 0.001),
stage (HR = 1.650, 95% CI: 1.293–2.105, P < 0.001), and age (HR = 1.020, 95% CI: 1.001–1.039, P = 0.036) were confirmed as
prognostic factors in a combined data fromTCGA andGEO (Figure 6E). Subsequently, independent predictors were selected via
multivariate Cox regression analysis. The results showed that risk score and stage remained significant predictors in TCGA
cohort data (Figure 6B); however, no significant predictor was detected after accounting for confounding factors in the GEO
cohort (Figure 6D). Finally, risk score (HR = 1.141, 95% CI: 1.095–1.189, P < 0.001) and stage (HR = 1.650, 95% CI: 1.293–
2.105,P < 0.001) were independent predictors in analysis of data from both cohorts combined (Figure 6F). Furthermore, we drew
a heatmap of clinicopathologic features for the combined cohort, and found that clinical stage differed significantly between the
high- and low-risk groups (P < 0.05), while age and grade did not differ significantly (Figure 6G).

Construction and Validation of a Prognostic Nomogram
Using the results of univariate and multivariate Cox analyses, stage and risk categories based on the seven gene signature
were integrated to create a nomogram for TCGA cohort data, to expand the clinical applicability and use of the signature
(Figure 7A). The nomogram could be helpful for accurate prediction of 1-, 3-, and 5-year OS. Individual patients were
given total point values, generated by combining the points corresponding to each prognostic variable. High overall point

Figure 4 Prognostic value of the risk patterns of the signature in the TCGA dataset. (A) Distribution of risk score, (B) survival status plot and survival time, (C) PCA
analysis, (D) Kaplan-Meier analysis of OS, (E) ROC curves analysis between high- and low-risk groups.
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score indicated poor clinical outcome. The calibration curve for the nomogram indicated good consistency between
predicted survival and actual observations (Figure 7B). The C-index value for the nomogram was 0.837, indicating that it
exhibits high predictive consistency. In addition, we used DCA to assess the reliability of the model, and observed that
the nomogram including clinical stage and risk subtype was better at predicting 5-year OS than individual indicators
(Figure 7C).

Functional Enrichment Analysis of Genes Included in the Risk Model
To further investigate the potential biological processes and pathways correlated with patient risk categories, we extracted
35 DEGs between the high- and low-risk groups in TCGA cohort by applying the threshold, |log2FC| ≥ 1 and P < 0.05, via
the “limma” R package (Supplementary Table 2); however, no DEGs were identified in GEO cohort data using the same
criteria. According to analysis of TCGA data, 24 genes were downregulated in the high-risk group, while the remaining 11
genes were upregulated. GO and KEGG enrichment analyses were performed using these DEGs, and the results demon-
strated that DEGs were primarily associated with immune response, inflammatory chemotaxis activity, and viral protein
interaction (Figure 8).

Risk Signature and Mutation Profile
Gene mutation is a major driver of tumorigenesis and cancer development. Patient mutation profiles were analyzed and
summarized using the “maftools” R package (Figure 9A). The top two mutated genes in both the low- and high-risk
groups were TTN and PIK3CA. Next, we calculated TMB scores based on TGCA somatic mutation data. TMB scores
were markedly higher in the high-risk group than those in the low-risk group (P = 0.041) (Figure 9B). Further, although
no significant difference in OS time was detected between the low- and high-TMB groups (P = 0.117), patients with
high-TMB had a trend toward longer survival time than those with low-TMB (Figure 9C). Interestingly, patients with
high- or low-TMB in the low-risk group had superior OS to those in the high-risk group. Additionally, in the low-risk

Figure 5 Validation of the risk model in the GEO cohort. (A) Distribution of risk score, (B) survival status plot and survival time, (C) PCA analysis, (D) Kaplan-Meier
analysis of OS, (E) ROC curves analysis between high- and low-risk groups.
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group, survival time of patients with high-TMB was longer than that of patients with low-TMB, and a similar result was
observed in the high-risk group (Figure 9D). These findings indicate that the risk model may have greater prognostic
significance than mutation status.

