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ABSTRACT

Transfer RNAs (tRNAs) are essential for encoding
the transcribed genetic information from DNA into
proteins. Variations in the human tRNAs are in-
volved in diverse clinical phenotypes. Interestingly,
all pathogenic variations in tRNAs are located in mi-
tochondrial tRNAs (mt-tRNAs). Therefore, it is cru-
cial to identify pathogenic variations in mt-tRNAs
for disease diagnosis and proper treatment. We
collected mt-tRNA variations using a classification
based on evidence from several sources and used
the data to develop a multifactorial probability-based
prediction method, PON-mt-tRNA, for classification
of mt-tRNA single nucleotide substitutions. We in-
tegrated a machine learning-based predictor and
an evidence-based likelihood ratio for pathogenic-
ity using evidence of segregation, biochemistry and
histochemistry to predict the posterior probabil-
ity of pathogenicity of variants. The accuracy and
Matthews correlation coefficient (MCC) of PON-mt-
tRNA are 1.00 and 0.99, respectively. In the ab-
sence of evidence from segregation, biochemistry
and histochemistry, PON-mt-tRNA classifies varia-
tions based on the machine learning method with
an accuracy and MCC of 0.69 and 0.39, respectively.
We classified all possible single nucleotide substi-
tutions in all human mt-tRNAs using PON-mt-tRNA.
The variations in the loops are more often toler-
ated compared to the variations in stems. The an-
ticodon loop contains comparatively more predicted
pathogenic variations than the other loops. PON-mt-
tRNA is available at http://structure.bmc.lu.se/PON-
mt-tRNA/.

INTRODUCTION

Messenger RNA (mRNA) carries information from DNA
and is translated to protein in the ribosome. During trans-

lation, transfer RNAs (tRNAs) deliver amino acids to the
ribosome for elongation of the synthesized peptide chain.
Among the 64 possible codons, 61 encode for 20 amino
acids and 3 encode for stop codons that terminate trans-
lation. Codons are degenerate, which means that most
amino acids are encoded by multiple codons. The codons
in mRNA pair during translation with the anticodon of
tRNA. Several nuclear genes code for the tRNAs with the
same anticodon, on the other hand an anticodon can pair
with multiple codons due to wobbling (1). The numbers of
tRNA-coding genes vary in organisms. In human, there are
513 nuclear-encoded tRNA genes for 49 isoacceptors and
22 mitochondrial tRNA (mt-tRNA) genes (2).

The human mitochondrial genome (mtDNA) encodes for
13 protein-coding genes, two ribosomal RNAs and 22 tR-
NAs (3). The major portion (∼93%) of mtDNA codes for
genes (4) and the variation rate is several times (10–17x)
higher than that of the nuclear genome due to various rea-
sons including inefficient mismatch repair, absence of hi-
stones (5,6) and others (7,8). Nuclear and mitochondrial
genetic codes have some differences due to different speci-
ficities of mt-tRNAs. Each cell contains hundreds or thou-
sands of mitochondria and multiple copies of mtDNA in
each of them. Therefore, heteroplasmy is common because
both normal and variant mtDNAs can co-exist in the cell.
Variations in mtDNA are tolerated to a certain level before
they show a biochemical defect (9).

Hundreds of variations in mtDNA have been reported
to be associated with diseases and the number of unclas-
sified variants is even larger. MITOMAP (10) stores mito-
chondrial variations associated with diseases and the Hu-
man Mitochondrial Genome Database (mtDB) (11) and the
Human Mitochondrial Genome Polymorphism Database
(mtSNP) (12) contain likely benign variations. Variations
in the mt-tRNAs are even more interesting than those in
the nuclear tRNAs because all the reported disease-causing
tRNA variations occur in the mt-tRNAs (2,13). Hence, it
would be crucial to recognize pathogenic variations in mt-
tRNAs to facilitate diagnosis and treatment of mt-tRNA-
associated diseases. Based on the canonical criteria for iden-
tifying pathogenic variations (14), a method for classifying
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mt-tRNA variations was developed (15). Subsequently, the
authors re-evaluated and adjusted the method and applied
it to a larger data set (16). A modification to the classifica-
tion method has been suggested to penalize the normality in
trans-mitochondrial cybrid studies (17). These methods re-
quire evidence from several experiments which is expensive
and time consuming to obtain. Another method based on
sequence conservation and secondary structure base pairs
has been published and all possible single nucleotide sub-
stitutions in all the 22 mt-tRNAs were classified (18). The
method was developed based on a small number of varia-
tions and has not been updated or tested with the recent
data. The predictions are used by MtSNPScore, a method to
analyze the impacts of mitochondrial variations (19). Fast
and reliable predictors could be useful to rank variations
identified by sequencing and therefore could be part of high
throughput analysis pipelines.

