8776 measured reflections 1879 independent reflections

 $R_{\rm int} = 0.043$

1759 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3-Bromopropyl)-4-(2-pyridyl)-1H-1,2,3-triazole

James D. Crowley,* Pauline H. Bandeen and Lyall R. Hanton

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jcrowley@chemistry.otago.ac.nz

Received 20 March 2009; accepted 1 April 2009

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.071; data-to-parameter ratio = 13.8.

In the structure of the title compound, $C_{10}H_{11}BrN_4$, the plane of the substituted 1,2,3-triazole ring is tilted by $14.84 (10)^{\circ}$ with respect to the mean plane of the pyridine ring. The pyridine and closest triazole N atoms adopt an anti arrangement which removes any lone pair-lone pair repulsions between the N atoms. This conformation is further stabilized by weak intermolecular $C-H \cdots N$ interactions. There are two molecules in the unit cell, which form a centrosymmetric headto-tail dimer. The dimers are stabilized through π - π interactions [centroid–centroid distance = 3.733(4) Å and mean interplanar distance = 3.806(12) Å] between the substituted 1,2,3-triazole ring and the pyridine rings in adjacent molecules. Each dimer interacts with two neighbouring dimers above and below, forming a slipped stack of dimers through the crystal. The 3-bromopropyl chain sits over the pyridine ring of a neighbouring molecule and the triazole rings of nearby molecules are adjacent.

Related literature

For details of the Cu(I)-catalysed 1,3-cycloaddition of organic azides with terminal alkynes, see: Rostovtsev et al. (2002); Tornoe et al. (2002); Meldal & Tornoe (2008). For applications of pyridyl-functionalized 1,2,3-triazoles, see: Li & Flood (2008); Meudtner & Hecht (2008); Krivopalov & Shkurko (2005); Li et al. (2007); Richardson et al. (2008). For related structures, see Schweinfurth et al. (2008); Obata et al. (2008).

Experimental

Crystal data

-	
$C_{10}H_{11}BrN_4$	$\gamma = 83.854 \ (2)^{\circ}$
$M_r = 267.14$	V = 551.6 (4) Å ³
Triclinic, P1	Z = 2
a = 5.658 (2) Å	Mo $K\alpha$ radiation
b = 9.688 (4) Å	$\mu = 3.70 \text{ mm}^{-1}$
c = 10.191 (4) Å	T = 90 K
$\alpha = 84.498 \ (3)^{\circ}$	$0.53 \times 0.23 \times 0.11 \text{ mm}$
$\beta = 85.663 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\rm min} = 0.358, T_{\rm max} = 0.66$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	136 parameters
$vR(F^2) = 0.071$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
.879 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7 \cdots N2^{i}$	0.93	2.62	3.449 (4)	149
$C10 - H10B \cdots N1^{ii}$	0.97	2.51	3.450 (4)	164

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

We thank the Chemistry Department, University of Otago, for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2204).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339-379.
- Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649-2652.
- Li, Y., Huffman, J. C. & Flood, A. H. (2007). Chem. Commun. pp. 2692-2694.
- Meldal, M. & Tornoe, C. W. (2008). Chem. Rev. 108, 2952-3015. Meudtner, R. M. & Hecht, S. (2008). Angew. Chem. Int. Ed. 47, 4926-4930.

- Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., Kinoshita, I., Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabikig, T. & Yano, S. (2008). *Dalton Trans.* pp. 3292–3300.
- Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537.
- Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.
- Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). *Chem. Commun.* pp. 2203–2205.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tornoe, C. W., Christensen, C. & Meldal, M. (2002). J. Org. Chem. 67, 3057– 3064.

supplementary materials

Acta Cryst. (2009). E65, o999-o1000 [doi:10.1107/S1600536809012148]

1-(3-Bromopropyl)-4-(2-pyridyl)-1H-1,2,3-triazole

J. D. Crowley, P. H. Bandeen and L. R. Hanton

Comment

The Cu(I)-catalyzed 1,3-cycloaddition of organic azides with terminal alkynes (the CuAAC reaction) (Rostovtsev *et al.* 2002; Tornoe *et al.* 2002) has quickly become an indispensable tool for functional molecule synthesis and renewed interest in the chemistry of functionalized 1,2,3-triazoles (Meldal & Tornoe, 2008). Because they are readily synthesized using the CuAAC reaction, pyridyl functionalized 1,2,3-triazoles have begun attracting significant attention in a range of areas including anion recognition (Li & Flood, 2008), stimuli responsive foldamers (Meudtner & Hecht, 2008), drug discovery (Krivopalov & Shkurko, 2005) and coordination chemistry (Li *et al.* 2007; Richardson *et al.*, 2008; Schweinfurth *et al.*, 2008; Obata *et al.*, 2008)

