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Abstract

Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A
good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted
from a cohort that differs from the target population. Such a mismatch, known as a dataset shift, can undermine the
application of the biomarker to new individuals. Dataset shifts are frequent in biomedical research, e.g., because of
recruitment biases. When a dataset shift occurs, standard machine-learning techniques do not suffice to extract and
validate biomarkers. This article provides an overview of when and how dataset shifts break machine-learning–extracted
biomarkers, as well as detection and correction strategies.
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Introduction: Dataset Shift Breaks Learned
Biomarkers

Biomarkers are measurements that provide information about
a medical condition or physiological state [1]. For example, the
presence of an antibody may indicate an infection; a complex
combination of features extracted from a medical image can
help assess the evolution of a tumor. Biomarkers are important
for diagnosis, prognosis, and treatment or risk assessments.

Complex biomedical measures may carry precious medical
information, as with histopathological images or genome se-
quencing of biopsy samples in oncology. Identifying quantitative
biomarkers from these requires sophisticated statistical anal-
ysis. With large datasets becoming accessible, supervised ma-
chine learning provides new promise by optimizing the informa-
tion extracted to relate to a specific output variable of interest,
such as a cancer diagnosis [2–4]. These methods, cornerstones of
artificial intelligence, are starting to appear in clinical practice:
a machine-learning–based radiological tool for breast cancer di-

agnosis has recently been approved by the U.S. Food and Drug
Administration [5].

Can such predictive biomarkers, extracted through complex
data processing, be safely used in clinical practice, beyond the
initial research settings? One risk is the potential mismatch, or
“dataset shift,” between the distribution of the individuals used
to estimate this statistical link and that of the target popula-
tion that should benefit from the biomarker. In this case, the
extracted associations may not apply to the target population
[6]. Computer-aided diagnostics of thoracic diseases from X-ray
images has indeed been shown to be unreliable for individuals
of a given sex if built from a cohort over-representing the other
sex [7]. More generally, machine-learning systems may fail on
data from different imaging devices, hospitals, populations with
a different age distribution, and so forth. Dataset biases are in
fact frequent in medicine. For instance selection biases—e.g.,
due to volunteering self-selection, non-response, or dropout [8,
9]—may cause cohorts to capture only a small range of possible
patients and disease manifestations in the presence of spectrum
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2 Dataset shift and machine-learning biomarkers

effects [10, 11]. Dataset shift or dataset bias can cause system-
atic errors that cannot be fixed by acquiring larger datasets and
require specific methodological care.

In this article, we consider predictive biomarkers identified
with supervised machine learning. We characterize the prob-
lem of dataset shift, show how it can hinder the use of machine
learning for health applications [12, 13], and provide mitigation
strategies.

A Primer on Machine Learning for Biomarkers
Empirical risk minimization

Let us first introduce the principles of machine learning used
to identify biomarkers. Supervised learning captures, from ob-
served data, the link between a set of input measures (features)
X and an output (e.g., a condition) Y: e.g., the relation between
the absorption spectrum of oral mucosa and blood glucose con-
centration [14]. A supervised learning algorithm finds a function
f such that f(X) is as close as possible to the output Y. Following
machine-learning terminology, we call the system’s best guess
f(X) for a value X a “prediction,” even when it does not concern
a measurement in the future.

Empirical risk minimization, central to machine learning,
uses a loss function L to measure how far a prediction f(X) is
from the true value Y, e.g., the squared difference:

L (Y, f (X)) = (Y − f (X))2. (1)

The goal is to find a function f that has a small “risk,” which is
the expected loss on the true distribution of X and Y, i.e., on
unseen individuals. The true risk cannot be computed in prac-
tice: it would require having seen all possible patients, the true
distribution of patients. The empirical risk is used instead: the
average error over available examples,

R̂( f ) = 1
n

∑n

i=1
L (yi , f (xi )), (2)

where {(xi , yi ) , i = 1, . . . , n} are available (X, Y) data, called “train-
ing” examples. The statistical link of interest is then approxi-
mated by choosing f within a family of candidate functions as
the one that minimizes the empirical risk R̂( f ).

The crucial assumption underlying this very popular ap-
proach is that the prediction function f will then be applied to
individuals drawn from the same population as the training ex-
amples {xi, yi}. It can be important to distinguish the source
data, used to fit and evaluate a machine-learning model (e.g.,
a dataset collected for research), from the target data, on which
predictions are meant to be used for clinical applications (e.g.,
new visitors to a hospital). Indeed, if the training examples are
not representative of the target population—if there is a dataset
shift—the empirical risk is a poor estimate of the expected er-
ror, and f will not perform well on individuals from the target
population.

Evaluation: Independent test set and cross-validation

Once a model has been estimated from training examples, mea-
suring its error on these same individuals results in a (some-
times wildly) optimistic estimate of the expected error on unseen
individuals (Friedman et al. [15], Sec. 7.4, Poldrack et al. [16], Sec.
1, “Association vs Prediction”). Indeed, predictors chosen from a
rich family of functions are very flexible and can learn rules that

fit the training examples tightly but fail to generalize to new in-
dividuals. This is called “overfitting.”

