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Abstract

The new software QSARINS-Chem standalone version is a multiplatform tool, freely

downloadable, for the in silico profiling of multiple properties and activities of organic

chemicals. This software, which is based on the concept of the QSARINS-chem mod-

ule embedded in the QSARINS software, has been fully redesigned and redeveloped

in the Java™ language. In addition to a selection of models included in the old mod-

ule, the new software predicts biotransformation rates and aquatic toxicities of phar-

maceuticals and personal care products in multiple organisms, and offers a suite of

tools for the analysis of predictions. Furthermore, a comprehensive and transparent

database of molecular structures is provided. The new QSARINS-Chem standalone

version is an informative and solid tool, which is useful to support the assessment of

the potential hazard and risks related to organic chemicals and is dedicated to users

which are interested in the application of QSARs to generate reliable predictions.
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1 | INTRODUCTION

Chemical pollution has great impact on human and environmental

health and the development of strategies to guarantee a more sustain-

able use of chemicals is a main challenge for chemical regulations

worldwide.1–3 The need to properly address and manage chemical

risks as well as to track and substitute potentially hazardous chemicals

with less dangerous ones, has in the last decade pushed toward a

faster development and integration of in vitro and in silico strategies

within regulations. The effort spent in traditional and regulatory sci-

ence to facilitate the application of in silico tools, making them more

transparent, easy to apply, and efficient, is major.3 In silico approaches,

such as models based on Quantitative Structure Activity Relationships

(QSAR), are used to predict many different properties and activities of

regulatory interest and for different chemical categories.4–17 These

models are useful to fill data gaps, for virtual screenings, and/or for

the identification of safer alternatives to unsafe pollutants. Further-

more, the availability of multiple models, which can be combined to

generate consensus predictions, helps to reduce the uncertainty asso-

ciated with the prediction of a single property/activity, they can

cross-validate in silico predictions and experiments, and support deci-

sion making processes.4–13

QSARINS-Chem17 was proposed in 2014 as an additional module

embedded in the software QSARINS18 to provide a database to store

models and a tool to facilitate their application. The QSARINS-Chem

module included a database of chemical structures (with 3D
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TABLE 1 List of the datasets7–9,22–48 included in the structural database of QSARINS-Chem standalone version

Classa Endpoint-type Dataset name

1. General 1. Physico-Chemical properties 1. Soil organic carbon-water partition

coefficient (KOC)
22

2. Environmental Persistence 1. Sediment half-lives23

2. Soil half-lives23

3. Water half-lives23

4. Air half-lives23

5. NO3 reactivity
24

6. O3 reactivity
25

7. OH reactivity26

8. Global half-life index (GHLI)23

3. Bioconcentration Factor (BCF) 1. BCF-Fernandez9

2. BCF-Lu27

4. Metabolic Transformation 1. Fish biotransformation28–31

2. Human biotransformation Model 132

3. Human biotransformation Model 232

4. Human biotransformation Model 332

5. Human biotransformation Model 432

6. Human total elimination32

5. Aquatic Toxicity 1. Fish acute toxicity (P. promelas)33

6. Endocrine Disruption 1. Estrogen receptor binding34

2. Aromatic Amines 1. Mutagenicity 1. Aromatic Amines mutagenicity TA9835

2. Aromatic amines mutagenicity TA10035

3. (Benzo)Triazoles 1. Physico-Chemical properties 1. (B)TAZ Kow36

2. (B)TAZ solubility in water36

3. (B)TAZ vapor pressure36

4. (B)TAZ melting point36

2. Aquatic Toxicity 1. (B)TAZ Algae acute toxicity (P.

subcapitata)37

2. (B)TAZ Daphnia sp acute toxicity38

3. (B)TAZ fish acute toxicity (O. mykiss)38

4. Brominated flame retardants (BFR) 1. Physico-Chemical properties 1. BFR Kow39

2. BFR Koa39

3. BFR vapor pressure39

4. BFR solubility in water39

5. BFR Henry law constant39

6. BFR melting point39

2. Endocrine Disruption 1. BFR-DR-Ag40

2. BFR-ER-Ag40

3. BFR-ERODind40

4. BFR-PR-ant40

5. BFR-SULT-REP40

6. BFR-T4-REP40

7. BFR receptor binding affiniy40

5. Dioxin analogues 1. Biochemical Activity 1. Dioxin analogues pAH41

2. Dioxin analogues pRB41

6. Esters 1. Physico-Chemical properties 1. Esters flash point42

2. Aquatic Toxicity 1. Esters Algae acute toxicity43

(Continues)
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representation) and experimental data for different end-points (phys-

ico-chemical properties and biological activities) in addition to multiple

linear regression (MLR) models based on descriptors calculated by the

free software PaDEL-Descriptor.19 The QSAR model reporting format

(QMRF) documents, which show the compliance of the models with

the “OECD principles for the validation, for regulatory purposes, of

(Q)SARs”20, were also included in the QSARINS-Chem module.17

Being part of the QSARINS software, this module was developed in C

++ language and was available, under license agreement, only for

Windows™ operative system.