The molecular structure of the new triazole compound 1 is shown in Fig. 1. The molecule consists of an essentially co-planar (2-pyridyl) and 1,2,3-triazole units attached to a 3-bromopropyl chain, the plane of the substituted 1,2,3-triazole ring is tilted by 14.84 (10)° with respect to the mean plane of the pyridine ring system. As is commonly observed (Obata *et al.*, 2008; Schweinfurth *et al.*, 2008) N1 in the pyridine ring and N2 of the triazole ring adopt an anti arrangement which removes any lone pair-lone pair repulsions between the nitrogen atoms. Additionally, the anti conformation is stabilized by weak C—H···N interactions. There are two molecules of 1 in the unit cell which form a centrosymmetric head to tail dimer that is stabilized through a π - π interaction [centroid-centroid distance = 3.733 (4) Å, mean interplanar distance 3.806 (12) Å] between the substituted 1,2,3-triazole and the pyridine rings in adjacent molecules. In the extended crystal each dimer interacts with two neighbouring dimers above and below to form slipped stacks of dimers through the crystal. The 3-bromopropyl chain sits over the pyridine ring of the neighbouring molecule and the triazole rings of nearby molecules are adjacent [centroid-centroid distance = 4.691 (4) Å]. Unlike the dimer units, the extended stacks appear not to be stabilized by π - π interactions, the mean interplanar distance between dimers of 1 is 4.060 Å are outside the range normally expected for a π - π interaction. A steric interaction between the bromopropyl chain on one molecule of 1 and the pyridine ring on the adjacent molecule in the next dimer prevents a closer face to face interaction of the aromatic rings in the different dimer units.

Experimental

The title compound, $C_{10}H_{11}BrN_4$ (1) was obtained as a by-product during the attempted synthesis of a ditopic propyl bridged bis((2-pyridyl)-1,2,3-triazole) ligand. X-ray quality colourless crystals were obtained by slow evaporation of a petroleum ether solution of 1 but were weakly diffracting.

To a stirred solution of 1,3-dibromopropane (0.301 g, 1.5 mmol, 1.00 eq.) in DMF/H₂O (15 ml, 4:1) was added NaN₃ (0.205 g, 3.1 mmol, 2.05 eq.), Na₂CO₃ (0.13 g, 1.2 mmol, 0.8 eq.), CuSO₄.5H₂O (0.150 g, 0.6 mmol, 0.40 eq.), ascorbic acid (0.210 g, 1.2 mmol, 0.80 eq). 2-Ethynylpyridine (0.323 g, 3.1 mmol, 2.05 eq.) was added and the reaction mixture was stirred at room temperature for 20 h. The resulting suspension was then partitioned between aqueous NH₄OH/edta (1 *M*, 100 ml) and CH₂Cl₂ (50 ml) and the layers separated. The organic phase was washed with H₂O (100 ml) and brine (100 ml), dried (MgSO₄) and the solvent removed under reduced pressure. Chromatography (gradient CH₂Cl₂/acetone to a ratio

9:1) gave the product as a white solid. Yield: 0.190 g, 47%. Mp 89–91 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.58 (ddd, J = 0.9, J = 1.7, J = 4.9, 1H, H₁), 8.23–8.12 (m, 2H, H_{4,5}), 7.78 (td, J = 1.8, J = 7.8, 1H, H₃), 7.26–7.21 (m, 1H, H₂), 4.62 (t, J = 6.5, 2H, H₁₀), 3.40 (t, J = 6.2, 2H, H₈), 2.52 (p, J = 6.4, 2H, H₉); ¹³C NMR (75 MHz, CDCl₃) δ : 150.2, 149.5, 148.5, 136.9, 122.9, 122.6, 120.3, 48.3, 32.7, 29.3; I.*R*. (KBr): v(cm⁻¹) 3400–3200 (br), 3116, 3087, 2924, 1701, 1617, 1607, 1598, 1572, 1548, 1473, 1466, 1447, 1421, 1358, 1317, 1287, 1250, 1224, 1204, 1144, 1080, 1048, 983, 969, 891, 855, 844, 826, 786, 744, 708; HRESI-MS (MeOH): m/z = 289.0066 [*M*+Na]+ (calc. for C₁₀H₁₁⁷⁹BrN₄Na 289.0065 [*M*+Na]+), 291.0040 [*M*+Na]+ (calc. for C₁₀H₁₁⁸¹BrN₄Na 291.0044 [*M*+Na]+; Anal. calcd for C₁₀H₁₁BrN₄(H₂O): C, 44.96; H, 4.15; N, 20.97; Found: C, 45.36; H, 4.24; N, 21.03.