To obtain valid estimates of the expected performance on
new data, the error is measured on an independent sam-
ple held out during training, called the test set. The most
common approach to obtain such a test set is to randomly
split the available data. This process is usually repeated
with several splits, a procedure called cross-validation ([15,
Sec. 7, 17]).

When training and test examples are chosen uniformly from
the same sample, they are drawn from the same distribution
(i.e., the same population): there is no dataset shift. Some stud-
ies also measure the error on an independent dataset (e.g., [18,
19]). This helps establish external validity, assessing whether the
predictor will perform well outside of the dataset used to de-
fine it [20]. Unfortunately, the biases in participant recruitment
may be similar in independently collected datasets. For example
if patients with severe symptoms are difficult to recruit, this is
likely to distort all datasets similarly. Testing on a dataset col-
lected independently is therefore a useful check but no silver
bullet to rule out dataset shift issues.

False Solutions to Tackling Dataset Shift

We now discuss some misconceptions and confusions with
problems not directly related to dataset shift.

“Deconfounding” does not correct dataset shift for
predictive models

Dataset shift is sometimes confused with the notion of con-
founding because both settings arise from an undesired ef-
fect in the data. Confounding comes from causal analysis, es-
timating the effect of a treatment—an intervention, sometimes
fictional—on an outcome. A confounder is a third variable—e.g.,
age or a comorbidity—that influences both the treatment and
the outcome. It can produce a non-causal association between
the two (see [21], Chap. 7, for a precise definition). However, the
machine-learning methods that we consider here capture sta-
tistical associations but do not target causal effects. Indeed, for
biomarkers, the association itself is interesting, whether causal
or not. Elevated body temperature may be the consequence of a
condition but also cause a disorder. It is a clinically useful mea-
sure in both settings.

Tools for causal analysis are not all useful for prediction, as
pointed out by seminal textbooks: “if the goal of the data analy-
sis is purely predictive, no adjustment for confounding is neces-
sary [...] the concept of confounding does not even apply.” ([21],
Sec. 18.1), or Pearl [22]. In prediction settings, applying proce-
dures meant to adjust for confounding generally degrades pre-
diction performance without solving the dataset shift issue. Fig-
ure 1 demonstrates the detrimental effect of “deconfounding”
on simulated data: while the target population is shifted due to
a different age distribution, removing the effect of age also re-
moves the separation between the 2 outcomes of interest. The
same behavior is visible on real epidemiologic data with age
shifts, such as predicting the smoking status of participants in
the UKBiobank study [23], as shown in Fig. 2. Drawing training
and testing samples with different age distributions highlights
the effect of these age shifts on prediction performance (see Ap-
pendix B, “Tobacco smoking prediction in the UKBiobank” for
details on the procedure). For a given learner and test popula-
tion, training on a different population degrades prediction. For
example, predictions on the old population are degraded when
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Figure 1: Classification with dataset shift—regressing out a correlate of the shift does not help generalization. The task is to classify patients (orange) from healthy
controls (blue), using 2D features. Age, indicated by the shade of gray, influences both the features and the probability of disease. Left: Generative process for the
simulated data. Age influences both the target Y and the features X, and Y also has an effect on X. Between the source and target datasets, the distribution of age
changes. The 2 arrows point towards increasing age and represent the Healthy and Diseased populations, corresponding to the orange and blue clouds of points in the

right panel. The grayscale gradient in the arrows represents the increasing age of the individuals (older individuals correspond to a darker shade). Throughout their
life, individuals can jump from the Healthy trajectory to the Diseased trajectory, which is slightly offset in this 2D feature space. As age increases, the prevalence of
the disease increases, hence the Healthy trajectory contains more individuals of young ages (its wide end) and fewer at older ages (its narrow end)—and vice versa
for the Diseased trajectory. Right: Predictive models. In the target data (bottom row), the age distribution is shifted: individuals tend to be older. Elderly individuals are

indeed often less likely to participate in clinical studies [24]. First column: No correction is applied. As the situation is close to a covariate shift (see Section “Covariate
shift”), a powerful learner (RBF-SVM) generalizes well to the target data. An over-constrained model—Linear-SVM—generalizes poorly. Second column: Wrong approach.
To remove associations with age, features are replaced by the residuals after regressing them on age. This destroys the signal and results in poor performance for
both models and datasets. Third column: Samples are weighted to give more importance to those more likely in the target distribution. Small circles indicate younger

individuals, with less influence on the classifier estimation. This reweighting improves prediction for the linear model on the older population. AUC: area under the
curve.