In this paper we introduce the QSARINS-Chem standalone ver-

sion, a new software developed in Java™ language to run on multi-

ple platforms. This software, based on the concept of the

QSARINS-chem module mentioned above, has been completely re-

designed and re-developed, to be user friendly and to facilitate the

application and use of QSAR models. It does not require any license

and can be freely downloaded at http://dunant.dista.uninsubria.it/

qsar/.

A new simple graphic user interface (GUI) guides scientists and

regulators step-by step in the application of more than 20 QSAR

models to guarantee a straightforward and transparent procedure.

The reliability of predictions can be analyzed using numerical and

graphical outputs that highlight criticalities and allow for the investiga-

tion of the applicability domain of the models.

The QSARs included in the new software predict the potential

hazard related to environmental fate, metabolism and toxicity as well

as the potential Persistent, Bioaccumulative and Toxic (PBT) behavior

TABLE 1 (Continued)

Classa Endpoint-type Dataset name

2. Esters Daphnia sp acute toxicity43

3. Esters fish acute toxicity (P. promelas)43

4. Esters aquatic toxicity index (EATIN)43

7. Fragrances 1. Terrestrial Toxicity 1. Fragrances oral toxicity (Rat)44

2. Biochemical Activity 1. Fragrances inhibition NADHox44

2. Fragrances Mitochondrial memb pot44

8. Nitrated polycyclic aromatic

hydrocarbons (PAH)

1. Mutagenicity 1. NitroPAH mutagenicity TA10045

9. Perfluorinated compounds 1. Physico-Chemical properties 1. PFC critical Micelle concentration46

2. PFC solubility in water46

3. PFC vapor pressure46

2. Terrestrial Toxicity 1. PFC oral toxicity (Rat)47

2. PFC oral toxicity (Mouse)47

3. PFC inhalation toxicity (Rat)48

4. PFC inhalation toxicity (Mouse)48

10. Personal care products 1. Aquatic Toxicity 1. PCP Algae acute toxicity (P. subcapitata)7

2. PCP Daphnia sp acute toxicity7

3. PCP fish acute toxicity (P. promelas)7

11. Pharmaceuticals 1. Aquatic Toxicity 1. Pharm. Algae acute toxicity (P.

subcapitata)8

2. Pharm. Daphnia sp acute toxicity8

3. Pharm. fish acute toxicity (O.mykiss)8

4. Pharm. fish acute toxicity (P. promelas)8

aClass 1 includes heterogeneous structures; Class 2–11 refer to specific chemical classes or classes of use.

F IGURE 1 Relative abundance of records for each endpoint type:
Aquatic Toxicity (Aquatic Tox.); biochemical activity (Biochem. Act.);
Bioconcentration Factor (BCF); Endocrine Disruption (ED);
Environmental Persistence (Environ. Persist.); Metabolic
Transformation (Metabolic Transf.); Mutagenicity; Physico-Chemical
properties (Phys-Chem prop.); Terrestrial Toxicity (Terrestrial Tox)
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of traditional and emerging contaminants (e.g., pharmaceuticals and

personal care products [PCPs]).

Furthermore, the new QSARINS-Chem standalone version

includes an updated version of the full database of molecular struc-

tures which was provided within the QSARINS-Chem module,17 with

new datasets added after 2014.

QSARINS-Chem standalone version is a useful tool dedicated to

general users, not necessarily QSAR developers or QSAR experts,

to generate screening-level information to support weight of evidence

analysis in the context of chemicals risk assessment.

2 | METHODS

2.1 | Software design

To be platform independent, QSARINS-Chem standalone version was

developed using the Java™ language. JavaFX™ was used for GUI lay-

out and the 3D molecular drawing. To keep the software require-

ments to a minimum, the database of molecular structures is handled

directly by the software, therefore no additional database server

installation is needed. The models' database and the database of the

molecular structures are organized and handled following the same

scheme used for QSARINS-Chem module (2014), which is extensively

explained in our previous publication.17

2.2 | Software overview

The new software is organized in two main modules: “Models” and

“Database”. The “Models” module allows the user to apply the

models developed using QSARINS.18 The “Database” module allows

the user to browse the molecules in the database. These modules are

accessible by two selectable tabs described below. In addition, we

want to highlight that supporting documents called “Quick Start” and
“How to” are available in the info section of the software, to easily

guide users step by step through the application of the models and

other functionalities.

2.2.1 | Models tab

The “Models” tab contains sub-tabs organized as a workflow for

model's predictions. Once selected the following sub-tabs are shown:

1. “Models selection” tab. This tab allows for the selection of the

model, using a drop-down list. For every selected model this tab

shows the summary, the corresponding formula, the relevant sta-

tistics and validation criteria.

2. “Training descriptors” and “Training endpoint” tabs. Once a model

is selected, the descriptors and the endpoint data of the model's

training set are available for consultation in the “Training descrip-

tors”, and “Training endpoint” tabs. The last tab contains, in addi-

tion to the experimental values of the endpoint, the corresponding

performances of the models (estimated values of the endpoint, the

HAT value, normal and standardized residuals, also for cross vali-

dated values).