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for the CH H atoms and d(C-H) = 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂ H atoms.

Figures

Fig. 1. The molecular structure of compound 1, showing the atom numbering scheme. The thermal displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A spacefilling representation of the unit cell of 1 showing the head-to-tail stacking of the molecules.

Fig. 3. A spacefilling representation of the crystal packing present in 1, showing the slipped stacks of the dimers.

1-(3-Bromopropyl)-4-(2-pyridyl)-1H-1,2,3-triazole

C ₁₀ H ₁₁ BrN ₄	Z = 2
$M_r = 267.14$	$F_{000} = 268$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.608 {\rm Mg m}^{-3}$

Hall symbol: -P 1	Melting point: 362 K
a = 5.658 (2) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 9.688 (4) Å	Cell parameters from 5048 reflections
c = 10.191 (4) Å	$\theta = 3.1 - 33.3^{\circ}$
$\alpha = 84.498 \ (3)^{\circ}$	$\mu = 3.70 \text{ mm}^{-1}$
$\beta = 85.663 \ (2)^{\circ}$	T = 90 K
$\gamma = 83.854 \ (2)^{\circ}$	Irregular, colourless
$V = 551.6 (4) \text{ Å}^3$	$0.53 \times 0.23 \times 0.11 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	1879 independent reflections
Radiation source: fine-focus sealed tube	1759 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 90 K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 4.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -6 \rightarrow 6$
$T_{\min} = 0.358, T_{\max} = 0.66$	$k = -11 \rightarrow 11$
8776 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.5592P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$
1879 reflections	$\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$
136 parameters	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.84285 (5)	-0.19395 (3)	0.97535 (3)	0.03839 (13)
N3	0.3211 (3)	0.1602 (2)	0.6731 (2)	0.0243 (4)
C6	0.4287 (4)	0.2879 (2)	0.4946 (2)	0.0177 (5)
N2	0.2396 (4)	0.2401 (2)	0.5713 (2)	0.0236 (4)
N1	0.6005 (4)	0.4000 (2)	0.2965 (2)	0.0230 (4)
N4	0.5611 (3)	0.15753 (19)	0.66118 (19)	0.0188 (4)
C5	0.3999 (4)	0.3838 (2)	0.3747 (2)	0.0179 (5)
C7	0.6350 (4)	0.2341 (2)	0.5518 (2)	0.0185 (5)
H7	0.7908	0.2476	0.5215	0.022*
C4	0.1805 (4)	0.4545 (2)	0.3468 (2)	0.0216 (5)
H4	0.0447	0.4385	0.4010	0.026*
C8	0.7073 (4)	0.0790 (2)	0.7608 (2)	0.0212 (5)
H8A	0.6075	0.0576	0.8403	0.025*
H8B	0.8267	0.1360	0.7832	0.025*
C2	0.3717 (5)	0.5674 (2)	0.1552 (2)	0.0244 (5)
H2	0.3677	0.6302	0.0802	0.029*
C1	0.5814 (4)	0.4892 (2)	0.1884 (2)	0.0249 (5)
H1	0.7170	0.4993	0.1322	0.030*
C9	0.8298 (5)	-0.0555 (3)	0.7124 (2)	0.0291 (6)
H9A	0.7101	-0.1168	0.7002	0.035*
H9B	0.9133	-0.0349	0.6273	0.035*
C3	0.1681 (4)	0.5495 (2)	0.2364 (2)	0.0242 (5)
H3	0.0245	0.6008	0.2172	0.029*
C10	1.0035 (5)	-0.1294 (3)	0.8062 (3)	0.0309 (6)
H10A	1.1188	-0.0667	0.8222	0.037*
H10B	1.0890	-0.2087	0.7663	0.037*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04089 (19)	0.03674 (19)	0.03195 (18)	0.00206 (12)	0.00069 (13)	0.01657 (12)
N3	0.0180 (10)	0.0273 (11)	0.0260 (11)	-0.0011 (8)	-0.0002 (9)	0.0033 (9)
C6	0.0187 (11)	0.0154 (10)	0.0191 (11)	-0.0011 (9)	-0.0003 (9)	-0.0032 (9)
N2	0.0191 (10)	0.0265 (10)	0.0241 (11)	-0.0024 (8)	-0.0010 (8)	0.0032 (9)
N1	0.0214 (10)	0.0240 (10)	0.0227 (10)	-0.0008 (8)	0.0001 (9)	-0.0013 (8)
N4	0.0171 (9)	0.0191 (9)	0.0194 (10)	0.0001 (8)	-0.0017 (8)	0.0001 (8)
C5	0.0187 (11)	0.0152 (10)	0.0200 (11)	-0.0024 (9)	-0.0012 (9)	-0.0028 (9)
C7	0.0159 (11)	0.0181 (10)	0.0212 (11)	-0.0013 (9)	-0.0002 (9)	-0.0014 (9)
C4	0.0170 (11)	0.0229 (11)	0.0246 (12)	-0.0011 (9)	-0.0006 (10)	-0.0021 (10)
C8	0.0240 (12)	0.0200 (11)	0.0187 (11)	0.0020 (9)	-0.0037 (10)	-0.0007 (9)
C2	0.0344 (14)	0.0183 (11)	0.0208 (12)	-0.0028 (10)	-0.0075 (11)	0.0015 (9)
C1	0.0251 (12)	0.0266 (12)	0.0220 (12)	-0.0039 (10)	0.0024 (10)	0.0015 (10)
C9	0.0424 (15)	0.0230 (12)	0.0198 (12)	0.0072 (11)	-0.0026 (11)	-0.0027 (10)
C3	0.0239 (12)	0.0204 (11)	0.0281 (13)	0.0029 (10)	-0.0067 (11)	-0.0030 (10)