Figure 2: Predicting the smoking status of UKBiobank participants. Different predictive models are trained on 90,000 UKBiobank participants and tested on 9,000
participants with a possibly shifted age distribution. “Young → old” means the training set was drawn from a younger sample than the testing set. Models perform

better when trained on a sample drawn from the same population as the testing set. Reweighting examples that are more likely in the test distribution (“+ reweighting”
strategy, known as Importance Weighting, see Section “Importance Weighting”) alleviates the issue for the simple linear model but is detrimental for the gradient
boosting. Regressing out the age (“+ regress-out” strategy) is a bad idea and degrades prediction performance in all configurations. The boxes represent the first, second
and third quartiles of scores across cross-validation folds. Whiskers represent the rest of the distribution, except for outliers, defined as points beyond 1.5 times the

IQR past the low and high quartiles, and represented with diamond fliers.

the model is trained on the young population. A flexible model
(gradient boosting) outperforms the linear model with or with-
out dataset shift. “Regressing out” the age (as in the second col-
umn of Fig. 1, “+ regress-out” strategy in Fig. 2) degrades the pre-
dictions in all configurations.

For both illustrations on simulated and real data (Fig. 1 and 2),
we also demonstrate an approach suitable for predictive models:
reweighting training examples giving more importance to those
more likely in the test population. This approach improves the

predictions of the overconstrained (misspecified) linear model
in the presence of dataset shift but degrades the predictions
of the powerful learner. The non-linear model already captures
the correct separation for both young and old individuals; thus
reweighting examples does not bring any benefit but only in-
creases the variance of the empirical risk. A more detailed dis-
cussion of this approach, called “importance weighting,” is pro-
vided in Section “Importance weighting: a generic tool against
dataset shift” .
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Training examples should not be selected to be
homogeneous

To obtain valid predictive models that perform well beyond the
training sample, it is crucial to collect datasets that represent
the whole population and reflect its diversity as much as possi-
ble [6, 25, 26]. Yet clinical research often emphasizes the oppo-
site: very homogeneous datasets and carefully selected partici-
pants. While this may help reduce variance and improve statis-
tical testing, it degrades prediction performance and fairness. In
other words, the machine-learning system may perform worse
for segments of the population that are under-represented in the
dataset, resulting in uneven quality of care if it is deployed in
clinical settings. Therefore in predictive settings, where the goal
is machine-learning models that generalize well, large and di-
verse datasets are desirable.

Simpler models are not less sensitive to dataset shift

Often, flexible models can be more robust to dataset shifts, and
thus generalize better, than linear models [27], as seen in Figs 1
and 2. Indeed, an over-constrained (ill-specified) model may only
fit well a restricted region of the feature space, and its perfor-
mance can degrade if the distribution of inputs changes, even if
the relation to the output stays the same (i.e., when covariate
shift occurs, see Section “Covariate shift” ).

Dataset shift does not call for simpler models because it is
not a small-sample issue. Collecting more data from the same
sources will not correct systematic dataset bias.

Preferential Sample Selection: A Common
Source of Shift

In 2017, competitors in the million-dollar-prize Data Science
Bowl [28] used machine learning to predict whether individu-
als would receive a diagnosis of lung cancer within 1 year, on
the basis of a computed tomographic (CT) scan. Assuming that
the winning model achieves satisfying accuracy on left-out ex-
amples from this dataset, is it ready to be deployed in hospi-
tals? Most likely not. Selection criteria may make this dataset
not representative of the potential lung cancer patients gen-
eral population. Selected participants verified many criteria, in-
cluding being a smoker and not having recent medical prob-
lems such as pneumonia. How would the winning predictor per-
form on a more diverse population? For example, another dis-
ease could present features that the classifier could mistakenly
take for signs of lung cancer. Beyond explicit selection criteria,
many factors such as age, ethnicity, or socioeconomic status in-
fluence participation in biomedical studies [24, 29–31]. Not only
can these shifts reduce overall predictive performance, they can
also lead to discriminative clinical decisions for poorly repre-
sented populations [32–35,80].

The examples above are instances of preferential selection,
which happens when members of the population of interest
do not have equal probabilities of being included in the source
dataset: the selection S is not independent of (X, Y). Preferen-
tial sample selection is ubiquitous and cannot always be pre-
vented by careful study design [36]. It is therefore a major chal-
lenge to the identification of reliable and fair biomarkers. Beyond
preferential sample selection, there are many other sources
of dataset shifts, e.g., population changes over time, interven-
tions such as the introduction of new diagnostic codes in Elec-
tronic Health Records [37], and the use of different acquisition
devices.

Figure 3: Sample selection bias: three examples. On the right are graphs giving

conditional independence relations [40]. Y is the lesion volume to be predicted
(i.e., the output). M are the imaging parameters, e.g., contrast agent dosage. X is
the image, and depends both on Y and M (in this toy example X is computed as
X := Y + M + ε, where ε is additive noise). S indicates that data are selected to en-

ter the source dataset (orange points) or not (blue points). The symbol ⊥⊥ means
independence between variables. Preferentially selecting samples results in a
dataset shift (middle and bottom row). Depending on whether Y⊥⊥ S | X, the con-

ditional distribution of Y | X—here lesion volume given the image—estimated on
the selected data may be biased or not.