3. “User descriptors” tab. This tab allows the user to enter the descrip-

tors values and optionally the experimental endpoints. Apart from

manual editing, compound's descriptors can be calculated by an auto-

matic query. In this case the open-source software PaDEL-Descriptor

is automatically called and configured by QSARINS-Chem and will

automatically calculate the required descriptors.

4. Additional tabs. Once data is entered and accepted, additional tabs

are activated allowing the analysis of the model's predictions. The

“Predictions” tab shows the predicted endpoint values (estimated

endpoint) and relevant statistics. The “Graph” tab shows simulta-

neously (for an easier comparison) the graphs relevant to evaluate

the model's performances, that is, experimental versus estimated

endpoints, the corresponding residuals, the Williams plot and the

“Insubria graph”17,18, to examine the applicability domain of the

models.

2.2.2 | Database tab

The “Database” tab shows the compound's relevant information, that

is, name, CAS, SMILES, endpoint value and the related references, in a

tabular form. For user's convenience, datasets can be viewed all

together or dataset by dataset. When a single dataset is selected, it is

possible to copy the SMILES of the compounds from the main page of

the database or to export the compound's 3D structural files17,21

where available. This tab also allows filtering the database by specific

queries (name, molecular formula, CAS, and SMILES).

3 | DISCUSSION

3.1 | Structural database

A database consisting of 60 individual datasets for multiple endpoints

and different chemical classes is included in the new software. This

database is organized following the same structure used in the

F IGURE 2 Vertical blue bars indicate the number of records
included in each class of chemicals commented in the text (11 classes
listed in Table 1)
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QSARINS-Chem module (2014), described in our previous publica-

tion.17 The database contains 3875 individual chemicals with 11,628

records (data points) grouped in nine main endpoint types (i.e., Phys-

ico-Chemical properties, Environmental Persistence, Bioconcentration

Factor (BCF), Metabolic Transformation, Aquatic Toxicity, Terrestrial

Toxicity, Biochemical Activity, Mutagenicity, and Endocrine Disrup-

tion). Table 1 and Figure 1 provide a brief overview of the structural

database. We want to highlight that all these data were gathered from

the literature or published databases (i.e., no new experimental data

was measured in our laboratories). References listed in Table 1 refer

to the original data (or databases) and/or to the curated datasets used

to generate models included in the QSARINS software and in the

QSARINS-chem Standalone version.

About half of the records are related to metabolic transformation

data (more than 5000 records for about 1500 chemicals in fish and

human).28–32 Biotransformation is a fundamental component of bio-

accumulation and information about biotransformation potential can

reasonably be used to refine the bioaccumulation estimation.49,50

About one third of the remaining records are related to environ-

mental persistence. These include data related to degradation half-life

in sediment, soil, water and air, as well as data for atmospheric

reactivity.

The third most relevant endpoint category is the aquatic toxicity.

Datasets for this category include data for toxicity in different aquatic

species (i.e., Pseudokirchneriella subcapitata, Daphnia magna,

Oncorinchus mykiss, and Pimephales promelas) for PCPs, Pharmaceuti-

cals, Benzotriazoles, Esters, and other heterogeneous organic

chemicals.7,8,37,38,43

Physico-chemical properties are the fourth most relevant end-

point category. Particularly relevant is the dataset 1.1.1 in Table 1 for

Soil organic carbon - water partition coefficient (KOC), which counts

643 heterogeneous chemicals.22 This dataset was used to generate a

strongly externally validated QSAR model for the KOC estimation of

heterogeneous chemicals (see next section for further details).

Data for metabolic transformation in fish and human28–32 have a

relative high abundance. Finally, the rest of the records are relative to

TABLE 2 List of the QSAR models included in QSARINS-Chem standalone version

Category Model N of compounds in training set

Physico-chemical properties 1. Soil organic carbon-water partition

coefficient (KOC)
17,22

643

Global indexes 1. Global half-life index (GHLI)17,23 250

2. Insubria PBT index11,17 180

Aquatic toxicity 1. Fish acute toxicity (P. promelas)17,33 449

Aquatic toxicity of personal care products

(PCPs)

1. PCP freshwater Algae growth inhibition7 20

2. PCP Daphnia sp. acute toxicity7 72

3. PCP fish acute toxicity Model 1 (logP

based)7
67

4. PCP fish acute toxicity Model 27 67

5. PCP aquatic toxicity index (ATI)7 484

Aquatic toxicity of pharmaceuticals 1. Pharmaceutical freshwater Algae growth

inhibition8
45

2. Pharmaceutical Daphnia sp. acute

toxicity8
125

3. Pharmaceutical fish acute toxicity (O.

mykiss)8
55

4. Pharmaceutical fish acute toxicity (P.

promelas)8
62

5. Pharmaceutical aquatic toxicity index

(ATI)8
706

Metabolic transformation in fish 1. Fish biotransformation Model 15 632

2. Fish biotransformation Model 25 632

3. Fish biotransformation Model 35 632

Metabolic transformation in human 1. Human biotransformation Model 14 1011

2. Human biotransformation Model 24 1015

3. Human biotransformation Model 34 935

4. Human biotransformation Model 44 940

5. Human total elimination4 1105
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secondary small datasets for terrestrial toxicity,44 ED,34,40 and

mutagenicity.35,45

The 3875 individual compounds and 11,628 records are divided

in 11 classes according to the chemical class or to the classes of use

(Figure 2) and cover a large and heterogeneous structural space.

