Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(3-Bromopropyl)-4-(2-pyridyl)-1H-1,2,3-triazole

James D. Crowley,* Pauline H. Bandeen and Lyall R. Hanton
Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jcrowley@chemistry.otago.ac.nz

Received 20 March 2009; accepted 1 April 2009
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA ; R$ factor $=$ $0.027 ; \omega R$ factor $=0.071$; data-to-parameter ratio $=13.8$.

In the structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{4}$, the plane of the substituted $1,2,3$-triazole ring is tilted by $14.84(10)^{\circ}$ with respect to the mean plane of the pyridine ring. The pyridine and closest triazole N atoms adopt an anti arrangement which removes any lone pair-lone pair repulsions between the N atoms. This conformation is further stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. There are two molecules in the unit cell, which form a centrosymmetric head-to-tail dimer. The dimers are stabilized through $\pi-\pi$ interactions [centroid-centroid distance $=3.733(4) \AA$ and mean interplanar distance $=3.806(12) \AA$] between the substituted 1,2,3-triazole ring and the pyridine rings in adjacent molecules. Each dimer interacts with two neighbouring dimers above and below, forming a slipped stack of dimers through the crystal. The 3-bromopropyl chain sits over the pyridine ring of a neighbouring molecule and the triazole rings of nearby molecules are adjacent.

Related literature

For details of the $\mathrm{Cu}(\mathrm{I})$-catalysed 1,3-cycloaddition of organic azides with terminal alkynes, see: Rostovtsev et al. (2002); Tornoe et al. (2002); Meldal \& Tornoe (2008). For applications of pyridyl-functionalized 1,2,3-triazoles, see: Li \& Flood (2008); Meudtner \& Hecht (2008); Krivopalov \& Shkurko (2005); Li et al. (2007); Richardson et al. (2008). For related structures, see Schweinfurth et al. (2008); Obata et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{4}$
$\gamma=83.854(2)^{\circ}$
$M_{r}=267.14$
Triclinic, $P \overline{1}$
$a=5.658$ (2) \AA
$b=9.688$ (4) \AA
$=551.6(4) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=3.70 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
$0.53 \times 0.23 \times 0.11 \mathrm{~mm}$
$\alpha=84.498$ (3) ${ }^{\circ}$
$\beta=85.663(2)^{\circ}$

8776 measured reflections 1879 independent reflections 1759 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
136 parameters
$w R\left(F^{2}\right)=0.071$
H -atom parameters constrained
$S=0.97$
1879 reflections
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.61 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.62	$3.449(4)$	149
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.97	2.51	$3.450(4)$	164

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+2,-y,-z+1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

We thank the Chemistry Department, University of Otago, for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2204).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Krivopalov, V. P. \& Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339-379.
Li, Y. \& Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649-2652.
Li, Y., Huffman, J. C. \& Flood, A. H. (2007). Chem. Commun. pp. 2692-2694. Meldal, M. \& Tornoe, C. W. (2008). Chem. Rev. 108, 2952-3015.
Meudtner, R. M. \& Hecht, S. (2008). Angew. Chem. Int. Ed. 47, 4926-4930.

organic compounds

Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabikig, T. \& Yano, S. (2008). Dalton Trans. pp. 3292-3300.
Richardson, C., Fitchett, C. M., Keene, F. R. \& Steel, P. J. (2008). Dalton Trans. pp. 2534-2537.
Rostovtsev, V. V., Green, L. G., Fokin, V. V. \& Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.

Schweinfurth, D., Hardcastle, K. I. \& Bunz, U. H. F. (2008). Chem. Commun. pp. 2203-2205.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tornoe, C. W., Christensen, C. \& Meldal, M. (2002). J. Org. Chem. 67, 30573064.

supplementary materials

1-(3-Bromopropyl)-4-(2-pyridyl)-1H-1,2,3-triazole

J. D. Crowley, P. H. Bandeen and L. R. Hanton

Comment

The $\mathrm{Cu}(\mathrm{I})$-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes (the CuAAC reaction) (Rostovtsev et al. 2002; Tornoe et al. 2002) has quickly become an indispensable tool for functional molecule synthesis and renewed interest in the chemistry of functionalized 1,2,3-triazoles (Meldal \& Tornoe, 2008). Because they are readily synthesized using the CuAAC reaction, pyridyl functionalized 1,2,3-triazoles have begun attracting significant attention in a range of areas including anion recognition (Li \& Flood, 2008), stimuli responsive foldamers (Meudtner \& Hecht, 2008), drug discovery (Krivopalov \& Shkurko, 2005) and coordination chemistry (Li et al. 2007; Richardson et al., 2008; Schweinfurth et al., 2008; Obata et al., 2008)