Several methods have been developed to predict the ef-
fects of variations in human protein-coding genes (20–24).
Machine learning (ML)-based tools are powerful for gen-
eralizing patterns from the training data and for predicting
new cases. ML methods should be trained with sufficiently
large data sets, which are not always available. Hence, the
predictions of ML methods could be complemented by sup-
porting evidence from various sources. The International
Agency for Cancer Research (IARC) has recommended a
standard method to categorize variants in cancer into 5
classes based on the posterior probability of pathogenic-
ity (25). This scheme has been widely used to characterize
variations in breast cancer susceptibility genes BRCA1 and
BRCA2 (26) as well as in mismatch repair genes (27,28).
Such methods use pathogenicity scores, based on evolu-
tionary conservation or ML predictors, as prior proba-
bility of pathogenicity and combine evidence from addi-
tional sources such as segregation, family history and other
clinical features. By integrating the evidence from diverse
sources, a posterior probability of pathogenicity is com-
puted based on which the variants are finally classified.

We developed a multifactorial probability-based clas-
sification method, PON-mt-tRNA, to classify mt-tRNA
variations. The method integrates ML prediction together
with evidence of segregation, biochemistry and histochem-
istry to compute the posterior probability of pathogenic-
ity. Variations are classified into 5 classes: pathogenic, likely
pathogenic, likely neutral, neutral and variants of uncertain
significance (VUS). The method shows high performance
with an accuracy and a Matthews correlation coefficient
(MCC) of 1.00 and 0.99, respectively. In the absence of the
biological evidence, PON-mt-tRNA classifies the variations
based on the ML method and the corresponding accuracy
and MCC are 0.69 and 0.39, respectively. PON-mt-tRNA
has a 2-fold importance for identifying the pathogenicity
of mt-tRNA variations. Firstly, the ML method is useful
to rank novel variations and prioritize them for experimen-
tal evaluation and secondly, the integrated classifier can be
used to classify the variations by combining the results of
experimental studies together with the ML method.

MATERIALS AND METHODS

Data sets

We obtained classified mt-tRNA variations from the litera-
ture (16). In total, there were 55 neutral and 91 pathogenic
single nucleotide substitutions. The variations were classi-
fied based on evidence from several sources. These varia-
tions were used for training and testing in this study. The
variation data set is available from VariBench, a database
of benchmark variation data sets (http://structure.bmc.lu.
se/VariBench/mt-tRNA.php) (29). In addition, there were
46 single nucleotide substitutions that could not be reliably
classified as pathogenic or neutral due to lack of sufficient
evidence (16).

We collected additional mt-tRNA variations from other
sources. From MITOMAP, we obtained 26 variations that
were reported more than once in association with disease in
the literature and 199 variations reported only once to be
associated with disease (10). Benign variations were from
mtDB (11) and mtSNP (12) databases. In total, there were
207 unique benign variations in the two databases. The data
sets are summarized in Supplementary Table S1 and are
available at the PON-mt-tRNA website (http://structure.
bmc.lu.se/PON-mt-tRNA/datasets.html/).

Features

We used 12 features to describe variations. The features in-
cluded evolutionary conservation (3 features), RNA sec-
ondary structure (2 features), tertiary interaction (1 fea-
ture), sequence context (3 features) and evidence of segre-
gation, biochemistry and histochemistry (3 features). The
features are summarized in Supplementary Tables S2 and
S3.