Class #1 is the largest and contains heterogeneous structures that

were collected from large datasets. Classes from #2 to #11 are class-

specific.

Class #1 is the only not class-specific group and covers 14 large

datasets (among the largest in the database) for heterogeneous

chemicals. It includes the Soil organic carbon - water partition coeffi-

cient (KOC) dataset, the datasets related to persistence in multiple

environmental media, the BCF datasets, the metabolic transformation

in fish and human datasets, as well as datasets for the aquatic toxicity

the endocrine disrupting properties.

Class #2 contains two datasets for the Mutagenicity Ames test

TA100 of aromatic amines.

Class #3 is specific for (benzo)-triazoles and contains datasets for

various physico-chemical properties and for aquatic toxicity.

Class #4 is specific for brominated flame retardants and contains

the highest number of datasets: six datasets for physico-chemicals

properties and seven datasets for different tests for endocrine dis-

rupting activity.

Class #5 collects two datasets for aryl hydrocarbon receptor bind-

ing potency (pAH and pRB) of dioxin-like compounds.

Class #6 contains one dataset for physico-chemical properties

and four datasets for aquatic toxicity of heterogeneous esters.

Class #7 is about fragrances and contains datasets for terrestrial

toxicity in rat and some specific biochemical activity.

Class #8 contains record for mutagenicity of nitrated polycyclic

aromatic hydrocarbons (PAH).

Class #9 is one of the largest and contains data for heterogeneous

PFCs. This group gathers datasets describing physico-chemical prop-

erties and toxicities in rat and mice.

Classs #10 and #11 contain aquatic toxicity data on different

organisms for PCPs and pharmaceuticals, respectively.

3.2 | QSAR models included in QSARINS-Chem
Standalone version

The new QSARINS-Chem Standalone version includes 22 QSAR

models, calculated using MLR by ordinary least squares, developed by

the QSAR research group at University of Insubria in the last 20 years.

These models, which are based on descriptors calculated by the

PaDEL-Descriptor software, are listed in Table 2.

The models are grouped in seven different categories. A brief

description of models included in each category is reported as follows.

Readers can refer to specific literature reported in Table 2 and to the

QMRF documentation provided in the software for further

description.

Category 1 includes models for physico-chemical properties of

heterogeneous compounds. The model for KOC is characterized by

good fitting, robustness and external predictivity and is based on a

large structural domain which covers 663 compounds.

The second category includes QSARs generated for global

indexes which encode for the tendency of chemicals to be persistent

in the environment (i.e., persistent organic pollutants [POPs]) or to

have a potential PBT behavior (i.e., chemicals which are persistent,

bioaccumulative, and toxic). The Global Half-Life Index, namely the

GHLI,23 was derived by combining by principal component analysis

(PCA) environmental half-lives in air, water, soil and sediments for

250 compounds, including POP-like chemicals. The PC1 score from

the PCA is the GHLI index which was modeled by QSAR.23,51 This

model is helpful to screen new and existing chemicals and to identify

potential POPs which should be substituted with less hazardous

alternatives.

Similarly, the Insubria PBT Index11,17,18 was calculated by PCA by

combining data of environmental persistence, BCFs and acute toxicity

measured in fish, for a set of 180 heterogeneous organic chemicals. A

work by Sangion and Gramatica10 has highlighted the utility of this

QSAR model to screen the potential PBT behavior of pharmaceuticals.

Category #3 includes a model to estimate the aquatic toxicity of

heterogeneous chemicals in fish based on the Duluth dataset of acute

toxicity to P. promelas.17,33,52,53

Categories #4 and #5 include models to estimate the acute

aquatic toxicity of PCPs and pharmaceuticals, respectively. These

models estimate the toxicity of pharmaceuticals and PCPs in differ-

ent test-standard organisms (i.e., P. subcapitata, D. magna, O.

mykiss, and P. promelas) considered representative of different tro-

phic levels in the aquatic environment. These models are intended

to rank and prioritize PCPs and pharmaceuticals potentially toxic

for aquatic environment in multiple species on the basis of the

molecular structure; for instance, they can be used in the refine-

ment of the toxicity assessment of a PBT screening. Models 4.5

and 5.5 (i.e., PCP aquatic toxicity index and pharmaceutical aquatic

toxicity index) are particularly relevant because they are PCA-

derived toxicity indexes specific for PCPs and pharmaceuticals;

they combine toxicity information for alga, Daphnia and fish in a

single index for the aquatic environment7,10.