The molecular structure of the new triazole compound 1 is shown in Fig. 1. The molecule consists of an essentially co-planar (2-pyridyl) and 1,2,3-triazole units attached to a 3-bromopropyl chain, the plane of the substituted 1,2,3-triazole ring is tilted by $14.84(10)^{\circ}$ with respect to the mean plane of the pyridine ring system. As is commonly observed (Obata et al., 2008; Schweinfurth et al., 2008) N1 in the pyridine ring and N2 of the triazole ring adopt an anti arrangement which removes any lone pair-lone pair repulsions between the nitrogen atoms. Additionally, the anti conformation is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. There are two molecules of 1 in the unit cell which form a centrosymmetric head to tail dimer that is stabilized through a $\pi-\pi$ interaction [centroid-centroid distance $=3.733$ (4) \AA, mean interplanar distance 3.806 (12) \AA] between the substituted 1,2,3-triazole and the pyridine rings in adjacent molecules. In the extended crystal each dimer interacts with two neighbouring dimers above and below to form slipped stacks of dimers through the crystal. The 3-bromopropyl chain sits over the pyridine ring of the neighbouring molecule and the triazole rings of nearby molecules are adjacent [centroid-centroid distance $=4.691(4) \AA$]. Unlike the dimer units, the extended stacks appear not to be stabilized by $\pi-\pi$ interactions, the mean interplanar distance between dimers of 1 is $4.060 \AA$ are outside the range normally expected for a $\pi-\pi$ interaction. A steric interaction between the bromopropyl chain on one molecule of 1 and the pyridine ring on the adjacent molecule in the next dimer prevents a closer face to face interaction of the aromatic rings in the different dimer units.

Experimental

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{4}$ (1) was obtained as a by-product during the attempted synthesis of a ditopic propyl bridged bis((2-pyridyl)-1,2,3-triazole) ligand. X-ray quality colourless crystals were obtained by slow evaporation of a petroleum ether solution of 1 but were weakly diffracting.

To a stirred solution of 1,3 -dibromopropane $(0.301 \mathrm{~g}, 1.5 \mathrm{mmol}, 1.00$ eq. $)$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml}, 4: 1)$ was added NaN_{3} ($0.205 \mathrm{~g}, 3.1 \mathrm{mmol}, 2.05 \mathrm{eq}.), \mathrm{Na}_{2} \mathrm{CO}_{3}\left(0.13 \mathrm{~g}, 1.2 \mathrm{mmol}, 0.8\right.$ eq.), $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.150 \mathrm{~g}, 0.6 \mathrm{mmol}, 0.40$ eq.), ascorbic $\operatorname{acid}(0.210 \mathrm{~g}, 1.2 \mathrm{mmol}, 0.80 \mathrm{eq}) .2$-Ethynylpyridine $(0.323 \mathrm{~g}, 3.1 \mathrm{mmol}, 2.05 \mathrm{eq}$.) was added and the reaction mixture was stirred at room temperature for 20 h . The resulting suspension was then partitioned between aqueous $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{edta}(1 \mathrm{M}$, $100 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and the layers separated. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone to a ratio

9:1) gave the product as a white solid. Yield: $0.190 \mathrm{~g}, 47 \%$. $\mathrm{Mp} 89-91{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58$ (ddd, $\mathrm{J}=$ $\left.0.9, \mathrm{~J}=1.7, \mathrm{~J}=4.9,1 \mathrm{H}, \mathrm{H}_{1}\right), 8.23-8.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4,5}\right), 7.78\left(\mathrm{td}, \mathrm{J}=1.8, \mathrm{~J}=7.8,1 \mathrm{H}, \mathrm{H}_{3}\right), 7.26-7.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 4.62(\mathrm{t}$, $\left.\mathrm{J}=6.5,2 \mathrm{H}, \mathrm{H}_{10}\right), 3.40\left(\mathrm{t}, \mathrm{J}=6.2,2 \mathrm{H}, \mathrm{H}_{8}\right), 2.52\left(\mathrm{p}, \mathrm{J}=6.4,2 \mathrm{H}, \mathrm{H}_{9}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.2,149.5,148.5$, 136.9, 122.9, 122.6, 120.3, 48.3, 32.7, 29.3; I.R. (KBr): v(cm^{-1}) 3400-3200 (br), 3116, 3087, 2924, 1701, 1617, 1607, 1598, $1572,1548,1473,1466,1447,1421,1358,1317,1287,1250,1224,1204,1144,1080,1048,983,969,891,855,844,826$, 786, 744, 708; HRESI-MS (MeOH): $\mathrm{m} / z=289.0066[M+\mathrm{Na}]+\left(\right.$ calc. for $\mathrm{C}_{10} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{4} \mathrm{Na} 289.0065[M+\mathrm{Na}]+$), 291.0040 $[M+\mathrm{Na}]+$ (calc. for $\mathrm{C}_{10} \mathrm{H}_{11}{ }^{81} \mathrm{BrN}_{4} \mathrm{Na} 291.0044[M+\mathrm{Na}]+$; Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$: C, 44.96; H, 4.15; N, 20.97; Found: C, 45.36; H, 4.24; N, 21.03.