supplementary materials

C10	0.0357 (15)	0.0261 (13)	0.0264 (13)	0.0093 (11)	0.0030 (12)	0.0028 (10)
Geometric par	rameters (Å, °)					
Br1-C10		1.966 (3)	C8—	С9	1.5	16 (3)
N3—N2		1.315 (3)	C8—	H8A	0.9	700
N3—N4		1.352 (3)	C8—	H8B	0.9	700
C6—N2		1.371 (3)	C2—	C3	1.3	83 (4)
С6—С7		1.373 (3)	C2—	C1	1.3	84 (4)
C6—C5		1.471 (3)	C2—	H2	0.93	300
N1-C1		1.337 (3)	C1—	H1	0.93	300
N1—C5		1.351 (3)	С9—	C10	1.5	01 (4)
N4C7		1.344 (3)	С9—	H9A	0.9	700
N4—C8		1.463 (3)	С9—	H9B	0.9	700
C5—C4		1.388 (3)	С3—	Н3	0.93	300
С7—Н7		0.9300	C10–	-H10A	0.9	700
C4—C3		1.384 (3)	C10-	-H10B	0.9	700
С4—Н4		0.9300				
N2—N3—N4		106.83 (18)	H8A-	—С8—Н8В	107	'.9
N2—C6—C7		108.4 (2)	С3—	C2—C1	118	.2 (2)
N2—C6—C5		122.9 (2)	С3—	С2—Н2	120).9
C7—C6—C5		128.7 (2)	C1—	С2—Н2	120).9
N3—N2—C6		108.78 (19)	N1—	C1—C2	123	.8 (2)
C1—N1—C5		117.1 (2)	N1—	C1—H1	118	.1
C7—N4—N3		111.53 (18)	C2—	С1—Н1	118	.1
C7—N4—C8		127.7 (2)	C10–	-С9-С8	112	.8 (2)
N3—N4—C8		120.73 (19)	C10–	-С9—Н9А	109	0.0
N1—C5—C4		122.9 (2)	C8—	С9—Н9А	109	0.0
N1—C5—C6		115.7 (2)	C10–	С9Н9В	109	0.0
C4—C5—C6		121.4 (2)	C8—	С9—Н9В	109	0.0
N4—C7—C6		104.5 (2)	H9A-	—С9—Н9В	107	.8
N4—C7—H7		127.8	C2—	C3—C4	119	.3 (2)
С6—С7—Н7		127.8	C2—	С3—Н3	120	0.4
C3—C4—C5		118.6 (2)	C4—	С3—Н3	120	0.4
С3—С4—Н4		120.7	С9—	C10—Br1	111	.7 (2)
С5—С4—Н4		120.7	С9—	C10—H10A	109	0.3
N4—C8—C9		111.80 (19)	Br1-	-C10—H10A	109	0.3
N4—C8—H8A		109.3	С9—	C10—H10B	109	.3
С9—С8—Н8А		109.3	Br1–	-C10—H10B	109	.3
N4—C8—H8B		109.3	H10A	с10—Н10В	107	.9
С9—С8—Н8В		109.3				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C7—H7···N2 ⁱ	0.93	2.62	3.449 (4)	149
C10—H10B····N1 ⁱⁱ	0.97	2.51	3.450 (4)	164
Summatry adday (i) $w \mid 1 = w = v$ (ii) $w \mid 2 = w = w \mid 1$				

Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z+1.

Fig. 1

Fig. 2

Fig. 3