Finally, categories #6 and #7 include models for the biotransfor-

mation potential in fish and in human respectively. In particular, cate-

gory #6 includes three models to predict in vivo whole-body

biotransformation half-lives in fish. These models were developed on

multiple training/prediction sets generated from a dataset composed

of 632 compounds. The three models are based on different

theoretical molecular descriptors and therefore have different struc-

tural applicability domains. We suggest using these models in a con-

sensus approach, that is, by averaging predictions calculated by the

three models.

Category #7 includes a model to estimate the human whole-body

total elimination half-life and four models to predict the human

whole-body primary biotransformation half-life. Model 7.1, 7.2, 7.3,

7.4 in Table 2 were developed on different training sets for the whole

body biotransformation potential in human derived from different

parametrizations of a 1-CoTK model.32 These models can be applied

CHIRICO ET AL. 1457



to estimate the biotransformation potential in fish and human and

refine the bioaccumulation assessment of chemicals.

3.3 | Chemical profiling and diagnostics

The QSARINS–Chem standalone version drives the users through a

transparent step-by-step procedure which goes from the selection of

a QSAR model until the analysis of the reliability of predictions. Users

can refer to specific literature reported for each model, to the

QSARINS-Chem standalone manuals (i.e., “How to” and a “Quick-start

guide”), and to the OECD Guidance on QSAR models development

and validation54 for further description of methods and parameters

reported in the software.

The desired activity/property of one or more chemicals of inter-

est for the user can be profiled singularly or in batch by applying the

models listed in the software. In addition, the user can explore these

predictions in comparison to chemicals used to train the selected

QSAR by analyzing summary tables and graphs. Predictions are gener-

ated on the basis of molecular descriptors automatically calculated by

the software. This is possible by uploading text files encoding for the

molecular structure of the chemicals of interest (e.g., a list of SMILES

with file extension .smi) in the PaDEL Descriptors Java application,

which runs automatically through QSARINS-Chem Standalone ver-

sion. Tables and graphs are exportable for personal use.

The procedure of selection and application of the models is sum-

marized as follows:

Step 1: Model selection

The QSARINS-Chem standalone version opens as default on the

model's selection page. A drop-down menu gives access to

the desired model and to a description page, which summarizes all the

main information associated to the selected model (i.e., model's

description, equation, statistics, references). The QMRF document

and the model file with experimental values and descriptors calculated

for the training set chemicals (i.e., the .sdf file) can be exported from

the model selection page.

F IGURE 3 QSARINS-Chem diagnostic plots. Upper left: Plot of diagonal values from the HAT matrix versus estimated values of the endpoint
(“Insubria graph”); upper right: Plot of experimental versus estimated values of the endpoint; lower left: Plot of estimated values of the
endpointversus residuals; lower right: Plot of diagonal values from the HAT matrix versus standardized residuals (“Williams plot”). Colors: Red
dots = training set; dark blue dots = user set, when the experimental value of the endpoint is provided by the user; light blue dots = user set,
when the experimental value of the endpoint is not provided by the user
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The selection of a specific model activates three additional pages,

that is, “Training descriptors”, “Training endpoint”, and “User descrip-

tors”. In particular, the first two pages are included for transparency to

provide the information related to the input descriptors and the endpoint

used to train the model as summary tables. Experimental and estimated

values for the training set objects as well as residuals and leverage values

(i.e., diagonal elements of the HAT matrix) are provided. Outliers for the

response and influential objects are automatically highlighted in red in

the “Training descriptors” and “Training endpoint” tables.
Step 2: Molecular descriptors calculation

The “User descriptors” page stores the values of the descriptors

calculated for the molecules that are going to be profiled by the user.

As mentioned above these descriptors can be automatically calculated

within the QSARINS-Chem or entered manually.

Step 3: Predictions and diagnostics

The button “Apply model” available in the “User descriptors”
page is used to run the model and generate predictions. This activates

the “Predictions” page where are listed predicted values along with

diagnostic parameters such as leverage values and residuals. These

parameters are useful to address the reliability of the predictions.

Values listed in the predictions page can be easily copied and pasted

by the users for further analysis and storage.

Step 4: Graphical inspection

The “Graphs” page is automatically activated when predictions

become available. Here the button “Calculate graphs” generates mul-

tiple graphs which allow to explore the position of the new predic-

tion/predictions in the space of the original model. These plots are

summarized in Figure 3 and can be exported by the user by simple

copy-paste operation.

In particular, the here called “Insubria Graph”17,18,37 (Figure 3—

Upper left) plots HATii (i.e., diagonal elements of the HAT matrix) ver-

sus estimated values of the endpoint, for the training set (red dots)

and the user set (dark blue dots if the experimental value is provided

by the user, otherwise light blue dots). This graph is useful to evaluate

the inclusion of the user's chemicals in the applicability domain (struc-

tural space) of the model (i.e., compounds with hi/i values ≤h* are

included in the applicability domain). In addition, predictions above or

below the experimental range of the response (extrapolations) are also

clearly identified.

Plot of the experimental versus estimated values of the endpoint

(Figure 3—Upper right) provides visual information on the fitting of

the model. If experimental values for the “User set” are feed in the

software along with molecular descriptors they will appear in this

graph (dark blue dots).