Conservation features. We obtained the reference se-
quences of mt-tRNAs from the mito-tRNAdb (30) and
mapped these to the revised Cambridge Reference Se-
quence (rCRS) of human mtDNA (NC 012920.1). The
homologous sequences of the human mt-tRNA sequences
from the members of Euarchontoglires superorder were
obtained from Mammit-tRNA database (31). We aligned
sequences homologous to each mt-tRNA sequence using
Clustalw2 (32). From the alignments, we computed Position
Specific Scoring Matrices (PSSM) for each mt-tRNA using
the AlignInfo module in Biopython (http://biopython.org/
DIST/docs/api/Bio.Align.AlignInfo-module.html). The
PSSM contains scores for the occurrence of each nucleotide
at each position in the human mt-tRNA sequences. We
used the PSSM scores for the reference nucleotide and the
variant nucleotide as features. In addition, we computed
the information content at each position of the mt-tRNA
sequences from the alignment with the AlignInfo module
and used it as a feature.

Secondary structure. We obtained the secondary struc-
tures of the mt-tRNAs from mito-tRNAdb (30). We ex-
tracted two features based on the secondary structure of
the mt-tRNAs. First, we annotated each position with the
secondary structure type, i.e. loop, stem, variable region or
other region. Second, we categorized the nucleotides in stem

http://structure.bmc.lu.se/VariBench/mt-tRNA.php
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regions into three groups based on the base pairing. Wobble
base pairings are common in tRNA secondary structures.
We used three categories, (i) pairings that follow Watson–
Crick base pair rules; (ii) guanine-uracil base pairs; and (iii)
wobble base pairs other than the guanine-uracil base pair.

Tertiary interaction. Suzuki et al. have suggested that each
of the human mt-tRNAs have one of the three overall struc-
tures (33). We obtained the sites involved in tertiary inter-
action based on Suzuki et al. (33) and generated a feature
based on whether a variation occurs at an interaction site
or not.

Sequence context. We extracted one nucleotide before and
one after the variation site in the mt-tRNA sequence and
formed tri-nucleotide strings. We then classified each nu-
cleotide in the string depending on whether the nucleotide
is a purine (A, G) or a pyrimidine (C, T). We grouped the
nucleotides as strong (C, G) and weak (A, T) depending on
the strength of the hydrogen bonding. We also grouped the
nucleotides into keto (G, T) and amino (A, C) based on the
presence or absence of a keto-group in the aromatic ring.
For example, a string ‘ACT’ where the variation is at ‘C’
was represented as 011, 101 and 110, respectively, as three
features. Hence, we extracted three features based on the se-
quence context.

Other evidence. We used the evidence of segregation of the
variation with disease, involvement in biochemical defects
in complexes I, III and IV, and histochemical evidence of
mitochondrial disease for developing a multifactorial likeli-
hood model. These features were obtained together with the
training data set from Yarham et al. (16). A score greater
than zero was used as the presence of evidence and a score
equal to zero for the lack of evidence.

Classifier development

We developed a two-step method for classification of mt-
tRNA variants. In the first step, an ML method was devel-
oped to predict the probability of pathogenicity of varia-
tions. In the second step, the probability of pathogenicity
predicted by the ML method was used as prior probability
and was integrated with evidence of segregation, biochem-
istry and histochemistry to compute the posterior probabil-
ity of pathogenicity.

ML method. We used a random forest (RF) algorithm
to train an ML method (34). The randomForest package
(version 4.6–12) in the R statistical software (version 3.0.2)
(https://www.r-project.org/) was used to implement the RF
algorithm. We used default parameters for training the RF
algorithm where the number of trees grown (ntree) was 500
and the number of features used at each split (mtry) was 3.
We trained the predictor using nine features. Features repre-
senting segregation, biochemistry and histochemistry were
not used.

Posterior probability of pathogenicity. In the second step,
we computed the likelihood ratio (LR) of the evidence of
segregation, biochemistry and histochemistry in pathogenic

and neutral data sets as described by Lindor et al. (26). LRs
for the evidence of segregation, biochemical and histochem-
ical tests were computed as follows:

LR segregation =
Number of pathogenic variations wi th evidence of segregation

Number of neutral variations wi th evidence of segregation

Then, the combined LR based on the evidence of all three
sources is given by the product of the LRs for each source.

Combined LR =
LR segregation × LR biochemistr y × LR histochemistr y

The combined LR was integrated together with the ML-
based probability of pathogenicity to compute the posterior
probability of pathogenicity (26). The ML method-based
probability of pathogenicity was used as prior probability
for the second step.