Association of the Prognostic Model with the Immune Microenvironment
Based on the results of functional enrichment analyses, we conducted further investigation of the immune characteristics of
the risk signature in TCGA cohort data. The enrichment scores of 16 types of immune cells and the activity of 13 immune-
related pathways were compared using ssGSEA. The high-risk group generally had lower levels of 14 infiltrating immune
cells than the low-risk group, particularly activated dendritic cells, B cells, CD8+ T cells, dendritic cells, induced dendritic

Figure 6 Independent predictive value of the risk scores. (A) Univariate analysis for TCGA cohort. (B) Multivariate analysis for TCGA cohort. (C) Univariate analysis for
GEO cohort. (D) Multivariate analysis for GEO cohort. (E) Univariate analysis for the combined cohort. (F) Multivariate analysis for the combined cohort. (G) The heatmap
(blue: low expression; red: high expression) for the connections between clinicopathologic features and the risk groups.
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cells, macrophages, mast cells, neutrophils, plasmacytoid dendritic cells, T helper cells, Follicular helper T cells, Th2 cells,
tumor-infiltrating lymphocytes, and regulatory T cells (Tregs) (Figure 10A). There was higher activity of immune-related
pathways in the low-risk group than in the high-risk group, including APC co-inhibition, checkpoint, cytolytic activity,
human leukocyte antigen (HLA), inflammation-promotion, MHC class I, T cell co-inhibition, T cell co-stimulation, and type
I IFN (interferon) response (Figure 10B). Other immune cell and immune-related pathway scores did not differ significantly;
however, there was a similar trend in differences between the two groups, except for type II IFN response. We also
determined immune and ESTIMATE scores using the ESTIMATE algorithm, to evaluate the relationship between the risk
model and the immune microenvironment. As expected, all scores (stromal, immune, and ESTIMATE) differed significantly
between the two groups (P < 0.01), with scores of the low-risk group higher than those of the high-risk group (Figure 10C).
These results indicate that the immune systems of patients in the low-risk group were more active.

Given the difference in checkpoint pathway activity between two groups, we conducted a detailed exploration of
the expression levels of four classical immune checkpoint proteins, and found that those of PDCD1 (PD-1) (P <

Figure 7 Construction and evaluation of the prognostic nomogram in the TCGA cohort. (A) The nomogram was built based on two independent prognostic factors for
predicting the probability of the 1-, 3-, and 5-year OS. (B) The calibration plot for evaluating the predictive ability of the nomogram at 1-, 3-, and 5-year. (C) DCA of the
Nomogram model.
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0.001), CD274 (PD-L1) (P < 0.05), CTLA4 (P < 0.001), and LAG3 (P < 0.001) were remarkedly upregulated in the
low-risk group (Figure 11A). Therefore, low-risk patients may be more likely to respond to checkpoint inhibitor
therapy. Furthermore, we calculated IPS values for each sample, based on MHC, EC, CP, and SC. The IPS values of
the low-risk group were significantly higher than those of the high-risk group when both PD-1 and CTLA4 were
positively expressed (Figure 11B), whereas there was no difference in IPS values between the two risk groups in
samples negative for PD-1 and CTLA4, or single PD-1-positive or CTLA4-positive samples (Figure 11C–E). These

Figure 8 Functional enrichment analysis based on DEGs between high- and low-risk groups in the TCGA cohort. (A) Bar plot for GO enrichment. (B) Bubble graph for
KEGG pathways.

Figure 9 The mutation profile and TMB analysis. (A) Mutation profile of CSCC patients in high- and low-risk groups. (B) The relationship between the risk signature and
TMB. (C) The association between TMB and OS. (D) Kaplan-Meier curves of OS is shown for patients classified according to the TMB status and risk model.
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results suggest that low-risk patients may obtain more benefit from combined anti-PD-1 and anti-CTLA4
immunotherapy.

Discussion
CC represents the most common gynecological tumor in low- and middle-income countries. With the development of
innovative treatments, the curability of early stage CC has improved. Nevertheless, approximately 30% of patients with
CC die due to recurrent disease or metastasis.32 Current diagnostic and prognostic indicators for CC, including tumor
size, depth of invasion, lymph node metastasis, and pathological classification, have limited ability to predict therapeutic
response and clinical outcomes. Squamous cell carcinoma is the major histological type of CC; therefore, development of
a prognostic model suitable for patients with CSCC is urgently required.