The selection mechanism influences the type of dataset
shift

The correction for a dataset shift depends on the nature of this
shift, characterized by which and how distributions are modified
[27]. Knowledge of the mechanism producing the dataset shift
helps formulate hypotheses about distributions that remain un-
changed in the target data ([38, 39], Chap. 5).

Figure 3 illustrates this process with a simulated example of
preferential sample selection. We consider the problem of pre-
dicting the volume Y of a tumor from features X extracted from
contrast CT images. These features can be influenced not only
by the tumor size but also by the dosage of a contrast agent M.
The top panel of Fig. 3 shows a selection of data independent
of the image and tumor volume: there is no dataset shift. In the
second panel, selection depends on the CT image itself (e.g., im-
ages with a low signal-to-noise ratio are discarded). As selection
is independent of the tumor volume Y given the image X, the
distribution of images changes but the conditional distribution
P (Y | X) stays the same: we face a “covariate shift” (see Section
“Covariate shift”). The learned association remains valid. More-
over, reweighting examples to give more importance to those
less likely to be selected can improve predictions for target data
(Section “Importance Weighting”), and it can be done with only
unlabeled examples from the target data. In the bottom panel,
individuals who received a low dose of contrast agent are less
likely to enter the training dataset. Selection is therefore not in-
dependent of tumor volume (the output) given the image values
(the input features). Therefore we have sample selection bias:
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Figure 4: Dataset shifts that may or may not be compensated by reweighting.

Left: Distribution of sex can be balanced by downweighting men and upweighting
women. Right: Women are completely missing; the dataset shift cannot be fixed
by importance weighting.

the relation P (Y | X) is different in source and target data, which
will affect the performance of the prediction.

As these examples illustrate, the causal structure of the data
helps identify the type of dataset shift and what information is
needed to correct it. When such information is available, it may
be possible to leverage it to improve robustness to dataset shift
(e.g., [41]).

Importance Weighting: A Generic Tool Against
Dataset Shift

Importance weighting is a simple approach to dataset shift that
applies to many situations and can be easy to implement.

Dataset shift occurs when the joint distribution of the fea-
tures and outputs is different in the source (data used to fit the
machine-learning model) and in the target data. Informally, im-
portance weighting consists in reweighting the available data to
create a pseudo-sample that follows the same distribution as the
target population.

To do so, examples are reweighted by their “importance
weights”—the ratio of their likelihood in target data over source
data. Examples that are rare in the source data but are likely
in the target data are more relevant and therefore receive
higher weights. A related approach is “importance sampling”—
resampling the training data according to the importance
weights. Many statistical learning algorithms—including Sup-
port Vector Machines (SVM), decision trees, random forests, and
neural networks—naturally support weighting the training ex-
amples. Therefore, the challenge lies mostly in the estimation
of the appropriate sample weights and the learning algorithm
itself does not need to be modified.

To successfully use importance weighting, no part of the tar-
get distribution should be completely unseen. For example, if
sex (among other features) is used to predict heart failure and
the dataset only includes men, importance weighting cannot
transform this dataset and make its sex distribution similar to
that of the general population (Fig. 4). Conversely, the source dis-
tribution may be broader than the target distribution (as seen,
e.g., in Fig. 1).

Importance weights can also be applied to validation exam-
ples, which may produce a more accurate estimation of gener-
alization error on target data.

Importance weighting is a well-known approach, and an im-
portant body of literature focuses on its application and the esti-
mation of importance weights. It is illustrated on small datasets
for the prediction of breast cancer in Dudı́k et al. [42] and heart
disease in Kouw and Loog [43]. However, it cannot always be ap-
plied: some knowledge of the target distribution is required, and
the source distribution must cover its support. Moreover, impor-
tance weighting can increase the variance of the empirical risk

estimate, and thus sometimes degrades performance, as seen
in Fig. 2. It is therefore a straightforward and popular approach
to consider but not a complete solution. It is particularly benefi-
cial when using a simple learning model that cannot capture the
full complexity of the data, such as the linear models in Fig. 1.
Indeed, simple models are often preferred in biomedical appli-
cations because they are easy to interpret and audit.

In Appendix A, “Definition and Estimation of Importance
Weights”, we provide a more precise definition of the impor-
tance weights, as well as an overview of how they can be es-
timated and used.

Other Approaches to Dataset Shift

Beyond importance weighting, many other solutions to dataset
shift have been proposed. They are typically more difficult to im-
plement because they require adapting or desiging new learning
algorithms. However, they may be more effective, or applicable
when information about the target distribution is lacking. We
summarize a few of these approaches here. A more systematic
review can be found in Kouw and Loog [43]. Weiss et al. [44] and
Pan and Yang [45] give systematic reviews of transfer learning (a
wider family of learning problems that includes dataset shift).

The most obvious solution is to do nothing, ignoring the
dataset shift. This approach should be included as a baseline
when testing on a sample of target data, which is a prerequisite
to clinical use of a biomarker [12, 27]. With flexible models, this
is a strong baseline that can outperform importance weighting,
as in the right panel of Fig. 2.