Posterior odds = Combined LR × Prior probabili ty
1 − prior probabili ty

Posterior probabili ty = Posterior odds
Posterior odds + 1

Training and testing. We used balanced training data sets
to train the ML method and to estimate LRs. As the train-
ing and test data sets were small, we trained and tested the
method 2000 times by introducing variability in the training
and test data sets. First, we randomly sampled without re-
placement 15 pathogenic and 15 neutral variants for testing
the method. From among the remaining variants, we ran-
domly sampled 40 pathogenic and 40 neutral variants and
trained the ML predictor and calculated LRs 100 times. The
performance of the trained methods was evaluated using the
same test data. This approach introduced variability to the
training data and the performance of methods trained on
different training data could be evaluated on the same test
data. To introduce variability to the test data, the same pro-
cedure of randomly choosing test data and then training 100
predictors was repeated 20 times. The variability was intro-
duced to reduce bias in the training and testing. Thus, 2000
predictors were trained and their performance was evalu-
ated. PON-mt-tRNA uses all the 2000 predictors for pre-
dicting the pathogenicity of variants.

Classification. Two schemes were designed to classify vari-
ations depending on the input data for PON-mt-tRNA.
When evidence from any one of the sources, i.e. segregation,
biochemistry or histochemistry, is available, the method
classifies variations based on the posterior probability of
pathogenicity obtained by integrating the ML method and
evidence information. The variations were classified into
five groups – pathogenic, likely pathogenic, likely neutral,
neutral and VUS. The cut-offs for classifying variations
were adopted from Lindor et al. and presented in Supple-
mentary Table S4.

In the absence of evidence from the three sources, PON-
mt-tRNA classifies the variants based on the ML method.
In this case, the variants are classified into four groups –
pathogenic, likely pathogenic, likely neutral and neutral.
The cut-offs for each group are presented in the Supplemen-
tary Table S4. If at least 90% (1800) of the predictors in the
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Nucleic Acids Research, 2016, Vol. 44, No. 5 2023

ML method predict the probability of pathogenicity greater
than or equal to 0.5, the variant is classified as pathogenic
and if at least 90% (1800) of the predictors predict the prob-
ability of pathogenicity to be smaller than 0.5, the variant
is classified as neutral. The remaining variants are classified
as likely pathogenic if their average predicted probability of
pathogenicity is greater than or equal to 0.5 and likely neu-
tral if their average predicted probability of pathogenicity is
smaller than 0.5.

Performance evaluation

We tested the performance of PON-mt-tRNA by using the
predictions of the method for the test data in the 2000 iter-
ations. The variations in the training and test data were dis-
joint in each iteration. The overall performance of the meth-
ods was calculated by averaging the performance scores. We
used six standard performance measures (35) following the
guidelines (36). The performance measures were computed
using the following equations:

PPV = T P
T P + F P

NPV = TN
TN + F N

Sensitivi ty = T P
T P + F N

Speci f ici ty = TN
TN + F P

Accuracy = T P + TN
T P + TN + F P + F N

MCC = T P × TN − F P × F N
√

(T P + F P)(T P + F N)(TN + F P)(TN + F N)

where, TP is correctly predicted pathogenic variations, TN
is correctly predicted neutral variations, FP is incorrectly
predicted neutral variations, FN is incorrectly predicted
pathogenic variations, PPV is Positive Predictive Value,
NPV is Negative Predictive Value and MCC is Matthews
Correlation Coefficient. Receiver Operating Characteristics
(ROC) curves were also used to assess the performance of
methods and they were obtained using the ROCR package
in the R statistical software (37).