Figure 10 Comparison of TIME between high- and low-risk groups in the TCGA cohort. (A) Comparison of the ssGSEA scores of 16 types of immune cells. (B)
Comparison of the ssGSEA scores of 13 immune-related pathways. (C) Comparison of stromal, immune, and ESTIMATE scores. P values were showed as: *P < 0.05, **P <
0.01, ***P < 0.001.

Figure 11 Comparison of immunotherapy response between high- and low-risk groups in the TCGA cohort. (A) The expression levels of 4 classical immune checkpoint
genes. (B) IPS analysis with both PD-1 positive and CTLA4 positive, (C) PD-1 negative and CTLA4 negative, (D) PD-1 positive and CTLA4 negative, (E) PD-1 negative and
CTLA4 positive. P values were showed as: *P < 0.05, ***P < 0.001.
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Pyroptosis is a type of lytic and inflammatory programmed cell death that depends on inflammatory caspases and members
of the GSDM protein family. Compared with other forms of cell death, pyroptosis occurs more rapidly and invokes a robust
inflammatory response, which is closely linked to immune regulation. For tumors, dual promotion and inhibition may occur
simultaneously during oncogenesis and tumor development. Additionally, induction of tumor cell pyroptosis is a potential new
therapeutic target.33 The specific mechanisms underlying pyroptosis differ in various cancers. In particular, the relationships of
tumors with upstream and downstream pyroptosis-related signaling pathways remain unclear. Therefore, pyroptosis regulators
warrant extensive further investigation.

Human cervical carcinoma (HeLa) cells that overexpress GSDMB exhibit clear features of pyroptosis.16 The
prognostic signature for CC depending on eight pyroptosis-related genes suggests that pyroptosis may have a crucial
role in tumor development and therapeutic outcomes.34 How pyroptosis-related regulators interact in CCSC and whether
they are related to patient survival time remains unknown. Our study reveals two distinct pyroptotic tumor clusters, based
on the expression of 20 PRGs in TCGA cohort data and prognosis of patients in these two clusters differed significantly.
Patients in cluster 2 had worse outcomes and showed enrichment in pathways in cancer, galactose metabolism, and
NOD-like receptor signaling, while those in cluster 1 were enriched for fatty acid metabolism, butanoate metabolism, and
ABC transporters.

According to differences between the two clusters, we generated a signature featuring seven genes (CST7, EPHB6,
CCL17, ANGPTL4, CCL20, TMEM100, and FAM3B) to explore the links between pyroptosis and clinical prognosis in
CSCC. Among these genes, CCL17, ANGPTL4, and CCL20 have previously been reported as associated with CC.

As a member of the chemokine (C-C motif) ligand family, CCL17 plays important roles in Th2-type immune
responses. CCL17 is highly expressed in CC and influences cell proliferation via the JNK and STAT5 signaling
pathways. Additionally, CCL17 may reconstruct the TIME by recruiting Tregs and eosinophils to local cancer
lesions.35 Notably, CCL17 was downregulated in the high-risk group with immunosuppression status in our model.

ANGPTL4 (angiopoietin-like protein 4), a secreted glycoprotein, regulates glucolipid metabolism, angiogenesis, and
wound healing. Upregulation of ANGPTL4 is strongly associated with tumor stage, depth of stromal invasion, lymph
node metastasis, and lymphovascular space invasion, which lead to decreased OS and disease-free survival.36 Moreover,
ANGPTL4 is upregulated due to Cremophor EL, which promotes aerobic glycolysis and triggers proinflammatory gene
expression and caspase/gasdermin E-dependent pyroptosis.37

CCL20, also known as macrophage inflammatory protein-3α and liver activation regulated chemokine, is involved in
tissue inflammation and homeostasis, and has a specific receptor, CCR6. CCL20 is predominantly over-expressed in the
stroma of CC tissue, and correlates with advanced clinical stage and an inflammatory microenvironment comprising
T-helper-17 cells, a T-cell subset with pro-tumorigenic properties.38 Consistently, in our model, CCL20 was upregulated
in the high-risk group with poor prognosis.