Another approach is to learn representations—
transformations of the signal—that are invariant to the
shift [46]. Some deep-learning methods strive to extract fea-
tures that are predictive of the target while having similar
distributions in the source and target domains (e.g., [47]), or
while preventing an adversary from distinguishing source and
target data (“domain-adversarial” learning, e.g., [48]). When
considering such methods, one must be aware of the fallacy
shown in Fig. 1: making the features invariant to the effect
driving the dataset shift can remove valuable signal if this effect
is not independent of the outcome of interest.

It may also be possible to explicitly model the mapping from
source to target domains, e.g., by training a neural network to
translate images from one modality or imaging device to an-
other, or by relying on optimal transport [49].

Finally, synthetic data augmentation sometimes helps—
relying on known invariances, e.g., for images by applying affine
transformations, resampling, etc. , or with learned generative
models (e.g., [50]).

Performance heterogeneity and fairness

It can be useful not to target a specific population but rather find
a predictor robust to certain dataset shifts. Distributionally ro-
bust optimization tackles this goal by defining an ambiguity, or
uncertainty set—a set of distributions to which the target distri-
bution might belong—then minimizing the worse risk across all
distributions in this set (see [51] for a review). The uncertainty
set is often chosen centered on the empirical (source) distribu-
tion for some divergence between distributions. Popular choices
for this divergence are the Wasserstein distance, f-divergences
(e.g., the KL divergence) [52], and the maximum mean discrep-
ancy [53]. If information about the target distribution is available,
it can be incorportated in the definition of the uncertainty set.
An approach related to robust optimization is to strive to min-
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imize not only the empirical loss L(Y, f(X)) but also its variance
[54, 55].

It is also useful to assess model performance across val-
ues of demographic variables such as age, socioeconomic sta-
tus, or ethnicity. Indeed, a good overall prediction performance
can be achieved despite a poor performance on a minority
group. Ensuring that a predictor performs well for all subpop-
ulations reduces sensitivity to potential shifts in demograph-
ics and is essential to ensure fairness [35]. For instance, there
is a risk that machine-learning analysis of dermoscopic images
under-diagnoses malignant moles on skin tones that are typi-
cally under-represented in the training set [56]. Fairness is es-
pecially relevant when the model output could be used to grant
access to some treatment. Because similar issues arise in many
applications of machine learning, there is a growing literature
on fairness (see, e.g., [34], for an overview). For instance, Duchi
and Namkoong [52] show that distributionally robust optimiza-
tion can improve performance on under-represented subpopu-
lations.

Multi-site datasets

Often datasets are collected across several sites or hospitals,
or with different measurement devices. This heterogeneity pro-
vides an opportunity to train models that generalize to unseen
sites or devices. Some studies attempt to remove site effects by
regressing all features on the site indicator variable. For the same
reasons that regressing out age is detrimental in Fig. 1, this strat-
egy often gives worse generalization across sites.

Data harmonization, such as compensating differences
across measurement devices, is crucial but remains difficult and
cannot correct these differences perfectly [57]. Removing too
much intersite variance can lead to loss of informative signal.
Rather, it is important to model it well, accounting for the 2
sources of variance, across participants and across sites. A good
model strives to yield good results on all sites. One solution is to
adapt ideas from robust optimization: on data drawn from dif-
ferent distributions (e.g., from several sites), Krueger et al. [58]
show the benefits of minimizing the empirical risk on the worse
site or adding penalties on the variance of the loss across sites.

Measures of prediction performance should aggregate scores
at the site level (not pooling all individuals) and check the vari-
ance across sites and the performance on the worse site. Cross-
validation schemes should hold out entire sites [12, 59].

Special Cases of Dataset Shift

Categorizing dataset shift helps in finding the best approach to
tackle it [27, 60]. We summarize 2 frequently met scenarios that
are easier to handle than the general case and can call for dif-
ferent adjustments: covariate shift and prior probability shift.

Covariate shift

Covariate shift occurs when the marginal distribution of X
changes between the source and target datasets [i.e., pt(x) �= ps(x)]
but P (Y | X) stays the same. This happens, e.g., in the second sce-
nario in Fig. 3, where sample selection based on X (but not Y)
changes the distribution of the inputs. If the model is correctly
specified, an estimator trained with uniform weights will lead
to optimal predictions given sufficient training data (prediction
consistency [61], Lemma 4). However the usual (unweighted) es-
timator is not consistent for an over-constrained (misspecified)
model. Indeed, an over-constrained model may be able to fit the

Figure 5: Covariate shift: P (Y | X) stays the same, but the feature space is sampled
differently in the source and target datasets. A powerful learner may generalize
well as P (Y | X) is correctly captured [27]. Thus the polynomial fit of degree 4

performs well on the new dataset. However, an overconstrained learner such
as the linear fit can benefit from reweighting training examples to give more
importance to the most relevant region of the feature space.

data well only in some regions of the input feature space (Fig. 1).
In this case reweighting training examples (Section “Importance
weighting: a generic tool against dataset shift”) to give more im-
portance to those that are more representative of the target data
is beneficial [27, 38]. Figure 5 illustrates covariate shift.