Classification of unknown cases

Among the 200 variations studied by Yarham et al. (16),
46 single nucleotide substitutions could not be classified
as ‘definitely pathogenic’ or ‘definitely neutral’ due to lack
of sufficient evidence. We classified these variations using
PON-mt-tRNA. First, we predicted the probabilities of
pathogenicity using the ML method. Then, we combined
the average of the predicted probabilities of pathogenic-
ity with the LRs to compute the posterior probabilities of
pathogenicity. The variations were classified into five classes
based on the posterior probability of pathogenicity (Supple-
mentary Table S4).

mtDNA location and
variation

Evidence of segregation
with disease, biochemical
and histochemical tests

Feature extraction

2000 random forest
predictions

Probabilities of
pathogenicity

Likelihood of
pathogenicity

Integration of
probability of
pathogenicity
and likelihood

Posterior probability
and classification

Average probability
and classification

Evidence
available

LR segregation ×
LR biochemistry ×
LR histochemistry

No

Yes

Input

Output

PON-mt-tRNA
computation

Figure 1. Schematic outline of PON-mt-tRNA. The method predicts the
probability of pathogenicity using 2000 ML predictors and integrates with
evidence of segregation, biochemistry and histochemistry. If the evidence
is not known, PON-mt-tRNA predicts the pathogenicity based on the ML
predictors only.

Prediction for all possible substitutions

We used PON-mt-tRNA to predict the pathogenicity for
all possible single nucleotide substitutions in all 22 human
mt-tRNAs. Only the ML method was used for classifica-
tion. We mapped the variations to the mt-tRNA secondary
structures obtained from mito-tRNAdb (30) and visualized
the numbers of predicted pathogenic variations at each po-
sition in the 22 mt-tRNAs on a three-dimensional structure
of yeast phenylalanine tRNA (pdb id: 1EHZ) using UCSF
Chimera (38). The yeast tRNA structure was used for visu-
alization due to lack of structure for any human tRNA.

RESULTS

PON-mt-tRNA

We developed a multifactorial probability-based classifica-
tion method, PON-mt-tRNA, to predict the pathogenic-
ity of single nucleotide substitutions in human mt-tRNAs.
The method integrates an ML method and evidence of
segregation, biochemistry and histochemistry. In the first
step, the ML method is used to predict the probability of
pathogenicity of variations. Then, the predicted probabil-
ity is used as prior probability and integrated with the ev-
idence information to predict the posterior probability of
pathogenicity (Figure 1). The ML method was trained on
a balanced set of known pathogenic and neutral variations.
We trained altogether 2000 ML predictors using different
sets of pathogenic and neutral variations chosen by random
sampling without replacement. The accuracy and MCC
for the ML method are 0.69 and 0.39, respectively (Table
1). The performance scores for PON-mt-tRNA are much
higher when evidence of segregation, biochemistry and his-
tochemistry is known. The accuracy and MCC are in this
case 1.00 and 0.99, respectively (Table 1). We compared the
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performance of PON-mt-tRNA with previously published
method which was based on sequence conservation and
secondary structure (referred as Kondrashov) (18). Both
versions of PON-mt-tRNA showed superior performance
compared to the Kondrashov method (Table 1 and Sup-
plementary Figure S1). The sensitivity of the Kondrashov
method is higher than for the ML predictor but with a very
low specificity (0.47) indicating that the method is severely
unbalanced.

PON-mt-tRNA classifies the variations into 5 classes:
pathogenic, likely pathogenic, likely neutral, neutral and
VUS (Supplementary Table S4). The classification of vari-
ations in the four classes (excluding VUS) is highly reliable
(Table 1). On average 20.6% (3.10/15) of pathogenic and
24.3% (3.65/15) of neutral variations are classified as VUS
in our test data set (Supplementary Table S5). In the ab-
sence of evidence from segregation, biochemistry and histo-
chemistry, PON-mt-tRNA classifies the variations into four
classes pathogenic, likely pathogenic, likely neutral and neu-
tral based on the ML method (Supplementary Table S4).

The ML method was trained using nine features repre-
senting evolutionary conservation, sequence context, RNA
secondary structure and tertiary interactions (Supplemen-
tary Table S2). We evaluated the importance of the features
based on the importance scores obtained from the RF algo-
rithm. The sequence context and evolutionary conservation
are the most important features while the secondary struc-
ture and tertiary interaction are the least important features
(Supplementary Table S2). Evidence of segregation, bio-
chemical test and histochemical test were used for the multi-
factorial probability-based PON-mt-tRNA. We compared
the importance of the sources of evidence for pathogenicity.
All three sources provide evidence in favor of pathogenicity
(Supplementary Table S3). The evidence of the biochemi-
cal test showed the highest LR (8.68) and the evidence of
segregation the lowest LR (2.17). The LR for evidence of
the histochemical test is 6.68. The contributions of individ-
ual features in the overall performance of the method could
not be tested because of the small size of the training data.