The plot of the residuals (Figure 3—Lower left) shows the esti-

mated values of the endpoint versus residuals (where

residuals = experimental values of the endpoint � estimated values

of the endpoint). As was mentioned above if experimental values for

the “User set” are provided, residuals calculated for the “User Set”
will appear.

Finally, the Williams Plot (Figure 3—Lower right) shows the diago-

nal elements of the HAT matrix versus the standardized residuals. This

graph provides combined information about the response and the

structural domain and allows the identification of outliers.

4 | CONCLUSIONS

The new QSARINS-Chem Standalone version is a multiplatform, infor-

mative, and solid tool, which guides expert and non-expert users

through a clear workflow for the QSAR-based profiling of existing and

new chemicals taken singularly or in batch.

Compared to the original QSARINS-Chem module embedded in

the QSARINS software, the new software has been fully redesigned

and developed using the Java™ language. In addition, new functionali-

ties are included such as summary tables, and diagnostic graphs that

guarantee a straightforward and transparent use of the models. The

over 20 QSAR models proposed in the software are particularly rele-

vant to assess, through multiple endpoints, the PBT properties and

the biotransformation of traditional and emerging contaminants. Fur-

thermore, the analysis of the domain of the models is additionally

supported by the structural database, which helps to address similari-

ties among training chemicals and new compounds.

The reliability of predictions generated by the QSARINS-Chem

standalone version can be analyzed using numerical and graphical out-

puts that highlight criticalities and allow for the investigation of the

applicability domain of the models.

QSARINS-Chem standalone version provides valuable informa-

tion to describe the behavior of chemicals at the screening level and

to support hazard and risk assessment procedures for heterogeneous

chemicals or specific structural and functional categories.

ACKNOWLEDGMENTS

We acknowledge Dr. Stefano Cassani for the revision of the chemical

structures of the database (until 2015) and his contribution for the

population of the QSARINS-Chem module with models based on

PaDEL Descriptors. We acknowledge Dr. Jon Arnot for providing the

Fish and the Human biotransformation data as well as Dr. James

Armitage for helpful comments and for testing the first version of the

software during BAT-Tool training session (Rome 2018). We grate-

fully acknowledge funding by CEFIC- LRI ECO44 that has supported

part of the QSARINS-Chem development. We also acknowledge the

PhD program in Chemical and Environmental Sciences (DiSCA,

Università degli Studi dell'Insubria) for funding the scholarship of

Linda Bertato.

ORCID

Ester Papa https://orcid.org/0000-0002-0041-556X

REFERENCES

[1] European Chemicals Agency (ECHA), Strategy to Promote Substitution

to Safer Chemicals through Innovation, https://echa.europa.eu/

documents/10162/13630/250118_substitution_strategy_en.pdf/bce91

d57-9dfc-2a46-4afd-5998dbb88500 (accessed: April 12, 2021).

CHIRICO ET AL. 1459

https://orcid.org/0000-0002-0041-556X
https://orcid.org/0000-0002-0041-556X
https://echa.europa.eu/documents/10162/13630/250118_substitution_strategy_en.pdf/bce91d57-9dfc-2a46-4afd-5998dbb88500
https://echa.europa.eu/documents/10162/13630/250118_substitution_strategy_en.pdf/bce91d57-9dfc-2a46-4afd-5998dbb88500
https://echa.europa.eu/documents/10162/13630/250118_substitution_strategy_en.pdf/bce91d57-9dfc-2a46-4afd-5998dbb88500


[2] United Nations Environment Programme (UNEP), Towards a

Pollution-Free Planet Background Report, https://wedocs.unep.

org/bitstream/handle/20.500.11822/21800/UNEA_towardspollu

tion_long%20version_Web.pdf?sequence=1&isAllowed=y (accessed:

April 12, 2021).

[3] D. R. Juberg, T. B. Knudsen, M. Sander, N. B. Beck, E. M. Faustman,

D. L. Mendrick, J. R. Fowle, T. Hartung, R. R. Tice, E. Lemazurier, R. A.

Becker, S. Compton Fitzpatrick, G. P. Daston, A. Harrill, R. N. Hines,

D. A. Keller, J. C. Lipscomb, D. Watson, T. Bahadori, K. M. Crofton,

Toxicol. Sci. 2017, 155, 22.
[4] E. Papa, A. Sangion, J. A. Arnot, P. Gramatica, Food Chem. Toxicol.

2018, 112, 535.
[5] E. Papa, L. van der Wal, J. A. Arnot, P. Gramatica, Sci. Total Environ.

2014, 470, 1040.
[6] K. Mansouri, N. Kleinstreuer, A. M. Abdelaziz, D. Alberga, V. M. Alves,

P. L. Andersson, C. H. Andrade, F. Bai, I. Balabin, D. Ballabio, E.

Benfenati, B. Bhhatarai, S. Boyer, J. Chen, V. Consonni, S. Farag, D.

Fourches, A. T. García-Sosa, P. Gramatica, F. Grisoni, C. M. Grulke, H.