Prior probability shift

Another relatively simple case of dataset shift is “prior proba-
bility shift.” With prior probability shift (aka label shift or target
shift), the distribution of Y changes but not P (X | Y). This hap-
pens for example when disease prevalence changes in the tar-
get population but manifests itself in the same way. Even more
frequently, prior probability shift arises when 1 rare class is over-
represented in the training data so that the dataset is more bal-
anced, as when extracting a biomarker from a case-control co-
hort, or when the dataset is resampled as a strategy to handle
the “class imbalance” problem [62]. Prior probability shift can be
corrected without extracting a new biomarker, simply by adjust-
ing a model’s predicted probabilities using Bayes’ rule (as noted,
e.g., in [27, 38]). When the classes are well separated, the effect
of this correction may be small; i.e., the uncorrected classifier
may generalize well without correction. Fig. 6 illustrates prior
probability shift.

Conclusion

Ideally, machine-learning biomarkers would be designed and
trained using datasets carefully collected to be representative
of the targeted population—as in Liu et al. [63]. To be trusted,
biomarkers ultimately need to be evaluated rigorously on 1 or
several independent and representative samples. However, such
data collection is expensive. It is therefore useful to exploit ex-
isting datasets in an opportunistic way as much as possible in
the early stages of biomarker development. When doing so, cor-
rectly accounting for dataset shift can prevent wasting impor-
tant resources on machine-learning predictors that have little
chance of performing well outside of 1 particular dataset.

We gave an overview of importance weighting, a simple tool
against dataset shift. Importance weighting needs a clear defini-
tion of the targeted population and access to a diverse training
dataset. When this is not possible, distributionally robust opti-
mization may be a promising alternative, although it is a more
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Figure 6: Prior probability shift: when P(Y) changes but P (X | Y) stays the same.

This can happen for example when participants are selected on the basis of Y—
possibly to have a dataset with a balanced number of patients and healthy par-

ticipants: X ← Y → S . When the prior probability (marginal distribution of Y)
in the target population is known, this is easily corrected by applying Bayes’ rule.
The output Y is typically low-dimensional and discrete (often it is a single binary

value), so P(Y) can often be estimated precisely from few examples.

recent approach and more difficult to implement. Despite much
work and progress, dataset shift remains a difficult problem.
Characterizing its impact and the effectiveness of existing so-
lutions for biomarker discovery will be important for machine-
learning models to become more reliable in healthcare applica-
tions.

We conclude with the following recommendations:

� Be aware of the dataset shift problem and the difficulty of
out-of-dataset generalization. Do not treat cross-validation
scores on 1 dataset as a guarantee that a model will perform
well on clinical data.

� Collect diverse, representative data.
� Use powerful machine-learning models and large datasets.
� Consider using importance weighting to correct biases in the

data collection, especially if the learning model may be over-
constrained (e.g., when using a linear model).

� Look for associations between prediction performance and
demographic variables in the validation set to detect poten-
tial generalization or fairness issues.

� Do not remove “confounding signal” in a predictive setting.

These recommendations should help in designing fair
biomarkers and their efficient application on new cohorts.

Data Availability

The source files used to create this publication can be found in
the suppording data in the GigaScience Database [64]. They are

also available in a Git repository [65]. The UK Biobank data used
in this study are Controlled Access Data. To access these data,
one would need to visit the UKBiobank website [66] and follow
the steps for registering, applying for access, and downloading
the data. The data used in this study were the “tabular” dataset
that is archived in UK Biobank (i.e., the data that are neither
imaging nor genome sequencing). This research has been con-
ducted using the UK Biobank Resource under Application No.
45551.
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Definition and Estimation of Importance
Weights

We will implicitly assume that all the random variables we con-
sider admit densities and denote ps and pt the density of the
joint distribution of (X, Y) applied to the source and target popu-
lations, respectively. If the support of pt is included in that of ps

(meaning that ps > 0 wherever pt > 0), we have:

Etarget[ L (Y, f (X)) ] = Esource

[
pt(X, Y)
ps(X, Y)

L (Y, f (X))
]

, (A1)

where L is the cost function and f is a prediction function, Esource

(respectively, Etarget) the expectation on the source (respectively,
target) data. The risk (on target data) can therefore be computed
as an expectation on the source distribution where the loss func-
tion is reweighted by the importance weights:

w(x, y) = pt(x, y)
ps(x, y)

. (A2)

If ŵ are empirical estimates of the importance weights w, it is
possible to compute the reweighted empirical risk:

R̂ŵ( f ) =
∑n

i=1
ŵ(xi , yi ) L (yi , f (xi )). (A3)

Rather than being weighted, examples can also be resampled
with importance or rejection sampling [67, 68]. Importances can
also be taken into account for model selection; e.g., in Sugiyama
et al. [69] examples of the test set are also reweighted when com-
puting cross-validation scores. Cortes et al. [70] study how er-
rors in the estimation of the weights affect the prediction per-
formance.