Classification of unknown cases

We classified 46 variants with unknown outcome (16) into
5 classes using PON-mt-tRNA. Most of these variants
are present in the MITOMAP database which includes
variations reported to be associated with diseases. How-
ever, Yarham et al. could not classify them as definitely
pathogenic due to lack of sufficient evidence. Of the 23 clas-
sified variations, 11 are classified as pathogenic, 10 likely
pathogenic, 1 likely neutral and 1 neutral (Table 2 and Sup-
plementary Table S6). The remaining 23 variations are con-
sidered to be VUS due to lack of sufficient evidence.

Prediction of reported disease-associated and benign varia-
tions

To further test the method, we predicted the pathogenicity
of additional variations obtained from MITOMAP, mtDB
and mtSNP. From each data set, we eliminated variants
present in the training data set. As additional evidence is not
available for these cases, we used the ML method for classi-
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Figure 2. Distribution of predicted pathogenic variations in mt-tRNA
structure. All possible single nucleotide substitutions at each position of
the 22 mt-tRNAs are mapped to the three-dimensional structure of the
yeast phenylalanine tRNA (pdb id: 1EHZ). (A) The numbers of pre-
dicted pathogenic mt-tRNA variations at each position. There are 66 pos-
sible variations per site except for sites which are missing from some mt-
tRNAs. (B) The numbers of mt-tRNAs containing at least one predicted
pathogenic variation at each position. Ac-stem, Anticodon stem; Ac-loop,
Anticodon loop.

fication. The mtDB and mtSNP databases contain likely be-
nign variations. PON-mt-tRNA predicted 85.5% (177/207)
of the cases in these databases as being neutral or likely
neutral (Table 3). MITOMAP contains variations reported
to be associated with diseases, however, only about half of
them are predicted to be pathogenic or likely pathogenic.
When we investigated the overlap between MITOMAP and
the benign variation data sets, 23 variations overlapped in
the two data sets. After eliminating the overlapping vari-
ations, 58.2% (46/79) of the remaining MITOMAP vari-
ations (called as MITOMAP filtered) were predicted to
be pathogenic or likely pathogenic. Among the 79 MIT-
OMAP filtered variations, 4 had the ‘confirmed’ status in
the database which means that at least two independent
laboratories have reported the pathogenicity of the varia-
tions. Among the ‘confirmed’ variations, 1 was predicted as
pathogenic, 2 as likely pathogenic and 1 as neutral (Table
3).

Classification of all possible variations

We classified all the possible single nucleotide substitutions
in the human mt-tRNAs using PON-mt-tRNA. Among
the 4521 possible variations, 51.0% were predicted as
pathogenic. Among them, 73.5% (1695) variations occur in
stem regions and 18.2% (419) in the loops. We mapped the
numbers of predicted pathogenic variations at each posi-
tion in the 22 human mt-tRNAs to the corresponding po-
sitions in the three-dimensional structure of yeast nuclear
phenylalanine tRNA (pdb id: 1EHZ). The proportion of
predicted pathogenic variations is higher in stems (61.5%)
than in loops (34.1%) (Figure 2A). Among the stems, the
D-stem is the shortest but had the highest proportion of
pathogenic variations (82.7%) and among the loops, the an-
ticodon loop has the highest proportion of pathogenic vari-
ations (57.1%) (Figures 2 and 3 and Supplementary Table
S7). The variations in the anticodon loop are likely to af-
fect the anticodon and mRNA recognition and therefore are
more often pathogenic than in other loops.
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Table 1. Performance comparison of Kondrashov method and PON-mt-tRNA (ML method and integrated predictor)

TP TN FP FN PPVa NPVa Sensitivitya Specificitya Accuracya MCCa

Kondrashovb 13.10 7.10 7.90 1.90 0.63 (0.07) 0.79 (0.14) 0.87 (0.08) 0.47 (0.14) 0.67 (0.09) 0.38 (0.18)
PON-mtRNA (ML probc) 10.35 10.45 4.55 4.65 0.70 (0.08) 0.70 (0.06) 0.69 (0.09) 0.70 (0.12) 0.69) (0.06) 0.39 (0.13)
PON-mtRNA (Posterior
probc, d)

11.80 11.35 0 0.10 1.00 (0.00) 0.99 (0.02) 0.99 (0.02) 1.00 (0.00) 1.00 (0.01) 0.99 (0.02)

aPerformance scores are averages of 2000 iterations. The standard deviations are indicated in parentheses.
bMethod developed by Kondrashov (18). The performance of the method may be over-estimated as some of the variations were used to train the method.
cProb, Probability.
dPredicted pathogenic and likely pathogenic are considered as pathogenic and neutral and likely neutral are together considered as neutral. The variants
of uncertain significance are not included.