Hong, D. Horvath, X. Hu, R. Huang, N. Jeliazkova, J. Li, X. Li, H. Liu, S.

Manganelli, G. F. Mangiatordi, U. Maran, G. Marcou, T. Martin, E.

Muratov, D. Nguyen, O. Nicolotti, N. G. Nikolov, U. Norinder, E.

Papa, M. Petitjean, G. Piir, P. Pogodin, V. Poroikov, X. Qiao, A. M.

Richard, A. Roncaglioni, P. Ruiz, C. Rupakheti, S. Sakkiah, A. Sangion,

K. Schramm, C. Selvaraj, I. Shah, S. Sild, L. Sun, O. Taboureau, Y. Tang,

I. V. Tetko, R. Todeschini, W. Tong, D. Trisciuzzi, A. Tropsha, G. Van

Den Driessche, A. Varnek, Z. Wang, E. B. Wedebye, A. J. Williams, H.

Xie, A. V. Zakharov, Z. Zheng, R. S. Judson, Environ. Health Perspec.

2020, 128, 27002.
[7] P. Gramatica, S. Cassani, A. Sangion, Green Chem. 2016, 18, 4393.
[8] A. Sangion, P. Gramatica, Environ. Int. 2016, 95, 131.
[9] A. Fernandez, A. Lombardo, R. Rallo, A. Roncaglioni, F. Giralt, E.

Benfenati, Environ. Int. 2012, 45, 51.

[10] A. Sangion, P. Gramatica, Environ. Res. 2016, 147, 297.
[11] E. Papa, P. Gramatica, Green Chem. 2010, 12, 836.
[12] P. Gramatica, IJQSPR 2020, 5, 61.
[13] B. Bhhatarai, W. Teetz, T. Liu, T. Öberg, N. Jeliazkova, N. Kochev, O.

Pukalov, I. V. Tetko, S. Kovarich, E. Papa, P. Gramatica, Mol. Inf. 2011,

30, 189.

[14] VEGA-QSAR. AI inside a platform for predictive toxicology, Proceed-

ings of the workshop “Popularize Artificial Intelligence 2013”, Turin,
Italy, December 5th 2013, E. Benfenati, A. Manganaro, G. Gini, CEUR

Workshop Proceedings Vol. 1107, 21–28.
[15] Organization for the Economic Cooperation and Development (OECD).

The OECD QSAR Toolbox. https://www.oecd.org/chemicalsafety/risk-

assessment/oecd-qsar-toolbox.htm (accessed: April 12, 2021).

[16] K. Mansouri, C. M. Grulke, R. S. Judson, A. J. Williams, Aust. J. Chem.

2018, 10, 10.
[17] P. Gramatica, S. Cassani, N. J. Chirico, J. Comput. Chem. 2014, 35,

1036.

[18] P. Gramatica, N. Chirico, E. Papa, S. Cassani, S. Kovarich, J. Comput.

Chem. 2013, 34, 2121.

[19] C. W. J. Yap, Comput. Chem. 2011, 32, 1466.
[20] Organization for the Economic Cooperation and Development

(OECD). OECD Principles for the Validation, for Regulatory Purposes,

of (Q)SAR Models. https://www.oecd.org/chemicalsafety/risk-asses

sment/37849783.pdf (accessed: April 12, 2021).

[21] Chemistry Software, HyperChem, Molecular Modeling. http://www.

hyper.com/ (accessed: April 12, 2021).

[22] P. Gramatica, E. Giani, E. Papa, J Mol Graph Model. 2007, 25, 755.
[23] P. Gramatica, E. Papa, Environ. Sci. Technol. 2007, 41, 2833.
[24] E. Papa, P. Gramatica, SAR QSAR Environ. Res. 2008, 19, 655.

[25] P. Gramatica, P. Pilutti, E. Papa, QSAR Comb. Sci. 2003, 22, 364.
[26] P. P. Roy, S. Kovarich, P. Gramatica, J. Comput. Chem. 2011, 32, 2386.
[27] P. Gramatica, E. Papa, QSAR Comb. Sci. 2005, 24, 953.

[28] J. A. Arnot, D. Mackay, M. Bonnell, Environ. Toxicol. Chem. 2008,
27, 341.

[29] J. A. Arnot, D. Mackay, T. F. Parkerton, M. Bonnell, Environ. Toxicol.

Chem. 2008, 27, 2263.
[30] J. A. Arnot, W. Meylan, J. Tunkel, P. H. Howard, D. Mackay, M.

Bonnell, R. S. Boethling, Environ. Toxicol. Chem. 2009, 28, 1168.
[31] T. N. Brown, J. A. Arnot, F. Wania, Environ. Sci. Technol. 2012, 46,

8253.

[32] J. A. Arnot, T. N. Brown, F. Wania, Environ. Sci. Technol. 2014,
48, 723.

[33] E. Papa, F. Villa, P. Gramatica, J. Chem. Inf. Model. 2005, 45, 1256.
[34] J. Li, P. Gramatica, Mol. Diversity 2010, 14, 687.
[35] P. Gramatica, V. Consonni, M. Pavan, SAR QSAR Environ. Res. 2003,

14, 237.