Preferential sample selection and inverse probability
weighting

In the case of preferential sample selection (Section ”Preferential
sample selection: a common source of shift”), the condition that
requires for the support of pt to be included in the support of
ps translates to a requirement that all individuals have a non-
zero probability of being selected: P (S = 1 | x, y) > 0 for all (x, y)

http://dx.doi.org/10.5524/100919
https://github.com/neurodatascience/dataset_shift_biomarkers
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in the support of pt. When this is verified, by applying Bayes’
rule the definition of importance weights in Equation (A2) can
be reformulated (see [70], Sec. 2.3):

w(x, y) = P (S = 1)
P (S = 1 | X = x, Y = y)

. (A4)

These weights are sometimes called inverse probability weights
[71] or inverse propensity scores [72]. Training examples that had
a low probability of being selected receive higher weights be-
cause they have to account for similar individuals who were not
selected.

Computing importance weights

In practice pt(x, y), which is the joint density of (X, Y) in the tar-
get data, is not known. However, it is not needed for the estima-
tion of pt/ps. More efficient estimation hinges on 2 observations:
estimation of both densities separately is not necessary to esti-
mate their ratio, and variables that have the same distribution
in source and target data can be factored out.

Here we describe methods that estimate the true importance
weights pt/ps, but we point out that reweighting the training ex-
amples reduces the bias of the empirical risk but increases the
variance of the estimated model parameters. Even when the im-
portances are perfectly known, it can therefore be beneficial to
regularize the weights [61].

Computing importance weights does not require estimation of dis-
tribution densities
Importance weights can be computed by modeling ps and pt sep-
arately and then computing their ratio ([73], Sec. 4.1). However,
distribution density estimation is notoriously difficult; non-
parametric methods are hindered by the curse of dimensionality
and parametric methods depend heavily on the correct specifi-
cation of a parametric form.

But estimating both densities is more information than is
needed to compute the sample weights. Instead, one can di-
rectly optimize importance weights to make the reweighted
sample similar to the target distribution, by matching moments
[74] or mean embeddings [75, 76], minimizing the KL-divergence
[77], solving a least-squares estimation problem [78], or with op-
timal transport [49].

Alternatively, a discriminative model can be trained to distin-
guish source and target examples. In the specific case of prefer-
ential sample selection, this means directly estimating the prob-
ability of selection P(S = 1) (cf. Equation A4). In general, the shift
is not always due to selection: the source data are not necessar-
ily obtained by subsampling the target population. In this case
we denote T = 1 if an individual comes from the target data and
T = 0 if it comes from the source data. Then, a classifier can be
trained to predict from which dataset (source or target) a sam-
ple is drawn, and the importance weights obtained from the pre-
dicted probabilities ([73], Sec. 4.3):

w(x, y) = P (T = 1 | X = x, Y = y) P (T = 0)
P (T = 0 | X = x, Y = y) P (T = 1)

. (A5)

The classifier must be calibrated (i.e., produce accurate prob-
ability estimates, not only a correct decision; see Niculescu-Mizil
and Caruana [79]). Note that constant factors such as P(T = 0)/P(T
= 1) usually do not matter and are easy to estimate if needed.
This discriminative approach is effective because the distribu-
tion of (T | X = x, Y = y) is much easier to estimate than the dis-

tribution of (X, Y | T = t) : T is a single binary variable whereas (X,
Y) is high-dimensional and often continuous.

The classifier does not need to distinguish source and target
examples with high accuracy. In the ideal situation of no dataset
shift, the classifier will perform at chance level. On the contrary,
a high accuracy means that there is little overlap between the
source and target distributions and the model will probably not
generalize well.

What distributions differ in source and target data?
When computing importance weights, it is possible to exploit
prior knowledge that some distributions are left unchanged in
the target data. For example,

pt(x, y)
ps(x, y)

= pt(y | x) pt(x)
ps(y | x) ps(x)

. (A6)

Imagine that the marginal distribution of input X differs in
source and target data, but the conditional distribution of the
output Y given the input stays the same: pt(x) �= ps(x) but pt(y | x) =
ps(y | x) (a setting known as “covariate shift”). Then, the impor-
tance weights simplify to

w(x, y) = pt(x)
ps(x)

. (A7)

In this case, importance weights can be estimated using only
unlabeled examples (individuals for whom Y is unknown) from
the target distribution.

Often, the variables that influence selection (e.g., demo-
graphic variables such as age) are lower-dimensional than the
full features (e.g., high-dimensional images), and dataset shift
can be corrected with limited information on the target distri-
bution, with importance weights or otherwise. Moreover, even
if additional information Z that predicts selection but is inde-
pendent of (X, Y) is available, it should not be used to compute
the importance weights. Indeed, this would only increase the
weights’ variance without reducing the bias due to the dataset
shift ([21], Sec. 15.5).