Table 2. Classification of unknown cases using PON-mt-tRNA. The variations were classified as ‘likely pathogenic’ by Yarham et al. due to lack of sufficient
evidence

Pathogenic Likely pathogenic Unknown Likely neutral Neutral Total

RF probabilitya 13 9 NA 14 10 46
Posterior probability 11 10 23 1 1 46

aVariations are classified into 4 classes. If more than 90% of RF predictors predict the prior probability to be greater or smaller than 0.5, the variations
are classified as pathogenic or neutral, respectively. Otherwise, the variations are classified as likely pathogenic or likely neutral based on the average of the
predicted probabilities.

Table 3. Prediction of mt-tRNA variations from mtDB, mtSNP and MITOMAP using PON-mt-tRNA. The variants present in PON-mt-tRNA training
and test data sets were excluded

Data set Data description Pathogenic Likely pathogenic
Likely
neutral Neutral Total

mtDB + mtSNPa Non-disease-associated 12 (5.79%) 18 (8.70%) 46 (22.22%) 131 (63.29%) 207
MITOMAPb Disease-associated 28 (27.45%) 21 (20.59%) 20 (19.61%) 33 (32.35%) 102
MITOMAP (filtered)a Disease-associated 27 (34.18%) 19 (24.05%) 16 (20.25%) 17 (21.52%) 79
MITOMAP (filtered and
confirmed)b

Disease-associated 1 (25%) 2 (50%) 0 (0%) 1 (25%) 4

aVariations in MITOMAP not present in mtDB and mtSNP.
bVariations in MITOMAP with status ‘confirmed’.
The percentages are indicated in the parentheses.

We compared the predictions of PON-mt-tRNA with
those of the Kondrashov method. Both methods agreed in
the predictions for 71.1% (3216/4521) of the possible sin-
gle nucleotide substitutions. Of the remaining 1301 varia-
tions, PON-mt-tRNA predicted 96 as pathogenic and 1205
as neutral. PON-mt-tRNA and the Kondrashov method
agree the most for variations in the D-stems and T-loops.
Over 80% of the possible variations in D-stem are predicted
as pathogenic by both methods and over 70% of the varia-
tions in the T-loop are predicted as neutral (Supplementary
Table S7).

Web application

The PON-mt-tRNA web interface is available at http://
structure.bmc.lu.se/PON-mt-tRNA/. The method requires
the reference position in mtDNA, the reference (original)
nucleotide and the altered nucleotide for each variation as
inputs. In addition, the user can submit evidence for seg-
regation, biochemical and histochemical features. The evi-
dence field is optional as the data are not always available. If
the evidence is provided, PON-mt-tRNA integrates the evi-
dence with predictions of ML method to classify the varia-
tions, otherwise the predictions of the ML method are used
for classification. The predictions for all possible nucleotide

substitutions in mt-tRNA genes are available for down-
load at http://structure.bmc.lu.se/PON-mt-tRNA/datasets.
html/.

DISCUSSION

Large numbers of tRNA variations have been identified and
all of those associated with disease appear in mt-tRNAs
(2,13). Due to the degeneracy of the genetic code and the
presence of isoacceptors for nuclear tRNAs, the phenotype
may not necessarily appear even for harmful variants. The
variations identified in patients are often filtered based on
the common variants in the haplogroups and other benign
variations reported in databases. Several databases includ-
ing MITOMAP (10), mammit-tRNA (31), mtDB (11), mt-
SNP (12) and others collect and store variations reported
in literature. These databases are useful for interpreting pre-
viously reported variations. We found that these resources
contain contradictory reports for a number of cases. This
may be partly because of technical errors or shortcomings
in interpreting the variation effects (39). Other possible rea-
sons could be phenotypic heterogeneity and variable pene-
trance. Several factors including threshold of heteroplasmy,
mitotic segregation, clonal expansion and genetic bottle-
neck may affect the clinical outcome of mitochondrial vari-
ations (6). Therefore, it is essential to accurately classify the