Conversely, CST7, EPHB6, TMEM100, and FAM3B have not previously been studied in the context of CC. CST7, also
known as Cystatin F, is a key subunit of family 2 cystatins and is remarkedly downregulated in hepatocellular carcinoma
(HCC). High expression levels of CST7 were strongly associated with increased recurrence-free survival and OS in patients
with hepatitis B virus-related HCC, as well as showing enrichment in tumor evasion, tolerogenicity, and cancer
progenitors.39 Similarly, CST7 served as a protective factor in our risk model. EPHB6, a kinase-defective Eph receptor,
belongs to the human receptor tyrosine kinase family and appears to function as a malignancy-suppressing factor and
inhibitor of metastasis, which regulates cell adhesion and migration.40,41 Additionally, EPHB6 mutation promotes cancer
cell proliferation and migration/invasion and induces cell adhesion-mediated drug resistance (CAM-DR), such as pacli-
taxel-resistance.42 The TMEM100 (Transmembrane protein 100) gene maps to chromosome 17q32 and encodes a 134-
amino acid protein predicted to have two transmembrane domains. In hepatic stellate cells, TMEM100 overexpression
leads to down-regulation of IL-1β and IL-6 secretion.43 TMEM100 may serve as a tumor suppressor in non-small cell lung
cancer and promote autophagy and apoptosis;44 however, the role of TMEM100 in pyroptosis requires clarification.
FAM3B, a member of the Family with sequence similarity 3 group of proteins, has different expression levels in various
tumor types. High FAM3B expression has been identified by immunogenome analysis and confirmed as associated with
specific prolongation of survival in patients with papillary thyroid carcinoma and bladder cancer.45,46
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Here, we separated patients with CSCC into high- and low-risk groups based on their median risk score, calculated using
the developed risk signature. Kaplan–Meier survival curves showed that the OS of patients in the high-risk group was
markedly lower than those in the low-risk group. Calculation of AUC values revealed that the risk signature was efficient in
predicting survival prognosis and this was externally validated using data from the GEO database. Univariate and multi-
variate Cox regression analyses indicated that the risk score was an independent risk factor for prognosis in both TCGA and
the combined cohort; however, DEGs were not screened in the GEO cohort for further validation. Functional enrichment
analyses demonstrated that immune-related processes were significantly associated with DEGs between the different risk
groups in TCGA cohort. Therefore, we speculate that pyroptosis may influence the TIME. The results of ssGSEA analysis
indicated that patients with high-risk scores were in an immunologically active state, including infiltrating immune cells and
immune activities, and these results were supported by ESTIMATE algorithm analysis. Infiltrations of stromal and immune
cells were significantly higher in the low-risk group. The release of GzmB by immune cells cleaves GSDME and promotes
HeLa cell pyroptosis.47 These findings support the interaction between pyroptosis and the immune system.

TMB generates neoantigens, resulting in the enrichment of immune cells in tumors and can predict survival in diverse
cancers. In this study, we found that the low-risk group showed lower TMB. Surprisingly, the predictive power of our
risk score was stronger than that of TMB according to survival analysis. Recently, there has been considerable progress in
the development of immunotherapy for CC;48 however, biomarkers that distinguish patients likely to benefit from
immunotherapy are limited. Pyroptosis-induced inflammation can trigger robust antitumor immunity and synergize
with checkpoint blockade.49 Therefore, we explored the responses of common immune checkpoints inhibitors and
found that the expression levels of PD-1, PD-L1, CTLA4, and LAG3 were significantly increased in the low-risk
group, suggesting that low-risk patients may respond better to treatment with immune checkpoints inhibitors. Moreover,
the results of IPS analysis indicated that combined treatment with CTLA-4 and PD-1 blockers may significantly enhance
therapeutic efficacy in low-risk group patients. Combination treatment has been approved for use in patients with
metastatic melanoma and advanced renal cell carcinoma.50

This study has some limitations. First, our data were extracted from public repositories and were not generated in-
house. Second, to reduce the influence of confounding factors in different databases, we identified pyroptosis-related
DEGs from 255 CSCC and 2 normal adjacent tissue samples only in TCGA CSCC database. Thus, further research using
a larger sample size of normal control tissues should be conducted to verify the pyroptosis-related DEGs between tumor
and normal tissues. Third, the results of our functional enrichment and TIME analyses could not be validated using GEO
data. Validation with additional samples would be beneficial. Finally, our findings will be more persuasive if they can be
validated by additional independent experiments.

Conclusion
In summary, our study provides a useful tool for predicting the prognosis of patients with CSCC and may be helpful for
exploring the functions of PRGs. In addition, our data highlight that pyroptosis and combined targeted therapies warrant
further study.

Abbreviations
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