[36] B. Bhhatarai, P. Gramatica, Water Res. 2011, 45, 1463.

[37] P. Gramatica, S. Cassani, P. P. Roy, S. Kovarich, C. W. Yap, E. Papa,

Mol. Inf. 2012, 31, 817.
[38] S. Cassani, S. Kovarich, E. Papa, P. P. Roy, L. van der Wal, P.

Gramatica, J. Hazard. Mater. 2013, 258, 50.
[39] E. Papa, S. Kovarich, P. Gramatica, QSAR Comb. Sci. 2009, 28, 790.

[40] E. Papa, S. Kovarich, P. Gramatica, Chem. Res. Toxicol. 2010, 23, 946.
[41] R. Todeschini, P. Gramatica, Quant. Struct.-Act. Relat. 1997, 16, 120.
[42] P. Gramatica, F. Battaini, E. Papa, Fresenius Environ. Bull. 2004, 13,

1258.

[43] E. Papa, F. Battaini, P. Gramatica, Chemosphere 2005, 58, 559.
[44] E. Papa, M. Luini, P. Gramatica, SAR QSAR Environ. Res. 2009,

20, 767.

[45] P. Gramatica, P. Pilutti, E. Papa, SAR QSAR Environ. Res. 2007,
18, 169.

[46] B. Bhhatarai, P. Gramatica, Environ. Sci. Technol. 2011, 45, 8120.
[47] B. Bhhatarai, P. Gramatica, Mol. Diversity 2011, 15, 467.
[48] B. Bhhatarai, P. Gramatica, Chem. Res. Toxicol. 2010, 23, 528.
[49] M. S. McLachlan, G. Czub, M. MacLeod, J. A. Arnot, Environ. Sci.

Technol. 2011, 45, 197.

[50] European Chemicals Agency (ECHA), Guidance on Information Require-

ments and Chemical Safety Assessment Chapter R.11: PBT/VPvB

Assessment. https://echa.europa.eu/documents/10162/13632/informa

tion_requirements_r11_en.pdf (accessed: April 12, 2021).

[51] P. Gramatica, E. Papa, A. Sangion, Environ. Sci.-Process Impacts 2018,

20, 38.

[52] Fathead Minnow Dataset. https://archive.epa.gov/med/med_archive_

03/web/html/fathead_minnow.html (accessed: April 12, 2021).

[53] C. L. Russom, S. P. Bradbury, S. J. Broderius, D. E. Hammermeister,

R. A. Drummond, Environ. Toxicol. Chem. 1997, 16, 948.
[54] Organization for the Economic Cooperation and Development (OECD),

Guidance Document on the Validation of (Quantitative) Structure-

Activity Relationship [(Q)SAR] Models. https://www.oecd-ilibrary.org/

docserver/9789264085442-en.pdf?expires=1618216738&id=id&accn

ame=guest&checksum=51796AE2A593B32FA9B9E8A122127151

(accessed: April 12, 2021).

How to cite this article: N. Chirico, A. Sangion, P. Gramatica,

L. Bertato, I. Casartelli, E. Papa, J Comput Chem 2021, 42(20),

1452–1460. https://doi.org/10.1002/jcc.26551

1460 CHIRICO ET AL.

https://wedocs.unep.org/bitstream/handle/20.500.11822/21800/UNEA_towardspollution_long%20version_Web.pdf?sequence=1%26isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/21800/UNEA_towardspollution_long%20version_Web.pdf?sequence=1%26isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/21800/UNEA_towardspollution_long%20version_Web.pdf?sequence=1%26isAllowed=y
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
http://www.hyper.com/
http://www.hyper.com/
https://echa.europa.eu/documents/10162/13632/information_requirements_r11_en.pdf
https://echa.europa.eu/documents/10162/13632/information_requirements_r11_en.pdf
https://archive.epa.gov/med/med_archive_03/web/html/fathead_minnow.html
https://archive.epa.gov/med/med_archive_03/web/html/fathead_minnow.html
https://www.oecd-ilibrary.org/docserver/9789264085442-en.pdf?expires=1618216738%26id=id%26accname=guest%26checksum=51796AE2A593B32FA9B9E8A122127151
https://www.oecd-ilibrary.org/docserver/9789264085442-en.pdf?expires=1618216738%26id=id%26accname=guest%26checksum=51796AE2A593B32FA9B9E8A122127151
https://www.oecd-ilibrary.org/docserver/9789264085442-en.pdf?expires=1618216738%26id=id%26accname=guest%26checksum=51796AE2A593B32FA9B9E8A122127151
https://doi.org/10.1002/jcc.26551

	QSARINS-Chem standalone version: A new platform-independent software to profile chemicals forphysico-chemical properties, f...
	1  INTRODUCTION
	2  METHODS
	2.1  Software design
	2.2  Software overview
	2.2.1  Models tab
	2.2.2  Database tab


	3  DISCUSSION
	3.1  Structural database
	3.2  QSAR models included in QSARINS-Chem Standalone version
	3.3  Chemical profiling and diagnostics

	4  CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