Refinement

All H -atoms bound to carbon were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for the CH H atoms and $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.97 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2} \mathrm{H}$ atoms.

Figures

1-(3-Bromopropyl)-4-(2-pyridyl)-1 H-1,2,3-triazole

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{4}$
$M_{r}=267.14$
Triclinic, $P \overline{1}$
$Z=2$
$F_{000}=268$
$D_{\mathrm{x}}=1.608 \mathrm{Mg} \mathrm{m}^{-3}$

Hall symbol: -P 1
$a=5.658$ (2) \AA
$b=9.688(4) \AA$
$c=10.191$ (4) \AA
$\alpha=84.498(3)^{\circ}$
$\beta=85.663(2)^{\circ}$
$\gamma=83.854(2)^{\circ}$
$V=551.6(4) \AA^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=90 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.358, T_{\text {max }}=0.66$
8776 measured reflections

Melting point: 362 K
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 5048 reflections
$\theta=3.1-33.3^{\circ}$
$\mu=3.70 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Irregular, colourless
$0.53 \times 0.23 \times 0.11 \mathrm{~mm}$

1879 independent reflections
1759 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=4.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=0.97$
1879 reflections
136 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0372 P)^{2}+0.5592 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.61 \mathrm{e} \AA^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Br1	$0.84285(5)$	$-0.19395(3)$	$0.97535(3)$	$0.03839(13)$
N3	$0.3211(3)$	$0.1602(2)$	$0.6731(2)$	$0.0243(4)$
C6	$0.4287(4)$	$0.2879(2)$	$0.4946(2)$	$0.0177(5)$
N2	$0.2396(4)$	$0.2401(2)$	$0.5713(2)$	$0.0236(4)$
N1	$0.6005(4)$	$0.4000(2)$	$0.2965(2)$	$0.0230(4)$
N4	$0.5611(3)$	$0.15753(19)$	$0.66118(19)$	$0.0188(4)$
C5	$0.3999(4)$	$0.3838(2)$	$0.3747(2)$	$0.0179(5)$
C7	$0.6350(4)$	$0.2341(2)$	$0.5518(2)$	$0.0185(5)$
H7	0.7908	0.2476	0.5215	0.022^{*}
C4	$0.1805(4)$	$0.4545(2)$	$0.3468(2)$	$0.0216(5)$
H4	0.0447	0.4385	0.4010	0.026^{*}
C8	$0.7073(4)$	$0.0790(2)$	$0.7608(2)$	$0.0212(5)$
H8A	0.6075	0.0576	0.8403	0.025^{*}
H8B	0.8267	0.1360	0.7832	0.025^{*}
C2	$0.3717(5)$	$0.5674(2)$	$0.1552(2)$	$0.0244(5)$
H2	0.3677	0.6302	0.0802	0.029^{*}
C1	$0.5814(4)$	$0.4892(2)$	$0.1884(2)$	$0.0249(5)$
H1	0.7170	0.4993	0.1322	0.030^{*}
C9	$0.8298(5)$	$-0.0555(3)$	$0.7124(2)$	$0.0291(6)$
H9A	0.7101	-0.1168	0.7002	0.035^{*}
H9B	0.9133	-0.0349	0.6273	0.035^{*}
C3	$0.1681(4)$	$0.5495(2)$	$0.2364(2)$	$0.0242(5)$
H3	0.0245	0.6008	0.2172	0.029^{*}
C10	$1.0035(5)$	$-0.1294(3)$	$0.8062(3)$	$0.0309(6)$
H10A	1.1188	-0.0667	0.8222	0.037^{*}
H10B	1.0890	-0.2087	0.7663	0.037^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.04089(19)$	$0.03674(19)$	$0.03195(18)$	$0.00206(12)$	$0.00069(13)$	$0.01657(12)$
N3	$0.0180(10)$	$0.0273(11)$	$0.0260(11)$	$-0.0011(8)$	$-0.0002(9)$	$0.0033(9)$
C6	$0.0187(11)$	$0.0154(10)$	$0.0191(11)$	$-0.0011(9)$	$-0.0003(9)$	$-0.0032(9)$
N2	$0.0191(10)$	$0.0265(10)$	$0.0241(11)$	$-0.0024(8)$	$-0.0010(8)$	$0.0032(9)$
N1	$0.0214(10)$	$0.0240(10)$	$0.0227(10)$	$-0.0008(8)$	$0.0001(9)$	$-0.0013(8)$
N4	$0.0171(9)$	$0.0191(9)$	$0.0194(10)$	$0.0001(8)$	$-0.0017(8)$	$0.0001(8)$
C5	$0.0187(11)$	$0.0152(10)$	$0.0200(11)$	$-0.0024(9)$	$-0.0012(9)$	$-0.0028(9)$
C7	$0.0159(11)$	$0.0181(10)$	$0.0212(11)$	$-0.0013(9)$	$-0.0002(9)$	$-0.0014(9)$
C4	$0.0170(11)$	$0.0229(11)$	$0.0246(12)$	$-0.0011(9)$	$-0.0006(10)$	$-0.0021(10)$
C8	$0.0240(12)$	$0.0200(11)$	$0.0187(11)$	$0.0020(9)$	$-0.0037(10)$	$-0.0007(9)$
C2	$0.0344(14)$	$0.0183(11)$	$0.0208(12)$	$-0.0028(10)$	$-0.0075(11)$	$0.0015(9)$
C1	$0.0251(12)$	$0.0266(12)$	$0.0220(12)$	$-0.0039(10)$	$0.0024(10)$	$0.0015(10)$
C 9	$0.0424(15)$	$0.0230(12)$	$0.0198(12)$	$0.0072(11)$	$-0.0026(11)$	$-0.0027(10)$
C3	$0.0239(12)$	$0.0204(11)$	$0.0281(13)$	$0.0029(10)$	$-0.0067(11)$	$-0.0030(10)$