http://structure.bmc.lu.se/PON-mt-tRNA/
http://structure.bmc.lu.se/PON-mt-tRNA/datasets.html/
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Figure 3. The distribution of predicted pathogenic variations in mt-
tRNAs. All possible single nucleotide substitutions at each position of the
22 mt-tRNAs are classified using PON-mt-tRNA. There are three pos-
sible substitutions at each position. The secondary structures were ob-
tained from mito-tRNAdb. Shading indicates the numbers of predicted
pathogenic variants per site. Acc-stem, Acceptor stem; Ac-stem, Anti-
codon stem; Ac-loop, Anticodon loop; V-region, Variable region.

variations in order to correctly diagnose and provide genetic
advice to patients.

The Kondrashov method does not require experimental
evidence to rank and prioritize variations. The method has
not been updated for several years and it showed poor per-
formance in our evaluation (Table 1). We developed a novel
multifactorial probability-based method, PON-mt-tRNA,
to accurately classify variations in human mt-tRNAs. The
method integrates an ML method and evidence from three
sources for classification of variations. As far as we know,
this is the first method that implements an ML algorithm
for predicting the pathogenicity of mt-tRNA variants. The
ML method does not require any experimental evidence
and can rank all novel variations. PON-mt-tRNA showed
higher performance scores than the Kondrashov method
(Table 1 and Supplementary Figure S1). The integrated pre-
dictor has a sensitivity of 0.99 and a specificity of 1.00. Al-
though we cannot compare the performance of PON-mt-
tRNA to that of Yarham et al. because that would intro-
duce circularity, we were able to classify half of the varia-
tions (23/46) that Yarham et al. could not classify reliably.
The evidence-based experimental method requires evidence
from several sources and therefore takes a long time to clas-
sify a novel variation. PON-mt-tRNA can rank novel vari-
ations using the ML method and prioritize likely harmful

variations for further experiments. When the results from
the three sources (segregation, biochemistry and histochem-
istry) are available, the method can classify variations with
an almost perfect accuracy (Table 1).

We classified all possible single nucleotide substitutions
in the mt-tRNA genes using PON-mt-tRNA. The results
show that the pathogenic variations are most frequent in
the stems (Figures 2 and 3) where the variations are likely
to disrupt the hydrogen bonding and affect the mt-tRNA
structure and consequently translation. Among the loops,
the anticodon loops are the most vulnerable for variations
because of the effects on codon recognition. These results
are in line with those from an independent previous study
(15). The predicted pathogenic variations are likely harm-
ful but may not be pathogenic in all individuals due to the
complexity of the mitochondrial genetics. The pathogenic-
ity of variations in patients can be revealed by integrating
the predictions and additional sources of evidence.

Single-fiber and trans-mitochondrial cybrid studies are
considered as the gold standard for the evaluation of
pathogenicity of mtDNA variations (15,16) but such ex-
periments are time-consuming. To confirm the highly accu-
rate predictions of PON-mt-tRNA, we advise to perform
such experiments, when possible. Heteroplasmy is an im-
portant aspect of mitochondrial genetics and plays a role
in mtDNA variations’ pathogenicity. However, PON-mt-
tRNA does not incorporate heteroplasmy for prediction.
PON-mt-tRNA facilitates the classification of mt-tRNA
variations in two steps. First, the method can be used to
rank novel variations based on the prediction of the ML
method when no other evidence is known. Based on the
ranking, the variants can be prioritized for experiments to
collect further evidence of pathogenicity. This version of
PON-mt-tRNA can be used immediately after identifying
the variations by genome sequencing. Thus, it can be inte-
grated into a high-throughput analysis pipeline to rank mt-
tRNA variations. Second, the method can be used to clas-
sify variations when evidence of segregation, and results of
biochemical and histochemical tests are available.

AVAILABILITY

PON-mt-tRNA is available at http://structure.bmc.lu.se/
PON-mt-tRNA/.
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