Tobacco smoking prediction in the UKBiobank

We consider predicting the smoking status of participants in the
UKBiobank study to illustrate the effect of dataset shift on pre-
diction performance. Smoking is associated with neuropatholo-
gies in patients with schizophrenia, mood or anxiety disorders,
substance use and other brain related disorders.

A total of 6,000 participants are used in a preliminary step to
identify the 29 most relevant predictive features (listed in Ap-
pendix B.1), by cross-validating a gradient boosting model and
computing permutation feature importances. We then draw 2
samples of 100,000 individuals from the rest of the dataset that
have different age distributions. In the young sample, 90% of in-
dividuals come from the youngest 20% of the dataset, and the re-
maining 10% are sampled from the oldest 20% of the dataset. In
the old sample, these proportions are reversed. We then perform
10-fold cross-validation. For each fold, both the training and
testing set can be drawn from either the young or the old pop-
ulation, resulting in 4 tasks on which several machine-learning
estimators are evaluated. We use this experiment to compare
2 machine-learning models: a simple one—regularized linear
support vector classifier, and a flexible one—gradient boosting.
For each classifier, 3 strategies are considered to handle the
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dataset shift: (i) baseline—the generic algorithm without modifi-
cations, (ii) importance weighting (Section “Importance weight-
ing: a generic tool against dataset shift”), and (iii) the (unfortu-
nately popular) non-solution: “regressing out the confounder”—
regressing the predictive features on the age and using the resid-
uals as inputs to the classifier.

The results are similar to those seen with simulated data in
Fig. 1. For a given learner and test population, training on a dif-
ferent population degrades the prediction score. For example, if
the learner is to be tested on the young population, it performs
best when trained on the young population. Gradient boosting
vastly outperforms the linear model in all configurations. Re-
gressing out the age always degrades the prediction; it is always
worse than the unmodified baseline, whether a dataset shift is
present or not. Finally, importance weighting improves the pre-
dictions of the over-constrained (misspecified) linear model in
the presence of dataset shift but degrades the prediction of the
powerful learner used in this experiment. This is due to the fact
that the gradient boosting already captures the correct separa-
tion for both young and old individuals, and therefore impor-
tance weighting does not bring any benefit but only reduces the
effective training sample size by increasing the variance of the
empirical risk.

Features used for tobacco smoking status prediction

The 30 most important features were identified in a prelimi-
nary experiment with 6,000 participants (that were not used in
the subsequent analysis). One of these features, “Date F17 first
reported (mental and behavioural disorders due to use of to-
bacco),” was deemed trivial—too informative because it directly
implies that the participant does smoke tobacco, and removed.
The remaining 29 features were used for the experiment de-
scribed in Section “False solutions to tackling dataset shift” .

� Forced expiratory volume in 1 second (FEV1), predicted per-
centage

� Lifetime number of sexual partners
� Age first had sexual intercourse
� Age when last used cannabis
� Ever used cannabis
� FEV1, predicted
� Acceptability of each blow result
� Mouth/teeth dental problems
� Coffee intake
� FEV1/ Forced vital capacity ratio Z-score
� Alcohol intake frequency
� Date J44 first reported (other chronic obstructive pulmonary

disease)
� Former alcohol drinker

� Average weekly spirits intake
� Year of birth
� Acceptability of each blow result
� Date of chronic obstructive pulmonary disease report
� Leisure/social activities
� Morning/evening person (chronotype)
� Mean sphered cell volume
� Lymphocyte count
� Townsend deprivation index at recruitment
� Age hay fever, rhinitis, or eczema diagnosed
� Age started oral contraceptive pill use
� White blood cell (leukocyte) count
� Age completed full-time education
� Age at recruitment
� Workplace had a lot of cigarette smoke from other people

smoking
� Wheeze or whistling in the chest in past year

Glossary

Here we provide a summary of some terms and notations used
in the article.

Target population: the population on which the biomarker
(machine-learning model) will be applied.

Source population: the population from which the sample used
to train the machine-learning model is drawn.

Selection: in the case that source data are drawn (with non-
uniform probabilities) from the target population, we denote
by S = 1 the fact that an individual is selected to enter the
source data (e.g., to participate in a medical study).

Provenance of an individual: when samples from both the source
and the target populations (e.g., Appendix A.2.1) are available,
we also denote T = 1 if an individual comes from the target
population and T = 0 if they come from the source population.

Confounding: in “causal inference,” when estimating the effect
of a treatment on an outcome, confounding occurs if a third
variable (e.g., age, a comorbidity, the seriousness of a condi-
tion) influences both the treatment and the outcome, possi-
bly producing a spurious statistical association between the
two. This notion is not directly relevant to dataset shift, and
we mention it only to insist that it is a different problem. See
Hernán and Robins [21], Chap. 7, for a more precise definition.

Domain adaptation: the task of designing machine-learning
methods that are resilient to dataset shift—essentially a syn-
onym for dataset shift, i.e., another useful search term for
readers looking for further information on this problem.