sup-4

C10 0.0357 (15)
Geometric parameters ($A,{ }^{\circ}$)

Br1-C10	1.966 (3)
N3-N2	1.315 (3)
N3-N4	1.352 (3)
C6-N2	1.371 (3)
C6-C7	1.373 (3)
C6-C5	1.471 (3)
N1-C1	1.337 (3)
N1-C5	1.351 (3)
N4-C7	1.344 (3)
N4-C8	1.463 (3)
C5-C4	1.388 (3)
C7-H7	0.9300
C4-C3	1.384 (3)
C4-H4	0.9300
N2-N3-N4	106.83 (18)
N2-C6-C7	108.4 (2)
N2-C6-C5	122.9 (2)
C7-C6-C5	128.7 (2)
N3-N2-C6	108.78 (19)
C1-N1-C5	117.1 (2)
C7-N4-N3	111.53 (18)
C7-N4-C8	127.7 (2)
N3-N4-C8	120.73 (19)
N1-C5-C4	122.9 (2)
N1-C5-C6	115.7 (2)
C4-C5-C6	121.4 (2)
N4-C7-C6	104.5 (2)
N4-C7-H7	127.8
C6-C7-H7	127.8
C3-C4-C5	118.6 (2)
C3-C4-H4	120.7
C5-C4-H4	120.7
N4-C8-C9	111.80 (19)
N4-C8-H8A	109.3
C9-C8-H8A	109.3
N4-C8-H8B	109.3
C9-C8-H8B	109.3

C8-C9	$1.516(3)$
C8-H8A	0.9700
C8-H8B	0.9700
C2-C3	$1.383(4)$
C2-C1	$1.384(4)$
C2-H2	0.9300
C1-H1	0.9300
C9-C10	$1.501(4)$
C9-H9A	0.9700
C9-H9B	0.9700
C3-H3	0.9300
C10-H10A	0.9700
C10-H10B	0.9700
H8A-C8-H8B	
C3-C2-C1	107.9
C3-C2-H2	$118.2(2)$
C1-C2-H2	120.9
N1-C1-C2	120.9
N1-C1-H1	$123.8(2)$
C2-C1-H1	118.1
C10-C9-C8	118.1
C10-C9-H9A	$112.8(2)$
C8-C9-H9A	109.0
C10-C9-H9B	109.0
C8-C9-H9B	109.0
H9A-C9-H9B	109.0
C2-C3-C4	107.8
C2-C3-H3	$119.3(2)$
C4-C3-H3	120.4
C9-C10-Br1	120.4
C9-C10-H10A	$111.7(2)$
Br1-C10-H10A	109.3
C9-C10-H10B	109.3
Br1-C10-H10B	109.3
H10A-C10-H10B	109.3
	107.9
C 20	

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.62	$3.449(4)$	149
$\mathrm{C} 10 — \mathrm{H} 10 \mathrm{~B} \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.97	2.51	$3.450(4)$	164
Symmetry codes: (i) $x+1, y, z ;($ ii) $-x+2,-y,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

Fig. 3

